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Introduction

This document contains supporting text, figures, and tables containing additional

information and detail cited in the main text. The GP15 datasets used can

be found on the BCO-DMO website (https://www.bco-dmo.org/dataset/778168/
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data; https://www.bco-dmo.org/dataset/777951/data; https://www.bco-dmo.org/

dataset/824867/data). Only data collected by the Oceanographic Data Facility (ODF,

Scripps Institution of Oceanography) group was used. The water mass analysis results

have been upload to the Stanford Digital Repository (https://purl.stanford.edu/

tv301yr5579) and submitted to BCO-DMO. The water mass analysis was conducted via

a modified Optimum Multiparameter (OMP) analysis method using the before-mentioned

BCO-DMO GP15 datasets and the newly-developed pyompa package. The pyompa soft-

ware can be found in Zenodo (https://zenodo.org/record/5733887), and the code

to replicate the analysis can be found in Github (https://github.com/nitrogenlab/

gp15wmascripts). Any known anomalies in the BCO-DMO datasets were flagged ac-

cording to the SeaDataNet scheme as is recommended by GEOTRACES (SeaDataNet,

2010; GEOTRACES, n.d.; Cutter et al., 2018). Our analysis excluded data flagged as

missing or as a known bad value. Once these data were removed, the thermocline (n=341)

and intermediate/deep (n=682) samples with complete data for our parameters of interest

(Section 2.2.1) were analyzed.

Text S1. pyompa soft penalty formulation.

The formula for the soft penalties applied to constrain the OMPA is below.

penalty(x) = β(eαmax(0,max(lowerbound−x,x−upperbound)) − 1)

The ’lowerbound’ and ’upperbound’ refer to the range over which each penalty is set. In

this case, a specific latitude or potential density. The default α and β for latitude and

potential density penalties were α = 0.05 and β = 100. These default values were used

except in the following cases. In the intermediate and deep water analysis, ENPCW,

SPCW, PSUW, ESSW, EqIW, and AAIW, had α = 0.03 and β = 50 for their respective
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latitude penalties. In the thermocline analysis, only PSUW and SPCW deviated from the

default with α = 0.03 and β = 50 for their respective latitude latitude penalties.

Text S2. Parameter weightings

Our parameter weightings were modified from Peters et al. (2018) as follows. In the

thermocline, we started with Peters et al. (2018)’s coded weights of 160, 155, 5, and 10

for temperature, salinity, silicate, and PO (a combination of phosphate and oxygen), re-

spectively. Oxygen was given the same weight as PO, and we weighted phosphate five

times the weight of oxygen to give its contribution to the overall cost a similar magni-

tude. Nitrate was given the same weight as phosphate. We also increased the weight of

temperature by 25%. After dividing all the weights by ten to lower the overall weights

while maintaining the relative weighting, the weights applied to the thermocline OMP

analysis were 20.0, 15.5, 0.5, 5, 5, and 1 for conservative temperature, salinity, Si(OH)4,

NO−
3 , PO

3−
4 , and O2, respectively.

In the intermediate and deep waters, we started with Peters et al. (2018)’s coded weights

of 140, 100, 30, and 10 for temperature, salinity, silicate, and NO (a combination of ni-

trate and oxygen). Oxygen was given the same weight as NO, and we weighted nitrate

five times the weight of oxygen to give its contribution to the overall cost a similar mag-

nitude. Phosphate was given the same weight as nitrate. We also increased the weight of

temperature and salinity to account for their conservative nature compared to the other

parameters affected by particle dissolution and nutrient regeneration. After dividing all

the weights by ten, as described above, intermediate and deep OMP analysis weights were

of 56, 80, 3, 5, 5, and 1 for conservative temperature, salinity, Si(OH)4, NO
−
3 , PO

3−
4 , and

O2, respectively.
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We compared our parameter weightings to weights cited in (Peters et al., 2018), which

are 140 for temperature, 100 for salinity, 30 for silicate, 20 for NO, and 10 for PO. We

translated the weights of PO and NO as 20 for oxygen, 20 for nitrate, and 10 for phosphate.

These (Peters et al., 2018) weights were kept the same in both the thermocline and

intermediate and deep water analyses. The differences in water mass fractions between

these GP15 water mass analyses (our water mass fractions minus the water mass fractions

resulting from (Peters et al., 2018)’s cited weights) is in figures S2 and S3.

Text S3. Procedure for obtaining thermocline boundaries

Because observations in the thermocline are analyzed using the ”thermocline array”

technique while observations in the intermediate and deep waters are analyzed with the

standard pyompa technique, it is important to separate the observations in the thermo-

cline from those that are in intermediate and deep waters. In prior work (Peters et al.,

2018; Jenkins et al., 2015), a single cutoff in potential density was applied across all obser-

vations to separate out those in the thermocline. However, in reality, the end of the true

thermocline may exist at different potential density cutoffs depending on the station being

considered. To account for this, in this work we determined station-specific thermocline

thresholds as follows:

First, we downloaded the GP15 ODF CTD data from the BCO-DMO website (https://

www.bco-dmo.org/dataset/778168/data) and organized the observations by station. In

cases where there were multiple CTD casts per station, we focused on data from the cast

that had more observations. Then, for each station, we followed these steps:
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1. Organize the data for the station into two vectors: the first vector contains the

depths of the observations sorted in ascending order, and the second vector contains the

corresponding potential density values (set to a reference depth of 0 m).

2. Density should increase monotonically with depth, but sometimes slight noise in the

observations can cause density to appear to decrease with increasing depth. To get around

this, we use a technique called ”isotonic regression”, where we fit a non-decreasing function

where the input is the depth and the output is the potential density. To fit the isotonic

regressor, we used scikit learn’s Isotonic Regression class (https://scikit-learn.org/

stable/modules/isotonic.html).

3. Isotonic regression produces a non-smooth function that increases in sharp steps. To

create a smoothed version of the output of the isotonic regressor, we fit the output of the

isotonic regressor to a PCHIP interpolator (PCHIP stands for “Piecewise Cubic Hermite

Interpolating Polynomial”), as implemented by scipy (https://docs.scipy.org/doc/

scipy/reference/generated/scipy.interpolate.PchipInterpolator.html). The

PCHIP interpolator produces a smooth fit while preserving the monotonicity of the iso-

tonic regressor. We will use σ0 to denote the function produced by the PCHIP interpolator,

such that the potential density output for a depth z is written as σ0(z).

4. Once we have the smooth piecewise polynomial function σ0, we can calculate its first

derivative at any depth. We will use σ′
0(z) to denote the first derivative of the potential

density at a depth z. We compute this derivative at 1000 evenly-spaced depths between

the minimum and maximum depths of the observations at the station.

5. To identify a cutoff for the thermocline (or, more formally, the pycnocline), we make

the simplifying assumption that the gradient of the potential density is first monotonically
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increasing (i.e. the gradient gets steeper and steeper as we enter the thermocline), and is

then monotonically decreasing (i.e. gets less steep as we exit the thermocline and enter

the abyssal ocean). Although this assumption is not always true in practice (e.g. the

presence of a mode water can create a flatness in the density gradient before the abyssal

waters are reached), for our purposes of identifying the upper and lower boundaries of the

thermocline, we find that it is sufficient. To put this assumption into practice, we find

the maximum of the derivative (over the 1000 depths mentioned in the previous steps),

and then split the 1000 depths into two sections around this maximum. For the shallower

section, we fit a monotonically increasing isotonic regressor to the values of σ′(z) (call

the resulting function σ′
0inc), and for the deeper section we fit a monotonically decreasing

isotonic regressor (call the result function σ′
0dec).

6. The upper thermocline boundary is set at which σ′
0inc(z) is either ≥ 0.01 or is ≥

25% of the maximum derivative (over the 1000 depths), whichever was shallower. We

define the lower boundary of the thermocline as the depth in the deeper section at which

σ′
0dec(z) ≤ 0.003. These cutoffs were chosen based on visual inspection, and will likely

need to be adjusted for different datasets.

After performing the procedure above for all stations, we have upper and lower bounds

for the thermocline for each station (Figure S3).

Text S4. Thermocline endmember selection

In the thermocline array technique, different end-members are defined for every potential

density increment. How do we define the property values for these end-members? To

achieve this, we combined the cubic smoothing splines approach used in Jenkins et al.

(2015) and Peters et al. (2018) with a novel iterative outlier filtering scheme as follows:
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first, we downloaded GLODAPv2 data for the Pacific and Arctic oceans and combined

them into one dataset. Next, we used the ranges from Table 1 to filter for datapoints

corresponding to a particular end-member. Then, for each property value, we go through

the datapoints corresponding to each single end-member and fit a cubic spline as follows:

1. Fit a cubic smoothing spline to predict the value of the property as a function of the

potential density (reference depth 0 m). We used the csaps python package (https://

github.com/espdev/csaps) version 1.1.0, with the smoothing parameter p set to 0.8.

2. Look at all the datapoints corresponding to the end-member and we compute the

difference between the true property value and the predicted property value according

to the csaps spline from the previous step. We then square these errors, compute the

standard deviation, and filter out all datapoints for which the square of the residual is

more than two standard deviations greater than zero.

3. Recompute a new smoothing spline on the filtered dataset, and recompute which

points would be filtered out according to the new spline. If the set of points getting

filtered out is the same as before, end the iteration and designate the newly computed

cubic spline as the final cubic spline. Otherwise, repeat this step, but now filtering out

points based on the new spline.

Once the spline is fit, we can compute the predicted property values according to the

spline at each potential density increment, and use this to define our end-members for the

increment.

Figure S1. Comparison of parameter weighting in thermocline water masses. The x-axis

is the difference between the GP15 water mass fractions resulting from our thermocline
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water mass weighting and from (Peters et al., 2018)’s cited weights. The y-axis is the

number of GP15 samples with water mass fractions above zero in at least one set of

results from the two weighting schemes. In other words, samples that had a water mass

fraction of zero in both of the weighting schemes were excluded from the histogram to

focus on the relevant samples from the thermocline. Bins sizes are approximately 0.01

(e.g. the bin including zero is from approximately -0.005 to 0.005).
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Figure S2. Comparison of parameter weighting in the intermediate and deep water.

The x-axis is the difference between the GP15 water mass fractions resulting from our

intermediate and deep water mass weighting and from (Peters et al., 2018)’s cited weights.

The y-axis is the number of GP15 samples showing a given difference between the two

weighting schemes. The y-axis is the number of GP15 samples with water mass fractions

above zero in at least one set of results from the two weighting schemes. In other words,

samples that has a water mass fraction of zero from both of the weighting schemes were

excluded from the histogram to focus on the relevant intermediate and deep water samples.

Bins sizes are approximately 0.01 (e.g. the bin including zero is from approximately -0.005

to 0.005).
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Figure S3. Thermocline a) depth and b) potential density anomaly (σ0) boundaries for

each GP15 station.

Figure S4. Full water column section plots of a) conservative temperature (℃), b)

absolute salinity, c) dissolved oxygen concentrations (µmol kg−1), d) silicate concentra-

tions (µmol kg−1), e) nitrate concentrations (µmol kg−1), and f) phosphate concentrations

(µmol kg−1) along the GP15 transect.
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Figure S5. N∗ (µmol kg−1) with dissolved oxygen (µmol kg−1) contours in the full water

column along the GP15 transect.

Figure S6. The yellow dots show nitrate and phosphate data flagged as probably bad

(3) compared to most of the data in teal flagged as probably good (2). No data flagged

as a known bad value (4) was included in the OMP analysis.
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Figure S7. The algorithm-chosen O:P ratio (µmol/µmol) along the GP15 transect where

a) phosphate assimilation is more than -0.25 (µmol kg−1) and b) phosphate regeneration

is above 0.25 (µmol kg−1).
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Figure S8. Water mass fractions for water mass subtypes. For the thermocline wa-

ter masses included in the intermediate and deep analysis, water mass fractions for the

thermocline analysis are provided in addition to subtypes. AABW and UCDW are not

included as these only have one defined archetype (Table S1). SPSTSW is not included

as this water mass was only included in the thermocline analysis. The colorbar represents

the water mass fractions for SPCW (a-c), ENPCW (d-f), ESSW (g-i), PSUW (j-l), AAIW

(m-n), EqIW (o-p), LCDW (q-r). NPIW (s-u), and PDW (v-x).
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Figure S9. Profiles of a) oxygen (µmol kg−1) and b) nitrate (µmol kg−1) for GP15

Station 39, located at 20°S. The oxygen minimum and nitrate maximum characteristic of

Upper Circumpolar Deep Water (UCDW) align between 1000 m and 2000 m, where our

water mass analysis yielded the highest UCDW mass fractions.

Figure S10. Lower Circumpolar Deep Water (LCDW) fraction with σ4 contours 45.84

and 45.88 kg m−3 overlain as black lines. Figure 10.18 of Talley (2011) places LCDW

below 45.84 kg m−3 at 28°S and 45.88 kg m−3 at 24°N. In our analysis, LCDW water mass

fractions were primarily below the depths of these contour lines, in agreement with Talley

(2011).
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Figure S11. Histograms of a) temperature (℃) b) absolute salinity, c) oxygen (µmol

kg−1), d) silicate (µmol kg−1), e) nitrate (µmol kg−1), and f) phosphate (µmol kg−1)

residuals for all samples in the thermocline and intermediate and deep water analyses.
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Figure S12. Range in residuals compared with previous studies for a) temperature (℃)

b) absolute salinity, c) oxygen (µmol kg−1), d) silicate (µmol kg−1), e) nitrate (µmol kg−1),

and f) phosphate (µmol kg−1).
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Figure S13. The standard deviation of residuals with altered parameter weightings for

a) conservative temperature (℃) b) absolute salinity, c) oxygen (µmol kg−1), d) silicate

(µmol kg−1), e) nitrate (µmol kg−1), and f) phosphate (µmol kg−1).
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Figure S14. Thermocline endmember properties for a) conservative temperature (℃) b)

absolute salinity, c) oxygen (µmol kg−1), d) silicate (µmol kg−1), e) nitrate (µmol kg−1),

and f) phosphate (µmol kg−1).
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Figure S15. Approximate density range we would expect to find NPCMW. This in-

tersects with several different thermocline and intermediate water types present in our

analysis.

Figure S16. SPCW carries the signal of the Eastern Tropical South Pacific (Peruvian)

oxygen deficient zone as shown by the dissolved oxygen contour of 50 µmol kg−1.
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Figure S17. ESSW carries the signal of the Eastern Tropical North Pacific oxygen

deficient zone as shown by the dissolved oxygen contour of 50 µmol kg−1.

Figure S18. Residuals for the OMP using the Bering Sea endmember a) Conservative

temperature (℃) b) absolute salinity, c) oxygen (µmol kg−1), d) silicate (µmol kg−1), e)

nitrate (µmol kg−1), and f) phosphate (µmol kg−1).
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Figure S19. The water mass fractions of a) UCDW b) LCDW, c) AABW, and d) the

Bering Sea endmember used in the place of PDW.
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Table S1. Water mass subtype definitions. Each line defines the properties of

a water mass subtype (archetype). Subtypes are numbered beginning with ’0’.
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Table S2. Comparison of our AAIW endmember properties with those from SAMW

endmembers used by Holte, Talley, Chereskin, and Sloyan (2013). Note Holte et al.

(2013) report potential temperature and practical salinity while we report conservative

temperature and absolute salinity.
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