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Key Points: 6 

• Uses a modelling approach to study phytoplankton growth around tropical islands in the 7 
presence of ambient currents and short-lived wind events 8 

• Wind-induced upwelling effects are essential for the initiation of phytoplankton growth 9 
in the retention zone of the island wake   10 

• Oscillating flow, typical of island wakes, occasionally releases mesoscale patches of 11 
upwelled water and its phytoplankton load into the ambient ocean.       12 
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Abstract 13 

Using a three-dimensional coupled physical-biological model, this paper explores the creation of 14 
phytoplankton blooms around tropical islands in the presence of ambient currents and short-lived 15 
(~4 days) wind events. The ambient flow creates a retention zone of weak flows in the lee of the 16 
island, which is a typical feature of island wakes. Findings reveal that wind-induced upwelling 17 
effects are essential for the initial nutrient enrichment and phytoplankton growth that occur 18 
mainly in this retention zone. Oscillating flow, typical of island wakes, occasionally releases 19 
mesoscale patches of upwelled water and its phytoplankton load into the ambient ocean. The 20 
phytoplankton continues to grow within floating structures that are of up to 20 km in diameter. 21 
This mechanism complements the plankton growth associated with the formation of mesoscale 22 
eddies.      23 

 24 

Plain Language Summary 25 

Phytoplankton forms the basis of most marine food webs. Phytoplankton growth in the surface 26 
layers of the oceans is generally limited by nutrient availability and requires nutrient supply 27 
through physical processes such as upwelling. This study reveals that short-lived wind effects are 28 
essential to initiate nutrient enrichment and phytoplankton growth near an island. In the presence 29 
of an ambient current, this wind-driven phytoplankton growth occurs in a zone of weak flow 30 
forming is the lee of the island. However, oscillating flow occasionally releases mesoscale 31 
patches of upwelled water and its phytoplankton load into the ambient ocean. The phytoplankton 32 
continues to grow within these patches, forming floating confined marine ecosystems that are up 33 
to 20 km in diameter.      34 
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1 Introduction 35 

Plankton concentrations in the sea are spatially heterogeneous and not randomly 36 
distributed (Hutchinson, 1953; Frontier, 1973; Cassie, 1962, 1963; Levin and Segel, 1976; 37 
Owen, 1989; Davis et al., 1992; Pinel-Alloul, 1995; Benoit-Bird et al., 2013). The spatial 38 
heterogeneity is characterized as patches, aggregations, or clusters in with planktonic organisms 39 
exhibit higher concentrations than found in surrounding water. In the oceans, patches form and 40 
exist at various horizontal scales, from the microscale (0.01 to 1 m) to the mesoscale (10 to 41 
hundreds of kilometers), noting that plankton patches, or layers, also form in the vertical as “thin 42 
layers” or subsurface phytoplankton blooms. Moreover, they can exist at multiple scales 43 
simultaneously, with smaller patches comprising larger aggregations (Haury et al., 1978). 44 
Phytoplankton forms the basis of most marine food webs. Hence, the knowledge of physical 45 
processes that influence phytoplankton growth and plankton patchiness is essential for the 46 
understanding the function of marine food webs including carbon and nutrient cycling, and the 47 
improvement ecosystem models and fishery predictions. Despite the importance of plankton 48 
patchiness over a range of spatial scales, the understanding of the mechanisms underlying the 49 
generation and maintenance of plankton patches is relatively poor (Robinson et al., 2021). 50 

The “island mass effect” summarizes various coupled physical-biogeochemical 51 
mechanisms that enhance plankton productivity near an island, or groups of islands (Doty and 52 
Oguri, 1956). Mechanisms include the interaction of oceanic flows with the island topography 53 
(Mann and Lazier, 2005), tidal mixing around islands (Kodaira and Waseda, 2019), tidally 54 
induced internal waves (Griffin et al., 1987), turbulent mixing in island wakes (Hasegawa et al., 55 
2021), and other factors such as nutrient intake from island runoff (Bell, 1992), atoll flushing 56 
(Gove et al., 2016), groundwater discharge (Street et al., 2008) and human activities that increase 57 
nearshore nutrient concentrations above natural levels (Vitousek et al., 1997).  58 

Island wakes are flow patterns in fluids that arise from horizontal flow around an 59 
obstacle. Ample studies have focused on physical processes in the wakes of islands and 60 
headlands (e.g., Batchelor, 1967; Barkley, 1972; Pattiaratchi et al., 1987; Wolanski and Hamner, 61 
1988; Tomczak, 1988; Aristegui et al., 1994; Heywood et al., 1996; Dietrich et al., 1996; Barton 62 
et al., 2000; Aiken et al., 2002; Coutis and Middleton, 2002; Harlan et al., 2002; Neill and 63 
Elliott, 2004; Caldeira et al., 2005). Typical features of island wake are (i) the formation of a 64 
stagnant zone in the lee of the island, henceforth referred to as retention zone, often exhibiting a 65 
return flow that operates as a trap for floating particles, and (ii) the formation of an island wake 66 
that follows from an oscillating flow in the retention zone (Kämpf and Chapman, 2016). The 67 
generation of cyclonic eddies via barotropic or baroclinic instabilities (Dong et al., 2007; 68 
Teinturier et al., 2010), and flow divergence (Hasegawa et al., 2004; Chang et al., 2013) are 69 
deemed common upwelling mechanisms in the lee of an island, according to the recent review of 70 
De Falco et al. (2022). 71 

 Several previous studies focussed on the enhancement in productivity and biomass 72 
around islands and the general biological impact of wakes (e.g., Hamner and Hauri, 1981; 73 
Hernandez-Leon, 1991; Martinez and Maamaatuaiahutapu, 2004; Hasegawa et al., 2004; 74 
Hasegawa et al., 2021). While findings confirmed the enhanced biological production near 75 
islands, the studies did not question whether effects other than the island wake itself are 76 
responsible for this biological response.  77 
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respectively, and z is the vertical coordinate. The presence of strong stratification hinders the 107 
development of deeper flows. This allowed us to limit the total depth of the model domain of 100 108 
m, which significantly reduces the CPU time of model simulations. As in the study by Kämpf et 109 
al. (2023), the Coriolis parameter is set to f = +0.5×10-4 s-1, corresponding to tropical seas at a 110 
geographical latitude around 20°N. Horizontal turbulence is parameterized using the closure 111 
scheme by Smagorinsky (1963). Eddy diffusivity is assumed the same as eddy diffusivity. 112 
Vertical turbulence is parameterized with the k-ε turbulence closure using standard parameter 113 
settings (see Luyten et al., 1999). An advection-diffusion equation is used to predict the 114 
evolution of an Eulerian concentration field C with the same eddy diffusivities as the density 115 
field. C has initially zero values except in a zone near the island, shown in Fig. 1, where C = 1 116 
throughout the simulation.  117 

The physical model is directly coupled to a Nitrogen-Phytoplankton (NP) model which 118 
exclusively focusses on the initial phytoplankton growth and ignores effects due to zooplankton 119 
grazing and bacterial nutrient-recycling. The surface mixed layer is initially devoid of nitrogen 120 
(see Fig. 1 insert). Dissolved nitrate concentration increases below the surface mixed layer 121 
linearly to a maximum of 10 μM at a depth of 75 m, with constant values underneath. This initial 122 
nitrogen field is chosen such that exclusively upwelling-induced vertical displacements of the 123 
nutricline rather than vertical diffusion initiate phytoplankton growth. The conservation 124 
equations for dissolved nitrogen concentration (N) and phytoplankton concentration (P) are 125 
given by: 126 𝜕𝑁 𝜕𝑡⁄ + Adv 𝑁 = Diff 𝑁 − ∗ 𝑃     (1) 127 

𝜕𝑃 𝜕𝑡⁄ + Adv 𝑃 = Diff 𝑃 + ∗ −  𝑃    (2) 128 

where t is time, Adv(.) and Diff(.) are three-dimensional advection and diffusion operators, μ* is 129 
the largest possible phytoplankton growth rate under saturated nutrient conditions, KN the half 130 
saturation constant of phytoplankton uptake of nitrogen, taken as 1.0 μM-N, and λ is the 131 
mortality rate, set to 0.05 day-1. The growth rate μ* is controled a prescribed day-night cycle of 132 
radiance based on the method described by Ji et al. (2007). Kämpf et al. (2023) present the 133 
resultant vertical profile of daily-averaged maximum net growth rates of phytoplankton that 134 
attain a maximum of 0.55 day-1 at a depth of 10 m, and become negative at depths > 45 m. 135 
Chlorophyll-a values in units of mg/m3 are calculated from predicted phytoplankton 136 
concentrations in units μM-N on the basis of an average C:chl-a ratio of 50:1 (see Jakobsen and 137 
Markager 2016) and a Redfield ratio of C:N of 106:16. Results are presented as vertically 138 
integrated chlorophyll-a concentrations (mg/m2) for comparison with values reported by Gove et 139 
al. (2016)   140 

2.2 Experimental design 141 

The ambient barotropic current is created by prescribing a sea-level difference of 5 cm 142 
between the northern and southern boundaries with a linear adjustment over the first simulation 143 
day. This creates an eastward flow of a speed of ~0.3 m/s. Zero-gradient conditions are used for 144 
all variables at all boundaries otherwise. In addition, a short-lived wind event is prescribed 145 
during the first 4 days of simulation. The wind field of events is spatially uniform. It is linearly 146 
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