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Key Points:

• NOAA modeled soil moisture is drier in wet regions and wetter in dry
regions as compared to in situ observations.

• NOAA modeled soil moisture has lower variance than in situ observations.

• The differences between NOAA modeled soil moisture and in situ data are
larger at deeper soil depths as compared to near the surface.

Abstract

Three estimates of soil moisture from National Oceanic and Atmospheric Ad-
ministration (NOAA) programs are compared. The estimates are from a high-
resolution atmospheric model with a land surface model, a hydrologic model
and in situ observations. Both models demonstrate wetter soil moisture in dry
regions and drier soil moistures in wet regions, as compared to the in situ obser-
vations. These soil moisture differences occur at most soil depths but are larger
at the deeper depths below the surface (100 cm). In terms of soil moisture
variance, both models generally have lower standard deviations as compared
to the in situ observations, except for near the surface where the in situ and
high-resolution, land surface model compare well. These NOAA soil moisture
estimates are used for a variety of forecasting and societal applications, and un-
derstanding their differences provides important context for their applications
and can lead to model improvements.

Plain Language Summary

Soil moisture is an essential variable coupling the land surface to the atmo-
sphere. Accurate estimates of soil moisture are important for predicting where
clouds will form, assessing drought and fire weather risks, and assisting with de-
cisions for agricultural production. There are multiple estimates of soil moisture
available, and in this study, we compare three different types of soil moisture
estimates from the National Oceanic and Atmospheric Administration (NOAA),
including two types of soil moisture models and direct observations, as well as
direct observations from the United States Department of Agriculture. Both
models have soil moisture values that are too wet in dry regions of the United
States and too dry in wet regions. The modeled soil moisture also does not
change as rapidly from day-to-day as they do in the direct observations of soil
moisture. Further analysis at different soil depths shows which depths have the
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largest differences between these three soil moisture estimates. Understanding
these NOAA soil moisture estimate differences is important for forecasters and
decision makers and can be useful for the further development of atmospheric
and land surface models.

1 Introduction

Knowledge of soil moisture is essential for many Earth system applications, such
as forecasting cloud formation (e.g., Ek and Holtslag, 2004), monitoring drought,
flood and fire risks (e.g., Svoboda et al., 2002; Rigden et al., 2020), and pro-
viding instrumental information for agricultural production (e.g., Madadgar et
al., 2017). As such, several advancements in the estimation and utilization of
soil moisture have recently transpired. For example, in efforts to improve the
accuracy of numerical weather prediction (NWP) and climate models, model
developers have focused on increasing the coupling between the land surface
and atmosphere components of their data assimilation systems to eliminate per-
sistent atmospheric prediction biases (e.g., Benjamin et al., 2022). Furthermore,
NWP models are also beginning to explore the direct assimilation of new soil
moisture observations (e.g., Carrera et al., 2019; Muñoz-Sabater et al., 2019;
Lin and Pu, 2020).

For these reasons, it is critical to understand the differences in the available soil
moisture estimates from models or observations that are used in science, fore-
casting or agricultural applications. Different estimates of soil moisture exist
across the continental United States (CONUS), each with its own benefits and
shortfalls. For example, in situ observations are often considered to be the most
accurate and are therefore used as a benchmark. However, they have limited
spatial coverage (e.g., Quiring et al., 2016). Other products, such as those from
low Earth orbiting satellites, have lower temporal and spatial resolution (e.g.,
Liu et al., 2016). Soil moisture estimates from models depend on many assump-
tions and reflect the influence of observation-based data to different degrees (e.g.,
Smirnova et al., 1997; Huang et al., 1996; Mitchell et al., 2004). Several recent
studies have made significant progress in comparing many of the available soil
moisture estimates. Some studies have compared soil moisture temporal vari-
ability and memory between many large-scale land surface models (LSMs) and
in situ soil monitoring networks across the CONUS, noting certain biases and
uncertainties in the various estimates (e.g., Robock et al., 2003; Xia et al., 2014;
2015a; Dirmeyer et al., 2016). Recent studies have extended soil moisture com-
parisons to include soil moisture retrievals from new satellite platforms (e.g.,
Shellito et al., 2016; Pan et al., 2016; Ford and Quiring, 2019).

While various LSMs have been compared to in situ observations for several
decades, these prior studies have primarily focused on models with horizontal
resolutions on the scales of � degree or larger (i.e., the North American Land Data
Assimilation System models; Mitchell et al., 2004; Xia et al., 2012). Given the
local, mesoscale variability of soil moisture process and the subsequent impacts
of soil moisture on atmospheric prediction (e.g., Koster et al., 2004; Taylor et al.,
2011), high-resolution models should also be tested. Recently, Min et al. (2021)
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compared near-surface atmospheric and soil variables from the High-Resolution
Rapid Refresh (HRRR) model (Dowell et al., 2022; James et al., 2022), which
has horizontal grid spacing of 3 km, to observations from the New York State
Mesonet. They found that soil moisture was underestimated in HRRR, which
contributed to warm and dry biases in atmospheric forecasts. However, how does
soil moisture from the HRRR model (NOAA’s current operational, convection-
allowing model) compare to soil moisture estimates across all of CONUS?

In this study, we focus on a comparison of soil moisture estimates from NOAA.
In particular, we uniquely include soil moisture estimates across CONUS from
the NOAA operational HRRR model, which utilizes the RUC land surface model
(RUC LSM, Smirnova et al., 1997). We also include the NOAA Climate Predic-
tion Center (CPC) leaky-bucket hydrological model (Huang et al., 1996; van den
Dool et al., 2003) and in situ observations from two nationwide networks: the
NOAA/NCEI United States (US) Climate Reference Network (USCRN; Bell et
al., 2013) and the US Department of Agriculture Soil Climate Analysis Network
(SCAN; Schaefer et al., 2007). This work provides an assessment of the similari-
ties and differences of soil moisture amounts and variance across three different
products, which are all used in various operational and research applications.

2 Soil Moisture Data

2.1 In Situ Observations

The study uses in situ soil moisture observations from two nationwide networks.
USCRN provides climate monitoring measurements of atmospheric and soil
properties. To increase the coverage of the in situ observations, SCAN is also
included. SCAN uses similar sensors to USCRN (i.e., Hydra Probe sensors) and
typically have volumetric soil moisture (VSM; mwater

3 / msoil
3) measurements

at the same soil depths (~5, ~10, ~20, ~50, and ~100 cm) as USCRN. Only
data from these five levels are used for consistency. Dirmeyer et al. (2016) also
found that these two networks have similar error variances. The observations
represent point measurements of the soil moisture at specific sites across the US.
Daily data are used in this study and represent the average VSM of the entire
24-hour period based on local standard time.

2.2 HRRR Model

The HRRR model is NOAA’s operational, convection-allowing model, which
has 3 km horizontal grid spacing and covers CONUS with a one-hour tempo-
ral refresh rate (Dowell et al., 2022; James et al., 2022). In this study, we
use HRRRv3, which was operational between 12 July 12 2018 and 2 Decem-
ber 2020. The HRRR model utilizes a one-dimensional land surface model
(RUC LSM; Smirnova et al., 1997), which predicts heat and moisture transfer
vertically throughout the soil column. The RUC LSM has undergone several
enhancements over the years, including increasing its resolution and incorporat-
ing new features, such as snow and ice models (Smirnova et al., 2000; 2016).
The current version predicts VSM at nine vertical levels (0, 1, 4, 10, 30, 60,
100, 160 and 300 cm) and utilizes cycling of soil conditions over several years to

3



better capture the soil moisture state. The HRRR utilizes moderately coupled
land data assimilation, meaning that near-surface atmospheric data assimila-
tion increments are used to adjust the soil analysis (e.g., Benjamin et al., 2022).
Given the recent and continued development of the HRRR data assimilation
system and land surface model, it is critical for assessments of HRRR’s soil
moisture to other estimates. This study provides a benchmark for HRRR soil
moisture estimates in support of the continued development of NOAA’s land
surface prediction capabilities in the Unified Forecast System. The focus of this
study is on the analyzed soil moisture field, rather than forecast fields, and thus
our results are most directly relevant to the LSM and data assimilation system
development.

2.3 CPC Leaky-Bucket Model

The CPC soil moisture product utilizes a leaky-bucket model that solves the time
tendency equation in soil moisture over a region from several inputs: precipita-
tion minus evapotranspiration, net streamflow divergence and net groundwater
loss (Huang et al., 1996; van den Dool et al., 2003). These inputs to the time
tendency equation for soil moisture have been improved over the years with
new observations and parameterizations (Fan and van den Dool, 2004; Arevalo
et al., 2021). The CPC model provides 1.6 m deep integrated soil moisture
(ISM, mm), and these estimates are provided daily for each of the NOAA cli-
mate divisions across the United States (Guttman and Quayle, 1996). There
are typically about 7-10 climate divisions per state, although there are fewer for
states with smaller geographical areas, like those in the Northeast United States.
The CPC soil moisture data are used as an input to the United States Drought
Monitor (Svoboda et al., 2002) and continues to be used as a reference data set
in various soil moisture application studies, from assessing soil moisture impacts
on carbon fluxes (e.g., Yao et al., 2021) to understanding climate impacts on
agricultural production (e.g., Atiah et al., 2022).

3 Methods

3.1 ISM and VSM Comparisons

Since the CPC product only provides 1.6 m ISM, VSM values from the in situ
and HRRR data are vertically integrated in order to compare 1.6 m ISM in
all three datasets. The VSM values are assumed to represent the mean value
over a depth between the midpoints of the specified levels, as has been done
in other studies (e.g., Dirmeyer et al., 2016; Ford and Quiring, 2019). For
example, the 10 cm VSM observation in the in situ data is assumed to represent
the average VSM for the layer between 7.5 cm (i.e., the midpoint between 5
and 10 cm) and 15 cm (i.e., the midpoint between 10 and 20 cm). The 100
cm VSM in the in situ data is also assumed to be constant to the depth of 160
cm. The HRRR ISM calculations are better constrained than the in situ ISM
calculations, since the HRRR VSM data span 3.0 m below ground using 9 levels.
VSM values are also compared between the HRRR and in situ data to glean
whether certain vertical levels are driving differences between these two datasets.
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An understanding of soil moisture differences at varying depths is also critical
since soil moisture’s role in Earth system processes is depth dependent. In terms
of spatial comparisons, the HRRR and CPC data are linearly interpolated to
the locations of the in situ stations. The analysis is completed over a ~2.4 year
period from 12 July 2018 through 2 December 2020, which is the timeframe
that HRRRv3 was operational. By confining the analyses to this time frame,
uncertainties associated with model version changes are avoided.

3.2 Quality Control

In situ data provide the most direct physical estimate of soil moisture, but it
is important to ensure that the in situ data are of the highest quality. As
such, a variety of quality control procedures are undertaken. First, in situ
data are only included if they have VSM values available at all five vertical
levels (~5cm, ~10cm, ~20cm, ~50cm, and ~100cm), since missing data could
lead to larger uncertainties in the ISM calculation. Second, in situ stations
directly along the coast are removed due to unphysical spatial interpolations
from the CPC and HRRR data. From the remaining in situ data, we estimate
the ratio of error variance to ISM variance using the method defined in Robock
et al. (1995) and used in more recent soil moisture comparisons studies (e.g.,
Dirmeyer et al., 2016). In essence, soil moisture can be well approximated by a
red-noise process (i.e., first-order Markov process; e.g., Delworth and Manabe,
1988; Vinnikov and Yeserkepova, 1991) with the natural logarithm of the soil
moisture autocorrelation (r) decreasing linearly with increased lag times (�). For
this study, autocorrelations are computed for � of 1-30 days for each station’s
ISM daily anomalies. A linear fit is applied to the ln(r) versus � data and is
extrapolated to � = 0. Deviations from 1 at � = 0 can be used to solve for to
the ratio of error variance to ISM variance (e.g., Robock et al., 1995). For this
study, stations where this ratio is greater than 0.08 are removed. This error
ratio threshold is in-line with estimates of the mean error ratio of the USCRN
and SCAN networks (Dirmeyer et al., 2016). While this error variance ratio
threshold results in the removal of 63 (~27%) of the 235 in situ stations, it
provides more confidence that only the highest quality in situ observations are
being used in the analyses. Even with the significant reduction of the in situ
data, the stations span the entirety of the CONUS (Figure 1, dots). Different
thresholds, autocorrelation lengths and dataset lengths were tested and did not
qualitatively impact the results.
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Figure
1: 1.6 m ISM values and standard deviations temporally averaged over the
study period. (a) represents the HRRR model, (b) represents the CPC model,
and (c) represents their difference. (d-f) are the same as (a-c), except for the
ISM standard deviations. Filled circles represent locations of the 172 in situ
observations from the USCRN and SCAN networks that pass quality control
checks, as described in the text. In (c) and (f), the filled circles represent the
HRRR minus in situ differences, while the filled circles represent the in situ
station ISM mean and standard deviations, respectively, for the other panels.

3.3 Quintile Analysis

To determine whether differences in soil moisture estimates vary in different
soil moisture regimes (i.e., wetter versus drier conditions), we composite the
comparisons over locations with similar soil moisture amounts. The ISM or
VSM values for each dataset are averaged temporally for each location and are
then averaged among the available datasets (i.e., all three datasets for ISM and
the in situ and HRRR datasets for VSM). Using this mean, the locations are
separated into five quintiles. For example, locations with a mean ISM estimate
that is greater than or equal to the 0th percentile ISM and less than the 20th

percentile ISM are placed in the lowest quintile of soil moisture amounts (i.e.,
driest locations). These locations are termed L00-20. Similarly, locations that fall
within the 20th-40th, 40th-60th, 60th-80th and 80th-100th percentiles are termed
L20-40, L40-60, L60-80 and L80-100, respectively and represent dry to wet soil
moisture regimes. There are either 34 or 35 locations that are included in each
of these quintiles.

4 Soil Moisture Amounts

4.1 ISM Mean Comparisons

Stark, regionally-dependent differences are apparent in the ISM estimates (Fig-
ure 1c,f). The HRRR ISM values (Figure 1a) have a more muted range than the
CPC ISM values (Figure 1b). The HRRR ISMs are larger (i.e., wetter) than the
CPC ISMs across the drier regions of CONUS (most of the western CONUS;
Figure 1c) and are smaller (i.e., drier) than the CPC ISMs in the wetter re-
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gions of CONUS (eastern half of CONUS and the coastal regions of the Pacific
Northwest). This regional dependence is also clearly associated with varying
soil moisture amounts.

Figure
2: Comparisons of the 1.6 m ISM means between (a) HRRR and in situ values,
(b) CPC and in situ values, and (c) HRRR and CPC values. Note, (c) only
shows results from the same locations where in situ data are available for
consistency. (d-g) shows comparisons of VSM between the HRRR and in situ
data for 4 different level combinations: (d) surface in HRRR to 5 cm in the
in situ data, (e) 5 cm for both, (f) 10 cm for both, and (g) 100 cm for both.
The gray, horizontal line represents the mean difference for the entire dataset,
while red horizontal lines represent the mean difference over the five quintiles.
Horizontal gray and red lines are solid if their associated data differences pass
statistical significance using a paired Student’s t-test at the 99.9th percentile.
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Figure 2 includes the in situ ISM estimates within the comparisons in order to
better quantify the differences between the three datasets. When compared to
both in situ ISM (Figure 2a) and CPC ISM (Figure 2c), HRRR is wetter in L00-20
(+101% and +97%, respectively, when taking the mean percentage difference for
all locations in L00-20) and drier in L80-100 (-34% and -13%, respectively). Even
though there are fewer moisture quintiles with statistically significant differences
between the CPC and in situ ISMs, the longitude locations show large regional
differences between the CPC and in situ datasets, even within a given quintile
range. For example, L40-60 and L60-80 show minimal differences between the
mean CPC and in situ ISMs (Figure 2b, red lines), but at eastern locations
the CPC ISMs are generally larger (Figure 2b., yellow and green dots) and at
western locations the CPC ISMs are generally smaller (Figure 2b, blue dots). As
was also shown in Figure 1, Figure 2 demonstrates clear regional relationships
to these ISM differences between the datasets.

Despite larger, systematic, moisture-regime-dependent differences between
HRRR and in situ observations (Figure 2a), HRRR aligns more closely to the
in situ observation than does the CPC for some locations. These occurrences
are typically associated with local soil characteristics or topography, which
are not captured in the coarser climate division regions used in the CPC
product. For example, based on comparisons with the in situ ISM, the HRRR
produces similarly dry soil moisture conditions within the Sand Hills region of
Nebraska (e.g., -101.4 W, 42.1 N in Figure 1). The temporally averaged mean
ISM for this location is 138 mm and 165 mm for the in situ and HRRR data,
respectively, as compared to 372 mm in the CPC data (2-3x larger).

4.2 VSM Mean Comparisons at Varying Depths

To better understand the differences in ISM data, the VSM data at different
depths are compared in the HRRR and in situ data (Figure 2d-g). Note, that the
VSM data are also separated into quintiles from driest to wettest in a similar way
to the ISM data, and this procedure is done for each vertical level. Therefore,
locations may fall into different quintiles for different vertical levels. The same
trend of the HRRR being wetter in L00-20 (i.e., the driest regions) and dryer in
L80-100 (i.e., the wettest regions) is present at all depths. There are generally
smaller differences in the middle quintiles. However, at the lowest depths (100
cm below ground; Fig 2g), the differences between the HRRR and in situ VSMs
have larger magnitudes, especially for the driest and wettest regimes (L00-20
difference of +0.08 and L80-100 difference of -0.18). Near the surface (Figure
2d), the driest 40% of the regions have relatively small differences (± 0.02),
although significant dry biases are present for the wetter regions (-0.11). The
VSM data demonstrate that the deeper soil layers (i.e., 100 cm below ground)
are the primary drivers of the ISM trends. Shallower soil layers have similar
trends yet smaller differences as compared to those at deeper levels and have
a smaller contribution to the ISM differences. It is important to note that the
magnitude of both ISM and VSM mean differences vary throughout the year,
and the evolution of these differences as a function of month and season are
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provided in the supporting information document.

5 Soil Moisture Variance

5.1 ISM Standard Deviation Comparisons

Understanding the temporal variability (e.g., standard deviations) in soil mois-
ture allows for an assessment on whether models are accurately capturing the
processes that result in soil moisture changes. Maps of the ISM standard devia-
tions in the HRRR and CPC ISM data show similar patterns, with the highest
variance occurring along the Pacific Northwest coast (Figure 1d-e). The lowest
ISM standard deviations occur along the Intermountain West and High Plains
regions. In general, the HRRR ISMs have lower variance than the CPC data
across the US except for in the parts of the Rocky Mountains and in the Great
Lakes and Northeast regions (Figure 1f). The HRRR produces larger spatial
variability within the mountain and valley regions across the western US that
cannot be resolved in the CPC data.
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The
in situ observations generally have the highest ISM variance for most quintiles
followed by CPC and HRRR, which has the lowest variances of the three
datasets regardless of the wetness regime (Figure 3a-c). The in situ and
CPC quintile mean ISM standard deviations are not significantly different
for all quintiles except L20-40, while the HRRR quintile mean differences are
significant for all quintiles when compared to both other datasets. Dirmeyer et
al. (2016) showed that spatial scaling differences do not have a large impact
(~10%) on in situ observation standard deviations via conducting tests where
many stations that are separated by several km to up to 100 km are averaged
together. Therefore, the differences between the in situ and NOAA modeled
standard deviations are likely due to other factors outside of dataset spatial
scale differences (e.g., model processes representation or model input data).
Furthermore, the large variability or scatter in the ISM standard deviation
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differences between the in situ data and both models (Figure 3a-b) suggests that
the cause of these differences depends on the specific location. The differences
between HRRR and CPC ISM standard deviations, however, demonstrate a
more systematic bias between these two modeling frameworks (Figure 3c).

Figure 3. Same as Figure 2, except for comparisons of ISM standard deviations
(a-c) and VSM standard deviations (d-g).

5.2 VSM Standard Deviation Comparisons at Varying Depths

VSM standard deviations at four different depths are compared between HRRR
and in situ data (Figure 3d-g) to determine whether a certain depth is driving
the differences in the ISM standard deviations (Figure 3a). Regardless of the
soil moisture regime, the HRRR surface VSM standard deviations compare well
to the near-surface in situ observations. When averaging over all locations, the
mean near-surface percentage differences in HRRR soil moisture from the in situ
value is only +4.2% (Figure 3d). This is likely related to improvements made
in the HRRR’s RUC LSM and the moderately coupled land data assimilation
system that have been applied (Benjamin et al., 2022). However, at depths of
5 cm below ground and deeper (Figure 3e-g), most quintiles have statistically
significant differences in the standard deviations. The mean percentage differ-
ences over all locations are -38.7%, -36.4% and -45.2% for the 5 cm, 10 cm and
100 cm levels, respectively, with the HRRR always having lower standard de-
viations than the in situ datasets for every quintile. These differences in VSM
standard deviations are larger for wetter soil moisture regimes (L20-100). While
the differences for the different soil moisture regimes are generally similar for
the 5 cm, 10 cm and 100 cm depths, there are more extreme differences for
specific locations at the 100 cm level. To summarize, the lower standard devia-
tions in the HRRR ISM are being driven by the lower VSM standard deviations
occurring below the surface level. It is important to note that both ISM and
VSM standard deviation differences vary throughout the year, and the evolu-
tion of these differences as a function of month and season are provided in the
supporting information document.

6 Conclusions and Future Work

A comparison of 1.6 m ISM between three different NOAA soil moisture prod-
ucts is conducted. This analysis uniquely includes the HRRR model with its
RUC LSM, the CPC leaky-bucket model and in situ observations from two na-
tional networks. These soil moisture estimates are used in many operational
and research applications, including atmospheric forecasting, drought monitor-
ing, and assessing flood and fire risks. Therefore, quantifying differences in these
NOAA models to observational networks across CONUS is critical.

Several conclusions are drawn from these comparisons.

1) The HRRR and CPC ISMs are both larger (i.e., wetter) in the driest regions
and smaller (i.e., drier) in the wettest regions as compared to in situ observa-
tions.
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2) These differences in the HRRR and in situ ISM amounts are largely caused
by deep soil levels (~100 cm below ground). Shallower layers have similar trends
to the deeper layers but have smaller differences, and thus a weaker contribution
to the ISM differences.

3) The in situ observations have the largest ISM standard deviations, followed
by the CPC leaky-bucket model and the HRRR model.

4) The HRRR soil moisture standard deviations compare well with the in situ
standard deviations near the surface, but large differences are present at 5 cm
below the surface and deeper.

The soil moisture differences presented in this study can be caused by a vari-
ety of reasons. In terms of modeled soil moisture, biases in the input datasets
(i.e., precipitation or radiation), whether they come from a coupled atmospheric
model in the case of HRRR or external sources in the case of CPC, have been
shown to lead to biases in land surface model calculations (e.g., Mitchell et
al., 2004; Min et al., 2021). Choices in the land surface model structure, such
as the number and thickness of soil layers, the representation of soil and veg-
etation, and other model parameters, can also lead to biases in soil moisture
prediction (e.g., Mitchel et al., 2004; Xia et al., 2014; 2015b). Min et al. (2021)
found that snowmelt, freezing/thawing, and/or biases in precipitation and evap-
otranspiration led to differences in HRRR soil moisture as compared to in situ
observations in New York and that the most relevant processes causing these
differences varied throughout the year. The results in this study demonstrate
consistent, region-dependent biases in NOAA modeled soil moisture as com-
pared to in situ observations across CONUS, and future research should focus
on understanding the model processes that are causing these biases.

Our results also provide important context to the current users of these mod-
els and observations. For example, HRRR’s land data assimilation system has
recently undergone changes that primarily impact the near-surface soil state
(Benjamin et al., 2022). The comparisons presented in this study do show bet-
ter performance of HRRR soil moisture near the surface and thus may provide
a first step towards understanding the impact of these model changes. Further-
more, these results can assist with the continued development and refinement of
soil moisture models and products. The analyses presented here are currently
being utilized for preparing training and validation data for a machine learning
algorithm that uses data from the Advanced Baseline Imager on-board NOAA’s
Geostationary Operational Environmental Satellite to estimate the soil moisture
state at very high resolution (i.e., on the order of ~1 km). With a recent focus on
land-atmosphere coupling and a continued shift towards higher-resolution mod-
els, such a product could be used as a supplementary input for strongly coupled
land atmosphere data assimilation in the next generation of atmospheric models.
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Open Research

Several in situ and model datasets are used in this study. The USCRN data
(Palecki et al., 2013) and the SCAN data (SCAN, 2016) will be archived upon
publication. This archiving process is underway and will be with the Mountain
Scholar repository through Colorado State University. We have uploaded a
copy of these data as Supporting Information for the review process. The
CPC data was accessed via https://ftp.cpc.ncep.noaa.gov/wd51yf/us/w_daily/
through the U.S. Data download link on the NOAA CPC product web-
page (https://www.cpc.ncep.noaa.gov/products/Soilmst_Monitoring/).
The HRRR operational model data (HRRRv3) was stored and accessed
via the NOAA Hera supercomputer and is publicly archived at either
https://registry.opendata.aws/noaa-hrrr-pds/ or https://console.cloud.google.com/marketplace/product/noaa-
public/hrrr. The analysis code used to generate the analyses and figures in this
manuscript are available at https://github.com/pjmarinescu/CIRA_Soil_Moi
sture and will also be archived in the same Mountain Scholar repository as the
data upon publication.
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