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Abstract 21 

We introduce an algorithm (Watta), which automatically calculates supraglacial lake 22 

bathymmetry along tracks of the ICESat-2 laser altimeter. Watta uses photon heights estimated 23 

by the ICESat-2 ATL03 product and extracts supraglacial lake surface, bottom, corrected depth 24 

and (sub)surface ice cover on a lake. These measurements are used to constrain empirical 25 

estimates of lake depth from satellite imagery, which were thus far dependent on sparse sets of 26 

in-situ measurements for calibration. Imagery sources include Landsat OLI, Sentinel-2 and high-27 

resolution Planet Labs PlanetScope and SkySat data, used here for the first time to calculate 28 

supraglacial lake depths. The algorithm was developed and tested using a set of 46 lakes near 29 

Sermeq Kujalleq (Jakobshavn) glacier in Western Greenland. Our results suggest that the use of 30 

multiple imagery sources (both publicly-available and commercial) in combination with 31 

altimetry-based depths, can move towards capturing the evolution of supraglacial hydrology at 32 

improved spatial and temporal scales. 33 

 34 

Plain Language Summary 35 

Supraglacial lakes and streams form on the surface of Antarctica and Greenland when meltwater 36 

pools in low spots. They play an important role in the health of the ice sheets, because their water 37 

can flow to the bed of the ice sheet and lubricate the flow of the ice, or cracks may form under 38 

their weight which can cause floating ice shelves to disintegrate. In this article, we present a 39 

method that uses laser photon reflections from NASA’s ICESat-2 satellites and automatically 40 

identifies lakes on the Greenland Ice Sheet and measures their depth along transects of the lake. 41 

We then use these depths to train a method that uses satellite image data of the lake to measure 42 

the depth of the entire lake. This method does not measure the depth directly, but uses the fact 43 

that the strength of reflected sunlight decreases differently at different wavelengths (green and 44 

red light) when the lake is deeper. The combination of the ICESat-2 photon measurements and 45 

the ever increasing availability of very-high resolution image data will allow us to better 46 

understand how lakes on the ice sheet evolve and affect the state of the ice sheets. 47 

 48 

1 Introduction 49 

Ice loss from Greenland and Antarctica is the greatest current contributor to rising sea 50 

levels, and enhanced mass loss of these ice sheets has been identified as a major tipping point 51 

after which catastrophic sea-level rise becomes irreversible (Bevis, 2019). Recent observations 52 

have shown that ice loss is accelerating faster than predicted (Slater, 2018), with a sixfold 53 

increase since the 1970/80. In Antarctica, this was largely driven by increased ocean melting of 54 

outlet glaciers (Rignot, 2019), while on the Greenland Ice Sheet mass loss is further promoted by 55 

increased surface melt and runoff (Mouginot, 2019).  56 

Since the relationship between increasing summer air temperatures and surface melt is 57 

non-linear (Trusel, 2018), dramatic melt events have occurred in recent years in Greenland. For 58 

example, in the summer of 2019, advection of warm, wet mid-latitude air led to a summer mass 59 

loss unprecedented in the past 50 years, with widespread surface melt occurring up to the highest 60 

regions of the ice sheet (Tedesco and Fettweis, 2020; Sasgen, 2020). 61 

While mass loss in Antarctica over the next 100 years is generally thought to be 62 

dominated by the basal melt under ice shelves (Schlegel, 2018), emerging research has focused 63 
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on the potential importance of surface hydrology over Antarctica (Arthur, 2020). Supraglacial 64 

lakes have been observed around the margin of the Antarctic Ice Sheet up to high elevations 65 

(Stokes, 2019) and are likely to become more prevalent on firn-depleted ice shelves in future 66 

warming scenarios, which could potentially trigger their collapse and consequently lead to 67 

accelerated sea level rise (Lai, 2020). 68 

On both ice sheets,  meltwater pathways can include surface flow into lakes and then 69 

streams, leading to direct loss to the bed from lake drainage or the sudden termination of a 70 

stream into a moulin or near-surface flow where ice slabs can limit vertical motion (MacFerrin, 71 

2019). The links between supraglacial hydrological systems and englacial or subglacial pathways 72 

are a complex system which can potentially be deduced by capitalizing on increasingly higher-73 

resolution imagery and classification techniques of feature types, (Yang 2016). Past remote-74 

sensing work has derived lake volumes from high-resolution (~1m) Worldview imagery using a 75 

physical optical depth approach as well as an empirical method using in-situ estimates 76 

(Moussavi, 2016; Pope, 2016). Additional work has applied a similar physically-based approach 77 

using Sentinel-2 from Copernicus (Williamson, 2018) as well as a combination of LandSat and 78 

Sentinel-2 imagery (Moussavi, 2020). The recent availability of the ICESat-2 laser altimeter 79 

since 2018 has now introduced the potential to replace the in-situ measurements used in 80 

empirical bathymetric methods with satellite laser bathymmetric depths at a high vertical 81 

resolution, consequently extracting lake volumes from imagery (Parrish, 2019). Although 82 

Sentinel-2 provides relatively high resolution (10 m) imagery with substantial coverage at a 4-83 

day to weekly interval, usable imagery is often limited by cloud-cover, and the resolution of 84 

small streams and ice cover is imperfect. Commercial satellite imagery, which is poised to 85 

expand substantially in the future, can help fill the gap in coverage of small-scale melt and melt-86 

induced features at a higher spatial and temporal resolution, complementing estimates resolved 87 

from Sentinel-2. 88 

Here, we present a new algorithm, titled “Watta”, using the ICESat-2 laser altimeter to 89 

derive properties of supraglacial lakes. In addition to bathymetry (supraglacial lake depth) 90 

derived from the difference between the air-water and water-ice interface, this algorithm assigns 91 

a probability for surface type characteristics to photon returns along-track. These types include 92 

lakes, refrozen lakes, lakes with ice layers on top as well as under the surface. Additionally, we 93 

exploit a range of imagery data to validate the surface types and to derive spectrally-driven depth 94 

estimates calibrated to ICESat-2-based depths, thereby providing an estimate for meltwater 95 

volume over the full image. 96 

The method is tested and refined using representative sections along the flowline of 97 

Sermeq Kujalleq (Jakobshavn Isbræ), one of the fastest-moving glaciers in Greenland. The 98 

repeat-tasking of imagery was designed to coincide with ICESat-2 tracks (Fig. 1), capturing lake 99 

depths at various stages of lake development during an unusually intense melt season. One of the 100 

major motivations for this tasking effort was its coincidence with several NASA Operation 101 

IceBridge (OIB) flights at the beginning and end of the summer; data from multiple instruments 102 

aboard OIB could potentially provide additional insight in future work. Over the 2019 Greenland 103 

melt season, an anomalously strong melt pulse early in the season (in June) was quickly followed 104 

by a melt pulse producing the greatest meltwater volume recorded in a single day (August 1, 105 

2019), covering 73% of the ice sheet on July 31st, 2019 (Tedesco and Fettweis, 2020). The 106 

availability of simultaneous laser altimetry and high-resolution imagery over the season provided 107 

a rich test dataset with which to extract altimetry-based estimates of supraglacial lakes at various 108 

points in the season. ICESat-2 returns used here included strong and weak beams under various 109 
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conditions.  Here, we present initial results exploiting this dataset as well as introducing the 110 

Watta ICESat-2 surface feature detection algorithm. 111 

 112 

[FIGURE 1] 113 

2 Data Sources 114 

 2.1 Satellite-based Imagery and Altimetry  115 

 116 

Our Watta method relies on individual photon heights as measured by ICESat-2’s ATLAS 117 

instrument distributed in the ICESat-2 ATL03 product, L2A, Global Geolocated Photon Data 118 

(Neumann et al., 2019) . In addition to freely-available Landsat OLI (30m) and Sentinel-2 (10m) 119 

imagery, we incorporate very high resolution imagery from Planet Labs, including Dove-R (3m) 120 

and SkySat (~1m). Planet SkySat imagery (~1m resolution) is used to validate surface types, 121 

while all imagery sources are used to derive spectrally-driven depth estimates calibrated to 122 

ICESat-2-based depths. The high-spatial resolution of SkySat imagery allows for the 123 

identification of small-scale features on the surface and bottom of supraglacial lakes. Because 124 

SkySat imagery did not include an atmospheric correction, we compared results from Landsat, 125 

Sentinel-2 and SkySat imagery based on TOA Reflectance values. PlanetScope Dove-R data 126 

provided surface reflectance values only and is known to have issues with radiometry. However, 127 

because the method used here derives lake depth values empirically (rather than physically), this 128 

work presents the opportunity to develop accurate depth estimates using high-resolution data 129 

where calibration is imperfect, but where the data availability is high. This is particularly true for 130 

data from the PlanetScope constellation, which is frequently captured multiple times within a 131 

single day. 132 

 Because SkySat imagery did not include an atmospheric correction, Landsat, Sentinel-2 133 

and SkySat imagery used TOA Reflectance values, whereas PlanetScope Dove-R data provided 134 

surface reflectance values only. Relative response curves for the bands used in this study are red, 135 

blue and green and NIR as shown in Fig. S1b.  Finally, all imagery was coregistred with ICESat-136 

2 using the GIMP-2 DEM.  137 

  138 

 2.2 Tasking of High-Resolution Imagery of Jakobshavn 139 

  As a part of this project, SkySat imagery was tasked for repeat cycles of ~4 days over the 140 

Greenland melt season in selected locations. Each of the 3 areas of interest presented here were 141 

approximately 600km
2
 on average. Repeat imagery was specifically chosen to cover flowlines of 142 

fast-flowing glaciers, including Sermeq Kujalleq, as in this study (Fig. 1). In addition, repeat 143 

tracks were designed to coincide with both (a) overpasses of the recently-launched NASA 144 

ICESat-2 laser altimeter and, (b) several flights of the airborne NASA Operation IceBridge 145 

mission in the beginning and end of the season. Here, we present the first work exploiting this 146 

stacked dataset for method development, restricted to available satellite imagery/altimetry. 147 

         The final set of lakes used for the development of the ATL03-based method included 50 148 

lakes (46  discussed here), 14 of which coincided with very high-resolution imagery (SkySat).   149 

 150 

 151 
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3 Methods 152 

 Watta is an algorithm which accepts ICESat-2 ATL03 as input and automatically detects 153 

supraglacial surface features with an associated probability of likelihood. In its current state, the 154 

algorithm detects only lakes and their associated surface, lake bottom and corrected depth 155 

estimate as well as subsurface ice when present (Fig. 2 left). A subsequent set of steps processes 156 

imagery from SkySat, PlanetScope, Sentinel-2 and Landsat OLI to produce a delineation of the 157 

lake boundary based on the normalized difference water index (NDWI), where we standardized 158 

the index (setting all values between 0 and 1 from minimum to maximum) due to negative 159 

NDWI values produced from PlanetScope data. Next, an empirical relationship for each selected 160 

band between the depth estimate calculated by Watta and the coregistered imagery pixels and 161 

finally, and a final depth estimate for the entire lake based on this empirical relationship for a 162 

chosen band. The empirical relationship is based on the exponential decay of reflectance at water 163 

depth, as detailed by Box and Ski (2007), where, given coincident corrected depth values as 164 

calculated by Watta (D) and reflectance values from imagery (R), we estimate the ɑ-coefficients 165 

in eq. 1, which can then be applied to calculate water depth over the full-scale of imagery where 166 

lakes are delineated. 167 

 168 

  D = ɑ0 / (R + ɑ1) + ɑ2  (eq. 1) 169 

 170 

The codebase for Watta (Fig. 2 left) is divided into a module defining surface and bottom returns 171 

(“Surface Detection”) at the native resolution of ICESat-2, and an “Interpretive” layer that 172 

resolves the bottom/surface combination to specific supraglacial features, in this case  lakes. 173 

Surface detection determines, for a collection of 75 photons surrounding any individual photon 174 

(Step a), the first three peak probabilities for height within in a kernel density, estimating a mean 175 

height for the surface (or top of a lake or refrozen pond), the main bin directly below the surface, 176 

a surface bottom and a potential third peak (potentially subsurface ice), where photons are 177 

selected without regard to confidence level. We confirm that the bottom estimate is robust, i.e. 178 

detected when the density estimate uses a bin value of 0.1m as well as with 0.3m (Step b). Where 179 

outliers are found in Step c, the kernel density estimate is recalculated with a larger number of 180 

photons (in multiples of 75), and where these values continue to be outliers, they are removed 181 

(for later interpolation). Finally, we apply a simple correction for refraction, described in Parrish 182 

et al. (2019), noting that no data used in this study was collected when ICESat-2 pointed off-183 

nadir (which could affect the equation).  184 

[FIGURE 2] 185 

 186 

 The interpretive layer first performs more sophisticated smoothing (Step d), removing 187 

estimates for top and bottom values which more closely resemble the background rate (as 188 

determined from a local 5000 photon-count window). The top surface is then divided into 189 

segments based on breaks in the surface slope, and lakes are detected using a classification 190 

scheme taking into account the local surface slope and the strength of the bottom return (Fig.2 191 

bottom). For example, a segment with a surface slope smaller than 0.03% and a strong double 192 

peak in the histogram of that segment’s photon heights is given a lake classification of ‘highly 193 

likely’, whereas segments passing the same slope threshold but not showing  showing a bottom 194 

return are identified as ‘likely ice-covered’ lakes. On the other hand, segments with a slope 195 

exceeding 0.3% and no significant peak below the surface in the histogram are allocated to the 196 

‘highly unlikely’ lake class. (Step e). Where lakes are detected, we then perform a higher 197 
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resolution recalculation of the kernel density estimate, limiting the calculation to values below 198 

the surface and only 30 photons (Step f). The edges of the lake are then reset to recategorize 199 

values interpreted as an ice layer near the ends and seal the bottom of the lake to the top (Step g). 200 

The final step of the algorithm creates outputs which (Step h) assign physical meaning to each 201 

photon (e.g. lake surface, bottom, corrected depth, surface ice, subsurface ice). The resulting 202 

bottom photons are passed through an iterative robust quadratic local regression (rloess) filter, 203 

where remaining outliers are removed when deviating substantially from the smoothed bottom 204 

estimate.    205 

 In order to develop imagery-based depths, we primarily use the computer vision toolbox 206 

in Matlab, except for the coregistration of imagery. We align imagery with ICESat-2 returns 207 

(Step j) by standardizing all imagery to the nearest Landsat image, using the arosics library in 208 

Python (Scheffler et al., 2017). Coregistration between ICESat-2 photon locations and imagery is 209 

managed by registering ICEsat-2 with the GIMP-2 DEM (used for georeferencing of Landsat), 210 

by transforming the point cloud using the iterative closest point algorithm. ICESat-2 mission 211 

requirements list a geolocation accuracy of 6.5m (Neuenschwander, 2019), thus to calculate 212 

imagery values associated with an ICESat-2 photon, we calculate overlapping imagery 6m in 213 

each direction perpendicular to the beam and calculate a mean. We use a standard NDWI (with 214 

the green and NIR) bands to deliberately include regions with ice layers, rather than the modified 215 

NDWIice,, per Yang and Smith, (2013) calculated from the coregistered imagery to determine the 216 

boundaries of lakes (Step l), using adaptive thresholding (Bradley et al., 2007) to generate a 217 

binary mask and then determine the boundaries of individual lakes. We note that the height of 218 

the lake surface for any imagery source is calculated based on the elevation where the lake edge 219 

intersects with the corrected bottom surface, as calculated by Watta.We then provide the 220 

coregisted ICESat-2 depths and red or green bands from imagery to develop an empirical 221 

relationship (Step k), finally applying the relationship to the full lake. 222 

 223 

4 Results 224 

 4.1 Physical constraints of the test dataset 225 

 The test dataset provides a diversity of lake types, with the largest surface area calculated 226 

at 5.6 km
2
 and a maximum Watta-calculated corrected depth at 10.3 m; a number of lakes 227 

contain substantial ice cover. Lake Amitav was selected for closer examination because despite 228 

the dense photon cloud, its depth, length and variability and the presence of ice cover pose a 229 

challenge for our detection algorithm, and because of the availability of multiple imagery 230 

sources. Lake Martha is chosen because it represents an ideal case for the algorithm, while Lake 231 

Zadie is chosen because two beams passed over the same lake with SkySat imagery available 232 

one day afterwards. A basic assumption we make in this study is that the lake bottom remains 233 

relatively consistent over several days, although past research on 2 lakes in Western Greenland 234 

has estimated lake bottom ablation rates at 6.5 cm/day on the bottom of the pond (Tedesco et al., 235 

2012). We assume that this is the primary physical source of uncertainty in the empirical 236 

calculation, as the relationship will degrade with temporal distance from the ICESat-2 pass. 237 

However, where changes in the bathymetry are not uniform, we can potentially make inferences 238 

about drainage mechanisms (e.g. the forming and deepening of crevasses).  Cross-sections 239 

showing the lake top, bottom, and bottom value corrected for refraction as calculated by Watta 240 

along with lake top and bottom as calculated empirically from imagery, are shown in 241 

Supplemental Fig. S4, Table S1. 242 
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 243 

  4.2 Evaluating Watta 244 

 The most rigorous weighting system used for the algorithm, using only lake classes 1,2,4 245 

and 7,  succeeded in automatically detecting 49 out  of the 50 lakes identified in the available 246 

imagery, with two likely false positives (i.e. not confirmed by NDWI values exceeding 0.2 in the 247 

imagery) . A less rigorous weighting system, including lake class 3, detected the 50
th

 lake,but 248 

resulted in a large number of false positives in areas of steep, and rough topography, where 249 

abrupt changes in the photons elevations are misinterpreted as bottom reflections by the 250 

algorithm. 251 

 In the absence of simultaneous in situ data, we evaluate the performance of the algorithm 252 

based on visual inspection. Additionally, where an empirical relationship with imagery is 253 

successful (a high correlation coefficient value), we take this as this partial evidence 254 

that  ICESat-2 and imagery sources have detected bathymetry correctly. The most successful 255 

bottom retrieval occurred where ice cover was minimal, the density of photons was high and 256 

where the bottom slope was relatively uniform (e.g. Lake Martha). The presence of ice near the 257 

surface (between the surface and 1m below the surface) frequently obscured lake bottom 258 

detection (e.g. reference ground track (RGT) 1222, Lake 3 in Fig. S4),  although in some cases 259 

only partially; however, the presence of subsurface ice did not immediately preclude the 260 

presence of a strong bottom return (e.g. Lake 7, RGT 1169, Fig. S4). The algorithm therefore 261 

indicates the presence of surface/near-surface ice, but does not automate the removal of the 262 

calculated bottom return. We can confirm the presence of an ice layer both by visual inspection 263 

of the imagery and by comparing standardized NDWI values calculated from imagery coincident 264 

with the ICESat-2 track ( Fig S1a).  We note that for at least one case, (RGT 1108 Lake 6, Fig. 265 

S4), the designation of “lake” was ambiguous, as this could be treated as either a shallow lake 266 

containing a large amount of subsurface ice, or as a slush layer (a number of which were 267 

identified elsewhere).  268 

 269 

  4.2 Evaluating Data Sources for Imagery-based Depth Calculations 270 

         Total uncertainty for the empirically-based depth estimate from imagery is comprised of 271 

uncertainty in ICESat-2 geolocation, uncertainty from the Watta algorithm itself (which operates 272 

at a vertical resolution of 0.3m), from the resolution of the imagery and finally from physical 273 

changes in the lake occurring between the time that imagery is captured and the ICESat-2 pass. 274 

Comparisons are considered more valuable when the lake surface calculated by imagery vs 275 

altimetry differ by less than a meter (and are preferably estimated for the same day); here we 276 

estimate accuracy with a simple R
2
 value. 277 

Past work has considered either the red or green band for depth estimates (Moussavi et al., 2020; 278 

Williamson et al., 2018) but we note that available in situ validation was limited at the time 279 

(Pope et al., 2016). For Landsat, Sentinel and SkySat, the empirical depth estimates for the red 280 

band showed slightly-higher fidelity in shallow water, whereas for deeper water the green-band 281 

estimates outperforms the red band when compared to the ICESat-2 based Watta estimates, in 282 

agreement with Moussavi et al. (2016). We note that the green band is able to resolve bathymetry 283 

at greater depths and tends to emphasize cracks at the bottom of the lakes, as shown over Lake 284 

Martha (Fig 3a). The major exception was PlanetScope data, where the red band consistently 285 

showed greater fidelity to ICESat-2-based estimates while green band estimates produced 286 

unrealistic depth estimates. We note that because this method is empirical, future users would be 287 

able to select bands or combinations, as with the average of the panchromatic and red band used 288 
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by Pope et al. (2016), that provide the greatest fidelity to ICESat-2 based observations. However, 289 

a thorough comparison is outside of the scope of this initial study. 290 

To demonstrate the robustness of the Watta algorithm as well as the impact of band 291 

choice, we show depths calculated from two beams passing over Lake Zadie on June 13th, 292 

followed by retrieval of SkySat imagery on June 14th and Sentinel-2 on June 16th (Fig. 3 b,c and 293 

RGT 1222 Lake 5(6) in Supplemental Profiles). The green band shows higher R
2
 values for both 294 

Sentinel-2 and SkySat for 3 of 4 cases (excepting SkySat 3r). Depths calculated from the 3l beam 295 

are slightly larger and red-band based maximum depths are greater, whereas a finer 296 

bathymmetric relief is captured by the green band in both SkySat and Sentinel-based depth 297 

estimates (Fig. 3d, box). We note that even when high R
2
 values are calculated between the 298 

empirical estimate and Watta-calculated depths, unrealistic depths can result when lake drain or 299 

fill rapidly, and low-resolution imagery can potentially resolve the  height of a lake surface 300 

inaccurately (Fig. S2).   301 

 302 

    [ FIGURE 3] 303 

 304 

Within Figure 4, we show the depth evolution of Lake Amitav over 5 days, both along 305 

the ICESat-2 ATL03/Watta-calculated profile and for the full image using the empirical 306 

equation. Rising lake levels are demonstrated both by the expansion of the lake through time 307 

(right column) and the rise in the lake level (cyan line, left column). Planet SkySat estimates at a 308 

1m resolution (Fig. 4c) shows the greatest level of detail of crevassing at the bottom of the lake 309 

although PlanetScope estimates, at a 3m resolution (Fig. 4f,g) are comparable. We note that 310 

PlanetScope data showed variations in the fidelity to Watta-based estimates between the green 311 

band vs the red band. However,  the bottom relief is maintained at depth with PlanetScope, and it 312 

would be possible to calibrate values to Sentinel estimates, which may result in more reliable 313 

estimates while still providing very high-resolution depth estimates. 314 

 315 

    [ FIGURE 4] 316 

5 Conclusions 317 

 This study represents initial work developing the Watta algorithm for lake depth 318 

estimates as well as subsurface ice detection, with a unique stacked dataset over Western 319 

Greenland during an intense melt season. We demonstrate the potential of ICESat-2 for 320 

automated lake detection and depth estimation, and how empirically-derived depths derived from 321 

a combination of imagery sources can complement strengths and weaknesses, e.g. the 322 

geolocational accuracy and historical record provided by Landsat (despite low spatial resolution) 323 

versus the high spatial and temporal resolution provided by Planet Labs PlanetScope data 324 

(despite radiometric and geolocation issues). Together, such a time series can provide valuable 325 

information about the evolution of ice cover and drainage mechanisms as well as volume 326 

estimates. We note that given the accelerating sophistication of altimetry-based observations, 327 

ongoing efforts to improve geolocation, radiometric quality or frequency in high-resolution 328 

imagery are crucial, and the availability of simultaneous imagery and altimetry would enhance 329 

the capabilities of other satellite imagery sources to fill out the time series by providing a 330 

calibration standard. 331 

         Our algorithm successfully detects a wide variety of lake types automatically, and can be 332 

applied to the growing set of ICESat-2 and imagery data over large sections of Antarctica and 333 
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Greenland. Identification of narrow stream features on sloping surfaces, however, still needs 334 

visual verification due to the large number of false positives. This will be addressed in future 335 

work, together with adding features to the interpretive layer, including slush layers as well as 336 

cracks, using the Planet SkySat imagery dataset for testing purposes. 337 

 338 
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 436 

Figure 1. Study region over Sermeq Kujalleq. Left: Lake Amitav (a) Planet SkySat visual (b) 437 

Cross section, calculated by Watta (c) Repeat-tasking locations for Planet SkySat shown in white 438 

boxes over annual velocity estimates from MEaSUREs (NSIDC). Center track,ICESat-2 repeat 439 

ground tracks shown in green. Three lakes used throughout text and figures include Lake 440 

Amitav, Lake Martha and Lake Zadie. 441 

Figure 2. Diagram of main methods, described in main text. Watta weighting scheme for lakes 442 

(i) is detailed in bottom  table 443 

Figure 3. Watta-calculated and imagery-derived depths. Lake Martha (a), Lake Zadie: Sentine-2l 444 

(l,m), Planet SkySat (n,o). Watta/imagery-derived derived depths over Lake Zadie  with both 445 

beam 3r and 3l: (b,c): False-color imagery and ICESat-2. (d-k) Depths from imagery source, 446 

band/beam as shown 447 

Figure 4. Lake Amitav, filling over five days between May 20
th

 and May 25
th

, with ICESat-2 448 

pass on May 23
rd

. Left column: Profiles with Watta-calculated and imagery-derived depths from 449 

the green and red bands (with corresponding R
2
 values inset), legend same as Fig.3a.  Right 450 

column: Depth values derived from empirical estimate, with imagery source , date collected, 451 

band used for depth estimate shown 452 

 453 


