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Abstract 29 

Ocean dynamic sea level (DSL) change is a key driver of relative sea level (RSL) change. 30 

Projections of DSL change are generally obtained from simulations using atmosphere-ocean 31 

general circulation models (GCMs). Here, we develop a two-layer climate emulator to 32 

interpolate between emission scenarios simulated with GCMs and extend projections beyond the 33 

time horizon of available simulations. This emulator captures the evolution of DSL changes in 34 

corresponding GCMs, especially over middle and low latitudes. Compared with an emulator 35 

using univariate pattern scaling, the two-layer emulator more accurately reflects GCM behavior 36 

and captures non-linearities and non-stationarity in the relationship between DSL and global-37 

mean warming. Using the emulator, we develop a probabilistic ensemble of DSL projections 38 

through 2300 for four scenarios: Representative Concentration Pathway (RCP) 2.6, RCP4.5, 39 

RCP8.5, and Shared Socioeconomic Pathway (SSP) 3-7.0. The magnitude and uncertainty of 40 

projected DSL changes decrease from the high- to the low- emission scenarios, indicating a 41 

reduced DSL rise hazard in low- and moderate- emission scenarios (RCP2.6 and RCP4.5) 42 

compared to the high-emission scenarios (SSP3-7.0 and RCP8.5). 43 

 44 
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1. Introduction 45 

Sea-level rise broadly impacts coastal communities and ecosystems through permanent 46 

inundation, increased frequency of tidal flooding, and increased frequency and severity of 47 

flooding associated with storm surge. Global-mean sea level is rising at an accelerating rate, and 48 

under most scenarios is projected to continue accelerating over the 21st century (Oppenheimer 49 

et al., 2019). Regional relative sea level (RSL) change differs from global-mean sea-level 50 

change due to a variety of processes operating on diverse timescales, including gravitational, 51 

rotational, and deformational effects associated with mass redistribution, and ocean dynamic 52 

effects associated with changes in winds, currents, and sea water density, as well as 53 

inhomogeneous changes in ocean density (Stammer et al., 2013; Perrette et al., 2013; Kopp et 54 

al., 2015; Gregory et al., 2019).  55 

Atmosphere-ocean general circulation models (GCMs) are the primary tool used to project 56 

changes in ocean dynamic sea level (DSL)
1
, but the computational demands of these models 57 

limit the utility of ensembles of GCM output for estimating the likelihood of different levels of 58 

future sea-level change. Ensembles such as the Coupled Model Intercomparison Project Phase 5 59 

(CMIP5, Landerer et al., 2014; Taylor et al., 2012) are composed of models contributed based 60 

on voluntary effort, not the product of systematic experimental design; as such, they are an 61 

“ensemble of opportunity” rather than a probabilistic ensemble (Tebaldi and Knutti, 2007). The 62 

CMIP future projection experiments are driven by a small number of forcing scenarios – 63 

Representative Concentration Pathways (RCPs) in the case of CMIP5 – and model simulations 64 

are of different lengths; some simulations run the RCPs to the year 2100, while others extend 65 

these to 2300. 66 

The computationally intensive nature of GCMs makes it challenging to produce large 67 

perturbed-physics ensembles that represent uncertainties in key feedback parameters, as well as 68 

to simulate forcing conditions intermediate between the RCPs. Simple climate models (SCMs) 69 

provide an alternative tool for estimating the uncertainties of future projections at the global 70 

scale, as they can capture the overall physics of climate evolution and can be run very fast even 71 

on a personal computer (Held et al., 2010; Meinshausen et al., 2011; Millar et al., 2017; Perrette 72 

                                                 
1 Here, we follow Gregory et al. (2019), defining DSL as the height of the sea surface above the geoid. For GCM 

output, this is equal to the local deviation of zos from its global mean (which, as formally defined, should equal zero 

but does not equal zero in all model output). 
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et al., 2013). However, SCMs represent the climate at a highly aggregated (e.g., global or 73 

hemispheric) scale, and thus cannot produce spatial patterns of climate change at each time step. 74 

 75 

Pattern scaling approaches are often used to translate the global mean surface air temperature 76 

(GSAT) change into regional-scale changes for impact analysis (Mitchell, 2003; Rasmussen et 77 

al., 2016; Santer, 1990; Tebaldi et al., 2011; Tebaldi and Arblaster, 2014). Generally speaking, 78 

pattern scaling uses a simple statistical model (often, linear regression) to relate local climatic 79 

changes to a variable such as GSAT change, assuming the patterns of local response to external 80 

forcing remain constant under increased forcing (Tebaldi and Arblaster, 2014).  81 

Some previous studies use the pattern scaling approach to estimate the uncertainty in 82 

DSL projections (Bilbao et al., 2015; Palmer et al., 2020; Perrette et al., 2013). For example, 83 

Perrette et al. (2013) regressed DSL change on GSAT. At New York City, they found that r
2
 84 

values across models vary between 0.02 and 0.85, and also that the linear relationship between 85 

DSL and GSAT becomes weaker after the 21
st
 century. Bilbao et al. (2015) examined the 86 

relationship between DSL and several variables, including  GSAT, global-mean sea-surface 87 

temperature, ocean volume mean temperature, and global-mean thermosteric sea-level rise 88 

(GMTSLR). They found that GSAT performed best in predicting 21
st
-century DSL change in a 89 

high emissions scenario (RCP 8.5), while ocean-volume mean temperature and GMTSLR 90 

performed better in lower emissions scenarios (RCP 2.6 and 4.5). They speculated that this 91 

difference reflects a more important role for surface warming relative to deep warming in a 92 

more strongly forced scenario. They found that, across models and scenarios, area-weighted 93 

average root mean square error in pattern-scaled 2081-2100 DSL change ranged from ~1-3 cm.  94 

Building upon Bilbao et al. (2015)’s speculation about the relative importance of shallow 95 

and deep warming under different scenarios, we developed a bivariate pattern scaling, which 96 

uses a multiple linear regression with two predictors: GSAT and global-mean deep ocean 97 

temperature change. The two temperature changes can be generated by a two-layer energy-98 

balance model (TLM) (Held et al., 2010; Winton et al., 2010), which has proved to be a useful 99 

tool for understanding the responses of climate system to climate forcing (Geoffroy et al., 2013b, 100 

2013a). Shallow and deep temperatures from a TLM have previously been employed in an 101 

emulator to extend 21
st
 century CMIP5 projections of GMTSLR to 2300 (Palmer et al., 2018), 102 
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and Palmer et al. (2020) used GSAT from the two-layer model and univariate pattern scaling to 103 

emulate CMIP5 projections of DSL change. 104 

In this study, we develop an emulator for DSL changes using both GSAT and deep-ocean 105 

temperature change projected by a TLM. Whereas Palmer et al. (2018, 2020) exogenously 106 

specified radiative forcing, here we drive the TLM with radiative forcings from the Finite 107 

Amplitude Impulse Response model (FaIR), a simple climate model which includes a reduced-108 

complexity carbon cycle and calculates atmospheric CO2 concentrations, radiative forcing and 109 

temperature changes based on emissions (Millar et al., 2017; Smith et al., 2018, 2017). FaIR 110 

was adopted to more accurately reflect the temporal evolution of GSAT in response to a pulse 111 

emission, and it has been used in previous studies to produce observation-constrained future 112 

projections for estimating the uncertainties in equilibrium climate sensitivity and transient 113 

climate responses (Millar et al., 2017; Smith et al., 2018, 2017). In this study, we develop an 114 

emulator for GMTSLR and DSL projections using surface and deep-ocean temperature changes 115 

generated by the FaIR-two layer model (FaIR-TLM, section 2.2). We employ FaIR-TLM and 116 

two-layer pattern scaling to project future DSL changes, taking into account uncertainty in 117 

climate sensitivity, and demonstrates its ability to interpolate between climate scenarios run by 118 

GCMs. 119 

 Section 2 describes data and methodology, including the details of FaIR-TLM, 120 

calibration of the FaIR-TLM based on selected CMIP5 GCMs, the two-layer pattern scaling, and 121 

the approach of emulating the DSL projections.  Section 3 evaluates the performance of the two-122 

layer pattern scaling. Section 4 shows the resulting ensemble of DSL projections. Finally, section 123 

5 discusses and summarizes the results. 124 

 125 

2. Data and methods 126 

2.1 Data 127 

We use the zos variable from five CMIP5 general circulation models (GCMs) in RCP 2.6, 128 

4.5, and 8.5 scenarios: MPI-ESM-LR, bcc-csm1-1, HadGEM2-ES, GISS-E2-R, IPSL-CM5A-LR. 129 

These five GCMs are used because they were used to calibrate the parameters of the TLM by 130 

Geoffroy et al. (2013) and also provide multi-century data (to 2300) for zos in all three scenarios. 131 

DSL is taken as zos with its global mean removed, consistent with the definition of Gregory et al. 132 

(2019). Therefore, DSL does not include global mean changes; we focus on emulating ocean 133 
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dynamic deviations from the GMTSLR. In addition, we remove the climatology in a baseline 134 

period (1986-2005) from DSL. The global mean surface air temperature (GSAT) and GMTSLR 135 

from the five models in the three scenarios are also used to evaluate the performance of FaIR-136 

TLM. 137 

 138 

2.2 FaIR-two layer model (FaIR-TLM) and calibration 139 

This study develops a hybrid SCM model by replacing the temperature module in FaIR 140 

model with a TLM that includes an efficacy term for deep ocean heat uptake (Geoffroy et al., 141 

2013a; Held et al., 2010; Winton et al., 2010): 142 

 

𝐶
𝑑𝑇

𝑑𝑡
= ℱ − 𝜆𝑇 − 𝜖𝛾(𝑇 − 𝑇0) 

𝐶0

𝑑𝑇0

𝑑𝑡
=  𝛾(𝑇 − 𝑇0) 

(1) 

 

(2) 

where ℱ denotes the adjusted radiative forcing, C and C0 are the heat capacity of the well-mixed 143 

upper layer and the deep ocean layer, respectively, and T and T0 represent the global mean 144 

temperature anomalies of the upper and lower layer, respectively. T is equivalent to GSAT 145 

perturbation (Held et al., 2010). 𝜆 is the parameter for climate feedback, 𝛾 is the coefficient of 146 

deep ocean heat uptake, and 𝜀 is the efficacy factor of deep ocean heat uptake, which represents 147 

the uneven spatial distribution of heat exchanges between the two layers. 148 

The FaIR model used in this study is version 1.3, described by Smith et al. (2018). In FaIR 149 

1.3, the changes of GSAT are the sum of two components, representing fast and slow responses 150 

to effective radiative forcing (ERF) (equation 22 in Smith et al., 2018). The fast and slow 151 

components of temperature changes in FaIR 1.3 mathematically depend on multiple coefficients 152 

(e.g., thermal response timescales) that are obtained from the ensemble mean of multiple CMIP5 153 

models (Geoffroy et al., 2013b). The fast and slow components do not have an unambiguous 154 

physical meaning, so it is challenging to link them to sea-level change. Therefore, we replace the 155 

temperature module in FaIR 1.3 by the TLM to construct FaIR-TLM. In each step of FaIR-TLM, 156 

the TLM is driven by radiative forcing from FaIR 1.3, and produces the GSAT anomaly, which 157 

feeds back to the FaIR carbon cycle (Figure S1).  158 

To calibrate FaIR-TLM, we adjust parameter settings (listed in Table 1) based on previous 159 

studies (Forster et al., 2013; Geoffroy et al., 2013a; Zelinka et al., 2014). The radiative forcing in 160 

FaIR-TLM is driven by the default emission trajectory for each scenario in FaIR 1.3, but scaled 161 
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by two parameters determined for each GCM: (1) the radiative forcing of CO2 doubling (𝐹2×𝐶𝑂2
) 162 

reported by Forster et al. (2013), and (2) the present-day aerosol forcing (afpd) estimated in 163 

previous studies (Forster et al., 2013; Zelinka et al., 2014), or -0.9 W m
-2 

– the median of range 164 

estimated by the Fifth Assessment Report of Intergovernmental Panel on Climate Change (IPCC 165 

AR5) (Stocker et al., 2013) – for models not reported in previous studies. The five parameters in 166 

equation 1 and 2 (i.e. 𝜆, 𝛾, 𝜖, C, C0) are the same as those in Geoffroy et al. (2013) for the 167 

corresponding GCMs. 168 

GSAT produced by the calibrated FaIR-TLM is compared with that from the 169 

corresponding GCMs in the three scenarios (Fig. S2). For the five GCMs, the GSAT simulated 170 

by FaIR-TLM is close to the GSAT from the corresponding GCM, with the root mean square 171 

error (RMSE) in a range of 0.15 – 0.23 K for RCP2.6, 0.14-0.32 K for RCP4.5, and 0.2 -0.43 K 172 

for RCP8.5.  173 

 GMTSLR is driven by the thermal expansion of sea water volume due to the increase in 174 

ocean heat uptake. To calibrate GMTSLR in FaIR-TLM to match a specific GCM, we first 175 

correct the drift in the GCM’s GMTSLR field by removing the linear trend in the pre-industrial 176 

control simulation, assuming the drift is not sensitive to the external forcing (Hobbs et al., 2016).  177 

Then, we emulate GMTSLR based on the T and T0 from FaIR-TLM following the approach 178 

described in Kuhlbrodt and Gregory (2012):  179 

 𝐺𝑀𝑇𝑆𝐿𝑅 = 𝜎 ∗ (𝐶∆𝑇 + 𝐶0∆𝑇0) (3) 

where 𝜎 is the expansion efficiency of heat in units of 10
-24 

m J
-1

. The 𝜎 value is 180 

calibrated by optimizing GMTSLR emulated from FaIR-TLM to match the GMTSLR simulated 181 

from the corresponding GCM.   182 

 183 

2.3 Two-layer pattern scaling 184 

Univariate pattern scaling is based on a linear relation between the changes in a climate 185 

variable (DSL for this study) and the changes in a single variable, such as GSAT (𝑇):   186 

 𝐷𝑆𝐿(𝑡, 𝑥, 𝑦) =  𝛼(𝑥, 𝑦)𝑇(𝑡) + 𝑏(𝑥, 𝑦) +  𝜀(𝑡, 𝑥, 𝑦) (4) 

where x and y denote longitudes and latitudes, t represents time, b is an intercept term, and 𝜀 is 187 

the residual term. Here, α captures the scaling relationship between DSL and GSAT (Fig. 1). The 188 

five GCMs agree that the linear response of DSL to warming is positive over the Arctic and sub-189 
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polar Atlantic, and negative over the southeastern Pacific and the southern areas of Southern 190 

Ocean. 191 

In the bivariate pattern scaling approach, we regress the DSL anomaly on both ∆𝑇  192 

(GSAT anomaly) and 𝑇0 (deep-ocean temperature anomaly) from FaIR-TLM: 193 

 𝐷𝑆𝐿(𝑡𝑖 , 𝑥, 𝑦) = 𝛼(𝑥, 𝑦)𝑇(𝑡𝑖) + 𝛽(𝑥, 𝑦)𝑇0(𝑡𝑖) + 𝑏(𝑥, 𝑦) + 𝜀(𝑡𝑖 , 𝑥, 𝑦) (5) 

where 𝑡𝑖 denotes years in three scenarios, i=1, 2, 3. For each GCM, we estimate  the fields of  α, 194 

β, b and ε by regressing projections from all three emissions scenarios (RCPs 2.6, 4.5, and 8.5) 195 

on 𝑇 and 𝑇0 on a grid cell-by-grid cell basis. 𝛼 represents changes in zos in response to changes 196 

in surface temperature in the period 1981-2300, while 𝛽 represents the response of changes in 197 

zos to changes in deep-ocean temperature at the same period (Fig. 1). The five GCMs agree that 198 

the fast response represented by 𝛼 is positively correlated with warming over the most areas of 199 

Arctic and northern edge of the Southern Ocean, and negatively correlated with warming over 200 

the southeastern Pacific and the southern areas of Southern Ocean, while the slow response 201 

represented by 𝛽 is positively correlated with warming over the Indian and tropical and southern 202 

Pacific Oceans, and negatively correlated with warming over most areas of the Southern Ocean 203 

and Arctic. These reflect opposite behaviors between rapid and sustained changes in DSL over 204 

the Arctic, the Indian and tropical and southern Pacific Oceans, and a consistent DSL fall in both 205 

rapid and sustained changes over the Southern Ocean. 206 

2.4 Projecting DSL using FaIR-TLM and patterns 207 

We use two steps to generate a probabilistic ensemble of DSL projections. First, we generate an 208 

ensemble of surface and deep-ocean temperature pairs using FaIR-TLM as follows. The 209 

planetary energy balance at the top of the atmosphere (Zelinka et al., 2020) is: 210 

𝑁 = ℱ +  𝜆𝑇                                                         (6) 211 

Where N is the radiative imbalance at the top of the atmosphere. The equilibrium climate 212 

sensitivity (ECS) is given by T when N = 0, and ℱ = F2XCO2.   Therefore, 𝜆 is related to F2XCO2 213 

and ECS by 214 

 𝜆 =  −𝐹2𝑋𝐶𝑂2/𝐸𝐶𝑆                                                       (7) 215 

 216 

The uncertainty of 𝐹2×𝐶𝑂2
 is small relative to the spread of 𝜆, while ECS largely determine the 217 

uncertainty of 𝜆. Therefore, we adopt the best estimation in the Intergovernmental Panel on 218 
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Climate Change Fifth Assessment Report (AR5) for 𝐹2×𝐶𝑂2
 = 3.71 𝑊 𝑚−2 (Collins et al., 2013). 219 

We produce initial distributions of ECS, 𝛾, and 𝛾𝜖 based on the literature constraints (Fig. S4) 220 

outlined below: 221 

ECS: Based on multiple lines of evidence, the uncertainties of ECS estimated by AR5 are 222 

likely in the range 1.5°C to 4.5°C with high confidence, extremely unlikely less than 1°C  and 223 

very unlikely greater than 6°C (Collins et al., 2013). In the AR5 terminology, likely denotes a 224 

probability of at least 66%, very unlikely a probability of less than 10%, and extremely unlikely a 225 

probability of less than 5% (Mastrandrea et al., 2010). Therefore, we construct a log-normal 226 

distribution for ECS with parameterized optimized to match a 5
th

 percentile of 1°C, a 17
th

 227 

percentile of 1.5°C, an 83
rd

 percentile of 4.5°C, and a 90
th

 percentile of 6°C. 228 

 𝛾: We construct the distribution of 𝛾 as a normal distribution with mean 0.67 𝑊 𝑚−2 𝐾−1 229 

and standard deviation 0.15 𝑊 𝑚−2 𝐾−1, based on the 16 GCMs from CMIP5 archive (Geoffroy 230 

et al. 2013). 231 

𝛾𝜀: We calculate the mean and standard deviation of 𝛾𝜀 based on the products of 𝛾 and 𝜀 232 

from the GCMs (Geoffroy et al., 2013a). We do not consider their covariance. The distribution 233 

of 𝛾𝜀 is constructed as a normal distribution with a mean of 0.86 𝑊 𝑚−2 𝐾−1 and a standard 234 

deviation of 0.29 𝑊 𝑚−2 𝐾−1.  235 

Based on the multi-model mean of GCMs from Coupled Model Intercomparison Project 236 

Phase 5 (CMIP5) archive, we set C = 8.2 𝑊 𝑦𝑟 𝑚−2 𝐾−1 and C0 = 109 𝑊 𝑦𝑟 𝑚−2 𝐾−1 237 

(Geoffroy et al., 2013a). While there are significant uncertainties of these parameters among 238 

GCMs, fixed values are used because the uncertainties of these parameters are not necessary to 239 

represent uncertainty in the Transient Climate Response (TCR), which can be constrained 240 

adequately by varying only 𝜆 and 𝛾𝜀 under the zero-layer approximation which considers the 241 

1%/yr increase in CO2 until doubling scenario occurring on a timescale long enough that the 242 

upper ocean is in approximate equilibrium and short enough that the deep-ocean temperature has 243 

not yet responded substantially (Jiménez-de-la-Cuesta and Mauritsen, 2019): 244 

 
𝑇𝐶𝑅 =  −

𝐹2×𝐶𝑂2

𝜆 − 𝛾𝜀
 (8) 

We then generate a 100,000-member ensemble of parameter sets based on these 245 

distributions via Monte Carlo sampling. As 𝛾𝜀 should be larger than 0, we discard parameter sets 246 

in which 𝛾𝜖 < 0 or 𝛾𝜖 > 2 × 0.86 to keep the mean of 𝛾𝜖 in parameter sets to be 0.86 247 
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𝑊 𝑚−2 𝐾−1. Therefore, 99734 parameter sets are kept. An ensemble of 𝜆 is then computed by 248 

the best estimation of  𝐹2𝑋𝐶𝑂2 and the ensemble of ECS based on equation 6 (Fig. S4). The 249 

median (central 66% range) of 𝜆 is -1.39 (-2.4 – -0.8) 𝑊 𝑚−2 𝐾−1. As the likely range of ECS 250 

estimated by AR5 is equivalent to the central 90% range of ECS estimated by CMIP5 GCMs, the 251 

uncertainty range of 𝜆 estimated by FaIR-TLM is larger than that estimated by ensemble of 252 

GCMs (Geoffroy et al. 2013). The spread of TCR is estimated by substituting then ensemble of 253 

𝜆, 𝛾𝜀, and best estimation of 𝐹2𝑋𝐶𝑂2 into equation 7. The uncertainty of TCR is in a central 66% 254 

range of 1.1– 2.3 ℃, with a 95
th

 percentile of 2.9℃. Comparing with the TCR estimated by AR5 255 

which is likely between 1 ℃ and 2.5 ℃, and is extremely unlikely greater than 3℃, the range of 256 

TCR emulated by FaIR-TLM is slightly narrower. 257 

We apply Latin hypercube sampling (LHS, Stein, 1987) approach to the parameter sets of 258 

𝜆,  𝛾, 𝛾𝜖 by  sampling 1000 sets from the 99734 parameter sets. For each parameter, LHS divides 259 

the probability density function of the 99734 samples into 1000 portions that have equal area. A 260 

sample is taken from each portion randomly so that the 1000 sample sets cover the 261 

multidimensional distribution of the three parameters. Finally, we applied 1000 parameter sets 262 

together with the fixed parameters (𝐹2𝑋𝐶𝑂2, C, C0) to the FAIR-TLM and generate a 1000-263 

member ensemble of temperature pair time-series.  264 

We compare the spread in GSAT projected by FaIR-TLM with the likely ranges assessed by  265 

estimated by AR5 for four different periods (Collins et al., 2013) (Table 2 and Fig. S5) . The 266 

mean of 1000-member ensemble is slightly lower than the mean estimate of GSAT from AR5 in 267 

all four periods of RCP2.6 and RCP4.5, and in the 21
st
 century for RCP8.5. Compared with AR5 268 

likely ranges, the central 66% probability range of GSAT from FaIR-TLM is generally consistent: 269 

narrower in all four periods of RCP2.6, narrower in the first two periods but wider in the last two 270 

periods in RCP4.5, and wider in the first two periods but narrower in the last two periods in 271 

RCP8.5.   272 

We project GMTSLR based on the equation 3 using the 1000-member ensemble of surface 273 

and deep-ocean temperature projections from FaIR-TLM. The C, C0 and expansion efficiency of 274 

heat 𝜎 used here are 8.2 𝑊 𝑦𝑟 𝑚−2 𝐾−1,  109 𝑊 𝑦𝑟 𝑚−2 𝐾−1, and 0.113 ×275 

10−24 m 𝐽−1 adopted from the multi-model ensemble mean of CMIP5 archive (Geoffroy et al., 276 

2013a; Kuhlbrodt and Gregory, 2012) .    277 
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A projection of DSL is constructed as follows: 1) a pair of 𝛼 and 𝛽 is randomly picked with 278 

replacement from the pool of two-layer patterns produced in section 2.3; 2) a temperature pair 279 

from the 1000 members is combined with the pair of 𝛼 and 𝛽 in an equation 280 

 𝐷𝑆𝐿(𝑡, 𝑥, 𝑦) = 𝛼(𝑥, 𝑦)𝑇(𝑡) + 𝛽(𝑥, 𝑦)𝑇0(𝑡) + 𝑏(𝑥, 𝑦) (5) 

where the regression coefficients have been previously estimated as in equation (5). 281 

 282 

3. Evaluation of two-layer pattern scaling 283 

To evaluate the prediction skill of the two-layer pattern scaling, we compare DSL predicted 284 

by two-layer pattern scaling (𝐷𝑆𝐿̂) with the DSL simulated from the corresponding GCM using 285 

two metrics: (1) absolute values of the residual differences between climatology of 𝐷𝑆𝐿̂ and 286 

climatology of DSL during a period at each grid point, and (2) global average of the absolute 287 

values obtained from the metric 1 (Table S1). These two metrics are applied to both bivariate 288 

pattern scaling and univariate pattern scaling on T.  289 

In 2271-2290, for instance, R =  𝐷𝑆𝐿 −  𝐷𝑆𝐿̂ for an individual GCM are smaller than DSL in 290 

magnitude in both univariate and two-layer pattern scaling approaches (Fig. S6-S10). The 5-291 

model ensemble averaged climatology of |𝑅| in both approaches is higher over high latitudes 292 

(e.g. Arctic, subpolar Northern Atlantic, Southern Ocean) than over middle to low latitudes, but 293 

is generally lower in two-layer pattern scaling than in univariate pattern scaling (first two rows 294 

Fig. 2). The global-averaged  |𝐷𝑆𝐿 −  𝐷𝑆𝐿̂| (Score obtained by the second metric) from the two-295 

layer pattern scaling is less than that from the univariate pattern scaling (bottom row Fig. 2), 296 

indicating reduced errors of  predicted by two-layer approach in all three scenarios.  297 

We further compared the time evolving of DSL predicted by the two-layer pattern scaling 298 

approaches with the evolving DSL in corresponding GCMs through the period 1981-2290. As 299 

case studies, we pick two grid cells: one in the western Pacific near the Philippines (14.5°N, 300 

127°E), and the other over the North Atlantic near the coast of New York City [NYC] (40°N, 301 

73°W) (solid black dots in Fig. 2). At the grid cell over western Pacific, in RCP 2.6, responses of 302 

DSL to GSAT anomaly display a hook-like shape, indicating continued rise in DSL as GSAT 303 

stabilizes and declines in response to negative emissions (Fig. 3a).  Across the five GCMs, 304 

responses of DSL to increases in GSAT are diverse in RCP4.5 and RCP8.5. At the North 305 

Atlantic grid cell, the responses of DSL to GSAT also display non-linear features for all the five 306 
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models, especially in low- and moderate- emission scenarios (Fig. 3b). These highly non-linear 307 

features of DSL in response to GSAT anomaly cannot be captured by univariate pattern scaling 308 

but are captured to a large extent by the two-layer pattern scaling (lines in Fig. 3). The value of 309 

the two-layer approach is highlighted by the clear non-linearity of the DSL response when 310 

viewed as a function of GSAT anomaly. The two-layer pattern scaling includes one more 311 

predictor than univariate pattern scaling, allowing it to capture the delayed adjustment of DSL. 312 

Therefore, the method of two-layer pattern scaling generally has a better performance on 313 

emulating the DSL from the corresponding GCM than the univariate pattern scaling.  314 

 315 

4. Projections of DSL 316 

The procedure described in section 2.4 allows us to produce 1000-member ensemble of DSL 317 

projections not only for the three CMIP5 scenarios: RCP2.6, RCP4.5 and RCP8.5, but also for 318 

any other scenarios with an emission pathway between these three scenarios. We demonstrate 319 

this capability using SSP3-7.0, a CMIP6 scenario that has forcing intermediate between RCP4.5 320 

and RCP8.5 (O’Neill et al., 2016). The emission pathway of SSP3-7.0 used to drive the FaIR-321 

TLM is from the Reduced Complexity Model Intercomparison Project (https://www.rcmip.org). 322 

The five projections using parameters calibrated to the five GCMs respectively are within 323 

the 66% range of the 1000-member ensemble for both surface and deep-ocean temperature in the 324 

three RCPs (Figure 4). During the period of 2081-2100, the median estimates (66% range) of the 325 

surface temperature relative the period of 1986-2005 are aligns reasonably well with the central 326 

66%-range spread of GSAT projections estimated by IPCC AR5 for the three RCP scenarios 327 

(Table 2). By 2300, the median estimates (66% range) of the surface temperature relative the 328 

period of 1986-2005 are 0.5℃ (0.2-1.0℃) for RCP2.6, 2.2℃ (1.2-3.6℃) for RCP4.5, 7.4℃ (4.5-329 

11.7℃) for RCP8.5, and 5.3℃ (3.2-8.6℃) for SSP3-7.0.  330 

Based on the projections of temperature pairs, we also produced projections of GMTSLR 331 

for the 4 scenarios (Fig. 4). The spread of GMTSLR ensemble encapsulates the GMTSLR time 332 

series from the 5 GCMs (Figure 5). During the period of 2081-2100, the median estimates (66% 333 

range) of the GMTSLR relative the period of 1986-2005 are 0.12m (0.07-0.18m) for RCP2.6, 334 

0.16m (0.10-0.24m) for RCP4.5, 0.24m (0.15-0.34m) for RCP8.5, and 0.19m (0.12-0.27m) for 335 

SSP3-7.0. This compares to AR5 projected median estimates (66% ranges) of 0.14m (0.10-336 

0.18m) for RCP2.6, 0.19m(0.14-0.23m) for RCP4.5, 0.27m (0.21-0.33m) for RCP8.5 337 
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(Oppenheimer et al. 2019). By 2300, the median estimates (66% range) of GMTSLR relative to 338 

the period of 1986-2005 are 0.20m (0.12-0.33m) for RCP2.6, 0.43m (0.25-0.68m) for RCP4.5, 339 

1.15m (0.69-1.76m) for RCP8.5, 0.85m (0.50-1.33m) for SSP3-7.0. Compared with the GSAT 340 

and GMTSLR spread in 2300 estimated by Palmer et al. (2018), the FaIR-TLM projections have 341 

a slightly lower median  for all the three RCPs. The 66% range of both surface temperature and 342 

GMTSLR estimated by FaIR-TLM is comparable to the 90% range of that estimated by Palmer 343 

et al. (2018) because we adopt a distribution of λ based on the AR5 assessment of equilibrium 344 

climate sensitivity (Collins et al., 2012), which relaxes the 90% range estimated by the CMIP5 345 

multi-model ensemble emulated by Palmer et al. (2018). 346 

Comparing the DSL projections between the period of 2081-2100 and the period of 2271-347 

2290 (Fig. 5), the median estimation is lower and the 66% range of uncertainty is narrower by 348 

the end of 21
st
 century than that by the end of 23

rd
 century in moderate- to high- emission 349 

scenarios (RCP4.5, SSP3-7.0 and RCP8.5). But in RCP2.6, the median estimation and 66% 350 

uncertainty range are comparable in magnitude between these two periods. In both periods, the 351 

median DSL anomaly projections across the four scenarios share many similar features (Fig. 5). 352 

Over the Arctic region, a weak increase in DSL is observed over the Chukchi Sea and the 353 

Beaufort Sea in RCP2.6. In the higher emission scenarios, the increase in DSL extends to the 354 

whole Arctic basin with intensified amplitudes. The changes in DSL over the North Atlantic are 355 

dominated by a negative anomaly under RCP2.6, and display positive anomalies over much of 356 

the North Atlantic under RCP8.5 and SSP3-7.0. The ensemble spread of the 5
th

-95
th

 range of 357 

DSL projections are relatively large over the Southern Ocean, Arctic and Subpolar Atlantic than 358 

other areas. The large uncertainties over these areas, consistent with previous literatures (Palmer 359 

et al., 2020; Perrette et al., 2013; Yin, 2012), may be interpreted by the diverse characteristics 360 

simulated by GCMs due to the challenges of capturing complex physical process over these areas.  361 

Again, we take two grid points as examples to display the ensemble projection of DSL 362 

changes relative to the baseline period 1986-2005 (Fig. 6). At the grid point near Philippines 363 

over western Pacific, the 66% range of the 1000-member ensemble can only encapsulate DSL 364 

projections from 2 over 5 GCMs in the three RCPs. They are GISS-E2-R and bcc-csm1-1. The 365 

90% range of the 1000-member ensemble can encapsulate DSL projections from all the 5 GCMs 366 

in the three RCPs, except for HadGEM2-ES in RCP2.6. At the grid point near NYC over the 367 

North Atlantic, the projected DSL changes estimated by the 1000-member ensemble represent a 368 
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high risk of DSL rise in high-emission scenarios (i.e. RCP8.5 and SSP3-7.0). The low-emission 369 

scenario (i.e. RCP2.6) could largely decrease the risk of DSL rise with a slight DSL decline in 370 

2300 by the median estimation. The 66% range of the projected DSL uncertainties fails to 371 

encapsulating most of the DSL projections by the 5 GCMs in RCP2.6 and RCP4.5, and only 372 

fully encapsulates 2 of 5 projected DSL by GCMs. The 90% range of the 1000-member 373 

ensemble only encapsulates the DSL projections from three over five GCMs in RCP2.6 and 374 

RCP4.5, but encapsulates the DSL projections from all five GCMs in RCP8.5. The emulator fails 375 

to capture multidecadal variability in DSL, a limitation which would be expected based on the 376 

simple construction of the emulator.  377 

 378 

5. Discussion and conclusions  379 

We have developed a probabilistic ensemble of DSL projections through 2300 using a novel 380 

two-layer emulator. Replacing the climate module in the FaIR simple climate model with a two-381 

layer energy-balance model, we developed FaIR-TLM, which produces projections of global 382 

average temperature in the well-mixed upper layer (T) for fast responses to radiative forcing, and 383 

in the deep ocean layer (T0) for slow responses. Calibrated by the parameters for each GCMs, the 384 

GSAT (Fig. S2) and global mean thermosteric sea level change (Fig. S3) emulated by FaIR-TLM 385 

generally follow that from the corresponding GCM, with RMSE<0.43 K for GSAT and 386 

RMSE<0.05 m for GMTSLR. A two-layer pattern scaling based on surface and deep-ocean 387 

temperature is used to project DSL. During the period 2271-2290, for instance, the DSL 388 

predicted by the two-layer pattern scaling are more close to the DSL simulated by the 389 

corresponding GCM than that predicted by the univariate pattern scaling, because the two-layer 390 

pattern scaling can capture the non-linear responses of DSL to climate warming (Fig. 2, 3).  391 

By perturbating the key parameters, FaIR-TLM allows emulation of projected global-mean 392 

surface and deep-ocean temperature pairs and GMTSLR for emissions scenarios (e.g., SSP3-7.0; 393 

Fig. 4 and 5) beyond those run by the GCMs to which it is calibrated.  Compared with the likely 394 

ranges assessed by AR5 in the RCP 2.6, 4.5 and 8.5, the FaIR-TLM performs well in emulating 395 

the GSAT spread (Table 2 and Fig. S5).  By 2300, the ensembles of GSAT and GMTSLR 396 

estimated by FaIR-TLM have a slightly lower median and a slightly wider 90% range than the 397 

estimations by Palmer et al. (2018). These differences might be due to 1) we use the uncertainty 398 

of ECS from AR5 which has a larger range than that estimated by CMIP5 multi-model ensemble, 399 
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to derive the distribution of 𝜆; 2) more complex processes are considered by the FaIR-TLM than 400 

the TLM used in Palmer et al. (2018), such as the efficacy factor of deep ocean heat uptake and 401 

coupled carbon cycle.    402 

We produce 1000-member ensembles of DSL projections for four different emissions 403 

scenarios. Characteristics of median DSL projections during 2271-2290 include increases in DSL 404 

along most of the coast around the Pacific and Indian Oceans and a decrease in DSL over the 405 

Southern Ocean in all four scenarios, as well as increased DSL over the Arctic and along the 406 

North Atlantic Current in moderate to high emissions scenarios (Fig. 5). The 90% range (5
th

-95
th

 407 

percentile) of uncertainties are small over the middle and low latitudes, and are relatively large 408 

over the Southern Ocean, Arctic and North Atlantic, where the simulations of GCMs are diverse 409 

due to the challenges of capturing the complex physical processes, such as deep water formation 410 

in the subpolar Atlantic, the Antarctic circumpolar current, and ice-albedo feedback in polar 411 

regions (Flato et al., 2013; Landerer et al., 2014; Wang et al., 2014). The ensemble of DSL 412 

projections also allows us to examine the trajectories of the DSL projections and their 413 

uncertainties at specific locations (Fig. 6). At selected locations in the North Atlantic and 414 

Western Pacific, the 90% range of DSL spread generally encapsulates the time series of DSL 415 

changes relative to the baseline period from the 5 GCMs.   416 

The two-layer emulator provides a useful tool to explore the uncertainty of DSL projections 417 

over multiple centuries with computational resources that are much less than a GCM requires. It 418 

can be calibrated to match assessments of key values like the equilibrium climate sensitivity, and 419 

allows the flexibility of simulating forcing conditions intermediate between the RCPs as the 420 

patterns are common for different scenarios.However, we should note that the errors between 421 

the DSL predicted by two-layer emulator and DSL simulated by the corresponding GCMs are 422 

small in middle and low latitudes but relatively large in high latitudes (e.g. the Southern Ocean, 423 

Arctic, and subpolar Atlantic). Thus, DSL emulated by the two-time scale approach in high 424 

latitudes with caution.  425 

 426 
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Table 1 FaIR-TLM parameters adjusted to match the GSAT in CMIP5 GCMs. 𝜆 (𝑊 𝑚−2 𝐾−1), 549 

𝛾 (𝑊 𝑚−2 𝐾−1), 𝜖, 𝐶 (𝑊 𝑦𝑟 𝑚−2 𝐾−1) and 𝐶0(𝑊 𝑦𝑟 𝑚−2 𝐾−1) are reported by Geoffroy et al. 550 

(2013). The units for 𝐹2×𝐶𝑂2
 and afpd  are 𝑊 𝑚−2. 551 

 552 

CMIP5 GCMs 𝜆 𝛾 𝜖 C C0 𝐹2×𝐶𝑂2  afpd 

bcc-csm1-1 1.28 0.59 1.27 8.4 56 3.23 -0.9 

GISS-E2-R 2.03 1.06 1.44 6.1 134 3.78 -0.9 

HadGEM2-ES 0.61 0.49 1.54 7.5 98 2.93 -1.23 

IPSL-CM5A-LR 0.79 0.57 1.14 8.1 100 3.1 -0.68 

MPI-ESM-LR 1.21 0.62 1.42 8.5 78 4.09 -0.9 
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Table 2. Comparison of the distributions of GSAT anomaly (relative to 1986-2005) projected by 553 

FaIR-TLM with the distributions of global-mean surface temperature assessed by AR5 (Collins 554 

et al., 2013) in RCP 2.6, RCP 4.5, and RCP 8.5. Means are given without parentheses; likely 555 

range (for AR5) and 17th-83th percentile range (for FaIR-TLM) are given in parentheses.  556 

 557 

Period AR5 FAIR-TLM 

RCP 2.6 GSAT   

2046-2065 1.0 (0.4, 1.6) 0.86 (0.48, 1.21) 

2081-2100 1.0 (0.3, 1.7) 0.83 (0.43, 1.21) 

2181-2200 0.7 (0.1, 1.3) 0.69 (0.28, 1.06) 

2281-2300 0.6 (0.0, 1.2) 0.57 (0.17, 0.92) 

RCP 4.5 GSAT   

2046-2065 1.4 (0.9, 2.0) 1.29 (0.77, 1.77) 

2081-2100 1.8 (1.1, 2.6) 1.67 (0.95, 2.32) 

2181-2200 2.3 (1.4, 3.1) 2.10 (1.10, 3.02) 

2281-2300 2.5 (1.5, 3.5) 2.39 (1.17, 3.49) 

RCP 8.5 GSAT   

2046-2065 2.0 (1.4, 2.6) 1.93 (1.20, 2.61) 

2081-2100 3.7 (2.6, 4.8) 3.49 (2.12, 4.75) 

2181-2200 6.5 (3.3, 9.8) 6.76 (3.93, 9.46) 

2281-2300 7.8 (3.0, 12.6) 8.04 (4.41, 11.45) 

SSP3-7.0 GSAT   

2046-2065  1.60 (0.99, 2.17) 

2081-2100  2.78 (1.69, 3.77) 

2181-2200  5.16 (2.94, 7.24) 

2281-2300  5.88 (3.10, 8.50) 
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Figure 1 Changes in DSL in response to changes in deep ocean temperature (first column) , 558 

global-mean surface air temperature (second column) in bivariate pattern scaling. The third 559 

column is the response of DSL changes to the warming in univariate pattern scaling. The first 560 

five rows display the maps of slopes obtained from a GCM over the period of 1981-2300. The 561 

sixth row shows the multi-model mean of slopes. The areas where sign agree in slopes among 562 

the five models are hatched. White areas are lands. Units for slopes are m K
-1

. 563 

 564 
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 565 

Figure 2 Differences between DSL simulated by GCMs (zos) and DSL(𝑧𝑜𝑠̂) predicted by 566 

univariate pattern scaling (unvariate, first row) and two-layer pattern scaling (2-layer, second 567 

row) over the period 2271-2290 for the ensemble mean of 5 GCMs in three scenarios: RCP2.6, 568 

RCP4.5, RCP8.5 (Units: m). The third row shows the global mean of the |𝑧𝑜𝑠 − 𝑧𝑜𝑠̂| in 1TS and 569 

2TS, respectively. Black dots on maps denote the two grid cells used for the plot in Figure 3. 570 

 571 
 572 

 573 

 574 

 575 

 576 

 577 

 578 
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Figure 3. 𝑧𝑜𝑠̂ predicted by univariate pattern scaling and 2-layer pattern scaling at the grid cell (a) 579 

over Western Pacific (14.5°N, 127°E) and (b) over the North Atlantic (40°N, 73°W) for the five 580 

models in the three scenarios. The zos simulated by corresponding GCMs is shown by scatters in 581 

which colors indicate years. Room mean square errors between the 𝑧𝑜𝑠̂ and zos for each GCM 582 

are shown in parentheses of legend. 583 

 584 

 585 
 586 

 587 

(a) Grid cell over Western Pacific 

(b) Grid cell over North Atlantic 
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Figure 4. Ensemble projections of CO2 concentrations (first row), GSAT (second row), deep-588 

ocean temperature (third row), and GMTSLR (fourth row) changes relative to the baseline period 589 

1986-2005 under the four scenarios. Shadings represents the 66% range, dark blue lines the 590 

median of 1000-member ensemble projections. The projection calibrated to the five GCMs in the 591 

three RCP scenarios are shown on top of the shadings (orange lines).  592 

 593 

 594 
 595 
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Figure 5. Projection of DSL changes at median estimation (first column) and range of 17
th

-83
th

 596 

percentile averaged over the period of 2081-2100 in four scenarios (a) relative to the baseline 597 

period 1986-2005. (b) is the same with (a) except for the period of 2271-2290. Units are m.  598 

 599 

                            (a) 2018-2100                                                     (b) 2271-2290 600 
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 602 
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Figure 6. Ensemble projections of DSL changes relative to the baseline period 1986-2005 at the 605 

grid cells near Philippines over the western Pacific (upper panel) and near NYC over the North 606 

Atlantic (lower panel) for the four scenarios: RCP2.6, RCP4.5, RCP8.5 and SSP3-7.0. Light and 607 

dark shadings indicate the 90% and 66% range, respectively. Dark blue lines the median of 608 

1000-member ensemble projections. The projection of DSL changes smoothed by 20-year 609 

running average in the five GCMs are shown on top of the shadings (colored lines). 610 
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