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SUMMARY5

Most of the existing three-dimensional (3-D) electromagnetic (EM) modeling solvers6

based on the integral equation (IE) method exploit fast Fourier transform (FFT) to ac-7

celerate the matrix-vector multiplications. This in turn requires a laterally-uniform dis-8

cretization of the modeling domain. However, there is often a need for multi-scale model-9

ing and inversion, for instance, to properly account for the effects of non-uniform distant10

structures, and at the same time, to accurately model the effects from local anomalies.11

In such scenarios, the usage of laterally-uniform grids leads to excessive computational12

loads, both in terms of memory and time. To alleviate this problem, we developed an effi-13

cient 3-D EM modeling tool based on a multi-nested IE approach. Within this approach14

the IE modeling is first performed at a large domain and on a (laterally-uniform) coarse15

grid, and then the results are refined in the region of interest by performing modeling16

at a smaller domain and on a (laterally-uniform) denser grid. At the latter stage, the17

modeling results obtained at the previous stage are exploited. The lateral uniformity of18

the grids at each stage allows us to keep using the FFT, and thus attain the remarkable19

performance of the developed tool. An important novelty of the paper is a development20

of a “rim domain” concept which further improves the efficiency of the multi-nested IE21

approach.22
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1 INTRODUCTION25

Electromagnetic (EM) methods in geophysics aim to constrain the electrical conductivity26

of the Earth’s interior. Since the conductivity is sensitive to the temperature, chemical27

composition and water content, it helps to understand the Earth’s origin, past evolution28

and modern dynamics (Yoshino 2010; Chave & Jones 2012; Karato & Wang 2013; Khan29

2016; Johansen et al. 2019). Nowadays, an immense amount of EM data is available at30

different scales – from global to local – including the data from a global network of geomag-31

netic observatories (St-Louis et al. 2011), low-orbit satellites (Olsen & Floberghagen 2018),32

continental-scale magnetotelluric (MT) surveys (Chopping et al. 2016; Dong & Li 2010;33

Schultz 2010), as well as from numerous regional and local EM field campaigns around the34

world. Most of the modern data sets require an interpretation in terms of three-dimensional35

(3-D) conductivity models. To perform credible and comprehensive interpretation, robust36

and efficient 3-D EM modeling tools are of vital importance.37

There are four basic numerical simulation techniques for computing the frequency-38

domain EM fields and responses in the 3-D Earth’s conductivity models, namely finite39

difference (FD) (Mackie et al. 1994; Newman & Alumbaugh 2002; Egbert & Kelbert 2012;40

Dong & Egbert 2019; Li et al. 2019b), finite element (FE) (Key & Weiss 2006; Farquharson41

& Miensopust 2011; Ren et al. 2013a; Grayver & Kolev 2015; Li et al. 2019a), finite vol-42

ume (FV) (Haber & Ascher 2001; Haber & Ruthotto 2014; Jahandari & Farquharson 2014;43

Han et al. 2018), and integral equation (IE) (Avdeev et al. 2002a; Hursan & Zhdanov 2002;44

Koyama et al. 2008; Singer 2008) methods. The solvers based on FD, FE, and FV methods45

have the advantage that they generate a sparse system of linear equations, and non-uniform46

grids can be adopted to approximate complicated structures, for instance, topography and47

bathymetry. However, these solvers require a discretization of the volume which is much48

larger than the volume occupied by the 3-D anomalies under consideration, and, moreover,49
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the generated system of linear equations is usually poorly conditioned, thus requiring pre-50

conditioning. In contrast, the solvers based on the IE method only need a discretization of51

3-D anomalies, which eventually leads to a smaller (but dense) matrix. Moreover, combined52

with the contraction operator (Pankratov & Kuvshinov 2016), the IE technique generates53

a well-conditioned system of linear equations, which can be effectively solved by using it-54

erative methods. In this paper, we report our progress in further advancing the numerical55

tools based on the IE method, confining, however, ourselves to the flat Earth (Cartesian56

geometry) problem setups.57

As mentioned before, the drawback of IE method is that it generates a dense matrix,58

which leads to a large computational complexity. This means that the IE method requires59

prohibitive computational loads if dealing with large-scale (in terms of the number of un-60

knowns) problems. In the past several decades, significant efforts have been undertaken to61

improve the performance of the IE method. For instance, the matrix decomposition (MD) al-62

gorithm (Canning 1989; Sun & Kuvshinov 2015), fast multipole method (FMM) (Gumerov63

& Duraiswami 2005; Ren et al. 2013b) and fast Fourier transform (FFT) (Avdeev et al.64

2002a; Hursan & Zhdanov 2002; Singer 2008; Kruglyakov & Bloshanskaya 2017, among oth-65

ers) were invoked to accelerate the matrix-vector multiplication – one of the core operations66

in the IE method – as well as to reduce the memory requirement. The MD method is rather67

straightforward, but in general is slower than FMM and FFT algorithms. FMM is relatively68

fast but intricate in implementation. In this paper we exploit the FFT approach as a baseline69

for the improved performance of the IE method.70

When Cartesian geometry is invoked in the IE method, the usage of the two-dimensional71

(2-D) fast Fourier transform algorithm in lateral directions tremendously reduces the com-72

putational loads in terms of both memory and CPU time, but requires a laterally-uniform73

grid. However, rather often the researchers encounter situations when the data interpreta-74

tion necessitates multi-scale modeling and inversion, for instance, to appropriately take into75

account the effects from inhomogeneous remote structures, and at the same time to accu-76

rately model the effects from local inhomogeneities, like topography and bathymetry. In this77
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case, the usage of laterally-uniform grids leads to prohibitively high computational loads78

even when the 2-D FFT is used. To alleviate this problem Nie et al. (2013) and Kamm &79

Pedersen (2014) applied the pre-corrected FFT method to use the non-uniform grid in the80

modeling domain. In their approach, the nested FFTs are utilized to approximate matrix-81

vector multiplication when iteratively solving the system of linear equations (Phillips &82

White 1997). Another approach to address the problem is to work with nested, but still83

uniformly discretized, domains. Specifically, modeling is first performed at a large domain84

and on a coarse grid, and then the results are refined by performing modeling at a smaller85

domain and on a finer grid, exploiting at the latter step the previous “coarser grid” results.86

This nested domains approach was discussed in a two-step realization by Avdeev et al.87

(2002) and Kuvshinov et al. (2005) as applied to the induction logging and global EM88

induction problems, respectively, but both studies presented prototype solutions rather than89

usable tools. Recently we developed a two-step nested IE-based tool (Chen et al. 2020) which90

combines the global IE (Kuvshinov 2008) and Cartesian IE (Kruglyakov & Kuvshinov 2018)91

solvers, and allows researchers to efficiently and accurately model the ocean induction effect92

in the long-period EM responses. Note that the global solver works in spherical geometry93

and thus – in contrast to the Cartesian case – allows the application of the FFT in one94

lateral direction only. Inspired by the successful implementation of the two-step nested IE95

approach in mixed (spherical and Cartesian) geometries, in this paper we present a nested96

IE-based modeling tool that exclusively works in the flat (Cartesian) Earth’s models. In97

contrast to aforementioned (two-step) solutions, our tool may include multiple steps thus98

allowing recursively an increase in detail of the model in the region of interest. Moreover we99

introduce in the paper a new, “rim domain” concept, which further improves the efficacy of100

the nested IE approach.101

The structure of the paper is as follows. Section 2 presents the theoretical aspects of IE102

in both conventional and nested versions. Section 3 provides the implementation details of a103

nested IE approach. Section 4 discusses the verification of the developed tool on an example104

of two 3-D conductivity models. Section 5 summarizes the results of the paper and discusses105
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the potential directions of the future work. The paper also contains two appendices which106

further detail the numerical implementation of the nested approach.107

2 THEORY108

2.1 Conventional IE method109

The frequency-domain electric and magnetic fields, E and H, induced by the impressed

(extraneous) current, jimp, obey Maxwell’s equations

∇×H = σE + jimp, (1)

∇× E = iωµ0H. (2)

Here σ(r) stands for a three-dimensional conductivity distribution in a model Earth, r =110

(x, y, z) denotes a right-handed Cartesian coordinate system, i =
√
−1, µ0 is the magnetic111

permeability of free space, and ω is the angular frequency. Time dependence is accounted112

for by e−iωt. This formulation neglects the displacement currents, which are irrelevant in the113

frequency range of our interest (10−4 – 104 Hz).114

An IE approach requires introducing a one-dimensional (1-D; background) conductivity

distribution σ0(z), and the background electric and magnetic fields, E0 and H0, which are

the solutions of Maxwell’s equations

∇×H0 = σ0E
0 + jimp, (3)

∇× E0 = iωµ0H
0. (4)

The fields E0 and H0 can be obtained at any location as

E0(r) =

∫
Vimp

Ĝej(r, r′)jimp(r′)dV, r ∈ R3, (5)

H0(r) =

∫
Vimp

Ĝhj(r, r′)jimp(r′)dV, r ∈ R3, (6)

where, Vimp is the volume occupied by jimp, and Ĝej, Ĝhj are the current-to-electric and115

current-to-magnetic Green’s tensors, respectively (cf. Avdeev et al. 2002a; Kruglyakov &116
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Bloshanskaya 2017). Note that the fields and the current depend on ω, and Green’s tensors117

depend on ω and σ0(z), however, hereafter we will omit but imply these dependencies.118

By knowing Ĝej and Ĝhj, the electric and magnetic field solutions of eqs (1)-(2) can be

written as

E(r) = E0(r) +

∫
V

Ĝej(r, r′)∆σ(r′)E(r′)dV, r ∈ R3, (7)

H(r) = H0(r) +

∫
V

Ĝhj(r, r′)∆σ(r′)E(r′)dV, r ∈ R3, (8)

where V is the region where ∆σ = σ− σ0 6= 0. If one finds E in V, one can then compute E119

and H at any location in space using appropriate Green’s tensors. In order not to overload120

the narration, from now on we will discuss the computation of E only; H is computed in a121

similar way.122

To find E(r) in V one has to numerically solve the integral equation

E(r)−
∫
V

Ĝej(r, r′)∆σ(r′)E(r′)dV = E0(r), r ∈ V. (9)

As mentioned in the introduction, after discretization of the above equation the resulting123

system matrix is dense. Hence, in the general case, the computational load (time and mem-124

ory) to compute the system matrix and to solve the corresponding system with N unknowns125

is O(N2), meaning that with realistic (large) N the problem becomes computationally de-126

manding.127

The conventional way to deal with this challenge is to exploit the fact that Ĝej has

convolution properties in lateral directions (Avdeev et al. 1997; Kruglyakov & Bloshanskaya

2017)

Ĝej(r, r′) = Ĝej(x− x′, y − y′, z, z′). (10)

Making use of the above convolution property and employing laterally-uniform discretiza-128

tion, the system matrix becomes block-Toeplitz which allows us to decrease memory require-129

ments down to O(Nτ ) (cf. Kruglyakov & Bloshanskaya 2017), where Nτ is the number of130

unknowns in lateral directions. Moreover, the usage of 2-D FFT for performing matrix-vector131

multiplications – which are needed to (iteratively) solve the resulting system of linear equa-132
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Figure 1. Illustration of the nested IE approach on an example of two-step realization: (a) a top

view and (b) the cross section. The whole modeling domain V is divided into two parts: the local

domain Vloc and it’s complement Vout.

tions – leads to computational time reduction with respect to Nτ unknowns to O(Nτ lnNτ ).133

However, using laterally uniform discretization might still require large computational re-134

sources, when, for example, the problem setup dictates a large size of V and fine spatial135

resolution locally. In the next section, we present an approach to efficiently tackle such136

problem setups.137

2.2 Nested IE (NIE) approach138

Let us split the modeling domain V onto Vloc and Vout (see Figure 1), where Vout is the

complement of Vloc to V, i.e.

Vout = V \ Vloc. (11)

Then, for r ∈ Vloc, we can rewrite eq. (9) as

E(r)−
∫

Vloc

Ĝej(r, r′)∆σ(r′)E(r′)dV = E0(r) + Eadd(r), r ∈ Vloc, (12)

where

Eadd(r) =

∫
Vout

Ĝej(r, r′)∆σ(r′)E(r′)dV, r ∈ Vloc. (13)



8 C. Chen, M. Kruglyakov and A. Kuvshinov

The key idea of the nested IE approach (cf. Avdeev et al. 2002; Kuvshinov et al. 2005;

Chen et al. 2020) is to first solve the conventional IE at a coarse grid in the whole domain V

E(c)(r)−
∫
V

Ĝej(r, r′)∆σ(c)(r′)E(c)(r′)dV = E0(r), r ∈ V, (14)

then calculate Eadd(r) at a finer grid in Vloc using E(c)(r) calculated at a coarse grid in Vout

Eadd (c)(r) =

∫
Vout

Ĝej(r, r′)∆σ(c)(r′)E(c)(r′)dV, r ∈ Vloc, (15)

and eventually solve IE at a finer grid in Vloc

E(f)(r)−
∫

Vloc

Ĝej(r, r′)∆σ(f)(r′)E(f)(r′)dV = E0(r) + Eadd (c)(r), r ∈ Vloc. (16)

Here superscripts (c) and (f) mean that coarse and fine spatial resolutions are applied to139

obtain the corresponding quantities.140

Once eq. (16) is solved, the electric field, E, can be calculated at any point as

E(r) = E0(r) +

∫
Vloc

Ĝej(r, r′)∆σ(f)(r′)E(f)(r′)dV + Eadd (c)(r), r ∈ R3, (17)

where

Eadd (c)(r) =

∫
Vout

Ĝej(r, r′)∆σ(c)(r′)E(c)(r′)dV, r ∈ R3. (18)

Note that the nested approach is discussed above in a two-step version for the sake of141

simplicity; one can, however, apply it recursively by exploiting a sequence of local domains142

Vloc
1 ⊂ Vloc

2 ⊂ . . .V. Later in the paper we will present the results of multi-step realization143

of the approach.144

As evident, the nested approach requires solving IE numerically which is done by means145

of the Galerkin method. An outline of the method as applied to our problem is presented146

in the next section; the detailed description can be found in Kruglyakov & Bloshanskaya147

(2017) and Kruglyakov & Kuvshinov (2018).148
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2.3 Galerkin method in a nutshell149

Let L2[V] be a vector Hilbert functional space equipped with the dot product

(W,U) =

∫
V

(
Wx(r)Ux(r) +Wy(r)Uy(r) +Wz(r)U z(r)

)
dV, (19)

where U denotes the complex conjugation of U . Let the set of vector real-valued functions

Ψn, n = 1, 2, . . . , N form the orthonormal basis in L2[V]. We then denote the linear span of

this basis as QN and define the projection operator PN from L2[V] to QN as

WN = PN W =
N∑
n=1

anΨn, W ∈ L2[V], WN ∈ QN , (20)

where

an = (W,Ψn). (21)

The Galerkin method as applied to eq. (9) is based on an approximation of the function

E inside V by the function U ∈ QN which satisfies the equations

((I−GE ∆σ) U,Ψn) = (E0,Ψn), n = 1, 2, . . . , N, (22)

where I is the identity operator, and GE is the integral operator from eq. (9). Using the

expansion

U =
N∑
n=1

unΨn, (23)

eq. (22) is transformed into the system of linear equations for coefficients un

un −
N∑
m=1

um(GE ∆σΨm,Ψn) = (E0,Ψn), n = 1, 2, . . . , N. (24)

After solving the system (24) (see Kruglyakov & Bloshanskaya (2017) and Kruglyakov

& Kuvshinov (2018) for details of efficient numerical implementation) one substitutes U

instead of E into the integrands in eq. (7) to obtain the (approximation of) electric field, Ẽ,

at any point as

Ẽ(r) = E0(r) +
N∑
n=1

un

∫
V

Ĝej(r, r′)∆σ(r′)Ψn(r′) dV′, r ∈ R3. (25)

The system matrix in eq. (24) is dense. Thus, as we mentioned above, probably the150

only way to solve it efficiently when N is large is to use the basis {Ψn} which allows for151
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exploiting the convolution properties (10). Following Kruglyakov & Kuvshinov (2018) we152

use the piece-wise polynomial basis which is described in Appendix A.153

3 IMPLEMENTATION DETAILS154

3.1 NIE discretization155

Let V be divided into Nc rectangular volume cells, that is

V =
Nc⋃
n=1

V(c)
n , (26)

and let Vloc be divided into Nf rectangular volume cells, that is

Vloc =

Nf⋃
n=1

V(f), loc
n . (27)

We assume that these cells are uniform in lateral directions and the size of V
(f), loc
n is156

smaller than that of V
(c)
n . We also assume that conductivity distributions in both domains157

are piece-wise constant functions.158

Let further
{

Ψ
(c)
n,k

}
, n = 1, 2, . . . , Nc, k = 1, 2, . . . , Kc and

{
Ψ

(f), loc
n,k

}
, n = 1, 2, . . . , Nf , k =

1, 2, . . . , Kf be the piece-wise polynomial bases in V and Vloc, respectively (see Appendix A

for details). In this section (and in the appendices) we use the double index n, k for basis

functions to stress the fact that

suppΨ
(c)
n,k = V(c)

n n = 1, 2, . . . , Nc, k = 1, 2, . . . , Kc,

suppΨ
(f), loc
m,l = V(f), loc

m m = 1, 2, . . . , Nf , l = 1, 2, . . . , Kf .

(28)

Thus the first index refers to the space localization of the basis functions, whereas the159

second one is used to distinguish the basis functions which share the same support.160

We can then represent the electric fields in V and Vloc as

E(c)(r) =
Nc∑
n=1

Kc∑
k=1

u
(c)
n,kΨ

(c)
n,k(r), r ∈ V, (29)

E(f)(r) =

Nf∑
n=1

Kf∑
k=1

u
(f), loc
n,k Ψ

(f), loc
n,k (r), r ∈ Vloc. (30)

Using the formalism discussed in the previous section and exploiting representation (29),
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eq. (14) is transformed into the system of linear equations for coefficients u
(c)
n,k

u
(c)
n,k −

Nc∑
m=1

Kc∑
l=1

u
(c)
m,l

(
GE ∆σ(c)Ψ

(c)
m,l,Ψ

(c)
n,k

)
=
(
E0,Ψ

(c)
n,k

)
,

n = 1, 2, . . . , Nc, k = 1, 2, . . . , Kc.

(31)

Similarly, using representation (30), eq. (16) is transformed into the system for coeffi-

cients u
(f)
n,k

u
(f), loc
n,k −

Nf∑
m=1

Kf∑
l=1

u
(f), loc
m,l

(
GE ∆σ(f)Ψ

(f), loc
m,l ,Ψ

(f), loc
n,k

)
=
(
E0,Ψ

(f), loc
n,k

)
+
(
Eadd (c),Ψ

(f), loc
n,k

)
,

n = 1, 2, . . . , Nf , k = 1, 2, . . . , Kf .

(32)

Comparing eqs (31) and (32) one can notice that the second term in the right-hand side

(RHS) of the equation is a new term. According to eqs (15) and (29), one writes

Eadd (c)(r) =
∑

V
(c)
m ⊂Vout

Kc∑
l=1

∆σ(c)
m u

(c)
m,l

∫
V

(c)
m

Ĝej(r, r′)Ψ
(c)
m,l(r

′)dV(c)
m , r ∈ Vloc. (33)

Then the second term of the RHS in eq. (32) becomes(
Eadd (c),Ψ

(f), loc
n,k

)
=

∑
V

(c)
m ⊂Vout

Kc∑
l=1

∆σ(c)
m u

(c)
m,l

∫
V

(f),loc
n

∫
V

(c)
m

Ψ
(f), loc
n,k (r)Ĝej(r, r′)Ψ

(c)
m,l(r

′)dV(c)
m dV(f),loc

n ,

n = 1, 2, . . . , Nf , k = 1, 2, . . . , Kf . (34)

Now we recall that the sizes of V
(c)
m and V

(f), loc
n are different due to the main idea of the161

nested approach. Thus in order to calculate the RHS of (34) one has to compute O(NcNf )162

integrals. This could be computationally very expensive provided Nc and Nf are large. We163

discuss below how this challenge can be mitigated.164

The simplest way to address the problem is to approximate Eadd (c)(r) in Vloc as

Eadd (c)(r) ≈ E
add (c)
(c) (r) = PN(c)Eadd (c)(r) =

Nc∑
n=1

Kc∑
k=1

u
add (c)
n,k Ψ

(c)
n,k(r), r ∈ Vloc, (35)
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where the coefficients u
add (c)
n,k are calculated – using eq. (33) – as

u
add (c)
n,k =

(
E
add (c)
(c) ,Ψ

(c)
n,k

)
=

∑
V

(c)
m ⊂Vout

Kc∑
l=1

∆σ(c)
m u

(c)
m,l

∫
V

(c)
n

∫
V

(c)
m

Ψ
(c)
n,k(r)Ĝej(r, r′)Ψ

(c)
m,l(r

′)dV(c)
m dV(c)

n ,

V(c)
n ⊂ Vloc, k = 1, 2, . . . , Kc.

(36)

Since in the above equation only the coarse discretization is involved (which we assume to

be laterally-uniform), the coefficients u
add (c)
n can be efficiently computed by using 2-D FFT.

Once these coefficients are calculated, the second term in the RHS of (32) is approximated

as (
Eadd (c),Ψ

(f), loc
n,k

)
≈

∑
V

(c)
m ⊂Vloc

Kc∑
l=1

u
add (c)
m,l

∫
V

(f),loc
n

Ψ
(f), loc
n,k (r)Ψ

(c)
m,l(r)dV(f),loc

n ,

n = 1, 2, . . . , Nf , k = 1, 2, . . . , Kf .

(37)

Note that integrals in the latter equation (which are just the projection coefficients from one165

basis to another) can be computed analytically (see Appendix B).166

However, our numerical experiments (see Section 4.1) show that such an approach to167

calculating
(
Eadd (c),Ψ

(f), loc
n

)
leads to large artifacts in the IE solution in Vloc. These artifacts168

come from the following phenomenon. As seen, for instance, from eq. (15), Eadd (c) is a field169

induced by a current occupied the domain Vout. This, in particular, means that Eadd (c)
170

changes abruptly when r is close to r′, i.e. near the boundaries of the domain Vloc. This171

is due to the “singular” behavior of tensor Ĝej when r tends to r′. Hence the “coarse”172

approximation of Eadd (c) by E
add (c)
(c) introduces substantial errors in Eadd (c), which in turn173

leads to the errors in the final results. Below we explain the numerical recipe which allows us174

to overcome this problems, while still exploiting the (efficient) scheme of estimating Eadd (c)
175

described above.176

3.2 Rim domain concept (RDC)177

Let us introduce domain Vloc+ such that Vloc ⊂ Vloc+ ⊂ V, as shown in Figure 2. We

denote this domain as Vloc+ to emphasize the fact that it is insignificantly larger than Vloc.
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(a) (b)

y z

xx
V

V

Vloc

Vloc+

Vloc+

Vloc

Figure 2. Illustration of the rim domain concept, which is introduced to avoid the boundary effect

in the nested IE approach: (a) a top view, and (b) the cross section. Vloc+ comprises Vloc and an

additional “narrow” rim (a few coarse grid cells in width), i.e. Vloc+ = Vloc
⋃

Vrim. See details in

the text.

How large this domain has to be taken will be explained below. We also denote as Vrim the

complement of Vloc to Vloc+, i.e.

Vrim = Vloc+ \ Vloc, (38)

and denote as Vext the complement of Vloc+ to V, i.e.

Vext = V \ Vloc+. (39)

Then Eadd (c) can be written as

Eadd (c)(r) = E
add (c)
ext (r) + E

add (c)
rim (r), r ∈ Vloc, (40)

where, in accordance with (15), E
add (c)
ext and E

add (c)
rim read

E
add (c)
ext (r) =

∫
Vext

Ĝej(r, r′)∆σ(c)(r′)E(c)(r′)dV, r ∈ Vloc, (41)

E
add (c)
rim (r) =

∫
Vrim

Ĝej(r, r′)∆σ(c)(r′)E(c)(r′)dV, r ∈ Vloc. (42)

The idea behind splitting the integral over domain Vout onto integrals over “rim domain”178

Vrim and “external” domain Vext is as follows. If the distance between boundaries of the179
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Vext and Vloc (i.e. distance between r and r′ in integral (41)) is large enough, then function180

E
add (c)
ext (r), r ∈ Vloc can be approximated by using the “coarse” basis Ψ(c) as described above,181

because in this case E
add (c)
ext (r) does not undergo abrupt changes. Note, that our numerical182

experiments (to be discussed in the next section) demonstrate that a “large enough” distance183

between boundaries of Vext and Vloc (i.e. the distance between external boundaries of Vloc+
184

and Vloc) is achieved when they are separated by one or two coarse cells in the corresponding185

direction.186

Ultimately we have to solve the system (32) and thus calculate(
Eadd (c),Ψ

(f), loc
n,k

)
=
(
E
add (c)
ext ,Ψ

(f), loc
n,k

)
+
(
E
add (c)
rim ,Ψ

(f), loc
n,k

)
,

n = 1, 2, . . . , Nf , k = 1, 2, . . . , Kf .

(43)

As we already mentioned above, to calculate the first term in the RHS of the latter equation

we make use of eq. (37), namely(
E
add (c)
ext ,Ψ

(f), loc
n,k

)
≈

∑
V

(c)
m ⊂Vext

Kc∑
l=1

u
add (c)
m,l

∫
V

(f), loc
n

Ψ
(f), loc
n,k (r)Ψ

(c)
m,l(r)dV(f), loc

n ,

n = 1, 2, ..., Nf , k = 1, 2, . . . , Kf .

(44)

To calculate the second term in the RHS of (43) we propagate our “fine” basis
{

Ψ
(f), loc
n,k

}
from domain Vloc to domain Vloc+. This can be done by using the same (fine) discretization

in Vloc+ as in Vloc and taking into account that local basis functions are the same for different

cells (see Appendix A). Now, we can project E(c)(r), r ∈ Vloc+ from the coarse
{

Ψ
(c)
n,k

}
to

the fine
{

Ψ
(f), loc
m,l

}
basis (see Appendix B for details) as

E(c)(r) ≈
Nloc+∑
n=1

Kf∑
k=1

uloc+n,k Ψ
(f), loc
n,k (r), (45)

substitute it into eq. (42), and then into the second term of eq. (43) thus obtaining(
E
add (c)
rim ,Ψ

(f), loc
n,k

)
≈

∑
V

(f), loc
m ⊂Vrim

Kf∑
l=1

∆σ(f)
m uloc+m,l

∫
V

(f),loc
n

∫
V

(f),loc
m

Ψ
(f), loc
n,k (r)Ĝej(r, r′)Ψ

(f), loc
m,l (r′)dV(f),loc

m dV(f),loc
n ,

n = 1, 2, ..., Nf , k = 1, 2, . . . , Kf . (46)
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One can see that to obtain the RHS of the latter equation one has to compute only O(Nf )187

integrals, since Vrim is small compared to Vloc.188

4 NUMERICAL TESTS189

To verify the developed nested IE tool, we performed the tests in two 3-D conductivity190

models.191

4.1 3D-2 model192

The first (3D-2) model comes from COMMEMI project (Zhdanov et al. 1997), which is193

widely used to validate the newly developed EM modeling solvers (Mitsuhata & Uchida194

2004; Ren et al. 2014; Grayver & Bürg 2014; Kruglyakov & Kuvshinov 2018, among others).195

The model comprises two – relatively resistive and relatively conductive – blocks embedded196

in the three-layered background. The side and plane views of the model, as well as the197

resistivities assigned to the different structures, are shown in Figure 3.198

The reference (“true”) results are computed by using the IE-based solver PGIEM2G (Kruglyakov199

& Kuvshinov 2018) on a “fine grid” in the whole domain V (which is depicted as a black200

rectangle in Figure 3). Three comments are relevant at this point: a) the presented nested201

IE tool uses the core modules of the PGIEM2G solver; b) the PGIEM2G solver itself was202

successfully verified against the FEM-based solver by Grayver & Kolev (2015); c) as in203

Kruglyakov & Kuvshinov (2018) (where the same model was also used for the testing pur-204

pose), in all model experiments of this section the same (3rd) order of polynomial basis was205

used in both lateral and vertical directions. Table 1 presents the number of cells and their206

sizes for the reference IE modeling, and for two numerical experiments using the two-step207

nested IE approach. Note that the goal of these two numerical experiments is two-fold: first,208

to validate the nested approach, and second, to show that one indeed has to use the rim209

domain concept (RDC) in order to obtain the correct results.210

For the “nested” computations we take the central, shallow part of the model Vloc as a lo-211

cal domain; it is depicted as a blue rectangle in Figure 3. Vloc occupies a 20× 15× 0.5 km3 vol-212
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Figure 3. The 3D-2 model from the COMMEMI project (Zhdanov et al. 1997): (a) a side view of

the model and (b) a plan view. V represents the whole modeling domain, Vloc denotes the local

domain, and domain Vloc+ comprises Vloc and the additional (narrow) rim (of width of a few coarse

grid cells), i.e. Vloc+ = Vloc
⋃

Vrim. Dashed pink line denotes the profile at the Earth’s surface at

which the modeling results are presented.

ume. The domain Vloc+ ≡ Vloc∪Vrim is depicted by the red line in Figure 3; the rim’s width213

is taken as one coarse cell in y-direction and two coarse cells in both x- and z-directions.214

The results of our model experiments are summarized in Figures 4 - 7. The figures215

present the computed apparent resistivities and phases of MT impedances (Chave & Jones216
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Table 1. Number of cells and their sizes for the reference IE calculations, and for the numerical

experiments using the two-step nested NIE approach.

Nx ×Ny ×Nz dx× dy dz

Reference (conventional) IE (at V) 64× 16× 4 0.625× 2.5 km2 0.5, 0.5, 4, 5 km

1st step of NIE (at V) 16× 16× 4 2.5× 2.5 km2 0.5, 0.5, 4, 5 km

2nd step of NIE (at Vloc, using RDC) 24× 8× 3 1.25× 2.5 km2 0.5, 0.5, 4 km

2nd step of NIE (at Vloc, not using RDC) 16× 6× 1 1.25× 2.5 km2 0.5 km

2012) at periods of 10 and 1000 sec along the profile shown in Figure 3. One can see that217

the responses calculated by using the nested approach using RDC (red stars) match well218

with the “true” responses (black line). The relative differences for the off-diagonal apparent219
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Figure 4. Apparent resistivities (ρxy and ρyx) and phases (ϕxy and ϕyx) of MT impedance at the

period of 10 sec along the profile shown in Figure 3. The results are for the reference modeling and

for three scenarios of two-step NIE. See details in the text.
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Figure 5. As in Figure 4, but for apparent resistivities (ρxx and ρyy) and phases (ϕxx and ϕyy).

resistivities are smaller than 3 %, and the differences in the phases are smaller than 0.25220

degree (cf. Figures 8 - 9).221

At the same time, the responses computed by the nested approach, but without consid-222

ering RDC (blue circles) noticeably differ from the “true” responses (see again Figures 4 -7).223

These results clearly demonstrate the importance of using the RDC.224

However, invoking the RDC makes the implementation of the nested approach more225

complicated. In this context the natural question arises whether one can avoid using the226

RDC by just increasing the size of the local domain? This seems feasible, especially when227

the modeler is interested in the results only in the central part of the local domain, i.e.228

far from its boundaries. Indeed, it is quite obvious that if the local domain is taken large229

enough, there is no need to use the RDC. But the usage of a large local domain contradicts230
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Figure 6. As in Figure 4, but at the period of 1000 sec.

the idea of the nested approach, namely, minimization of the computational loads by making231

the local domain as small as practicable.232

To explore further the importance of using the RDC, we performed the nested modeling233

in which the local domain is extended to Vloc+ (and no rim domain is invoked). The results234

are shown in Figures 4 - 7 by green crosses. One can see a good agreement of the obtained235

responses with “true” responses in the off-diagonal components (Figures 4 and 6). However,236

the agreement in the diagonal components (Figures 5 and 7) appeared to be poor.237

Next, two model experiments further advocate using the RDC. The first experiment238

involves three-step nested IE modeling without considering the rim domain. The number of239

cells and their sizes for the performed computations are listed in Table 2. The first-step IE240

modeling is the same as that in the two-step implementation discussed above. In the second241

and the third steps, the regions Vloc+ and Vloc were chosen as the local domains.242
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Figure 7. As in Figure 5, but at the period of 1000 sec.

As is seen from Figure 10, the off-diagonal components in the local domain computed at243

the second-step IE modeling match well with the “true” solutions – as expected, according244

to the previous results. However, the third step destroys this agreement for ρxy and ϕxy,245

especially at the interface of two anomalous blocks and the boundary of the local domain.246

Table 2. Number of cells and their sizes for the numerical experiment using a three-step NIE

approach without invoking RDC.

Nx ×Ny ×Nz dx× dy dz

1st step of NIE (at V) 16× 16× 4 2.5× 2.5 km2 0.5, 0.5, 4, 5 km

2nd step of NIE (at Vloc+) 24× 8× 3 1.25× 2.5 km2 0.5, 0.5, 4 km

3rd step of NIE (at Vloc) 32× 6× 1 0.625× 2.5 km2 0.5 km
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Figure 8. Top row: relative differences between “true” off-diagonal apparent resistivities and those

calculated using NIE. Bottom row: differences in the off-diagonal phases of impedance. The results

are for a period of 10 sec.

The reason for this is that the RHS at the third step is an integral over the Vloc+ \Vloc i.e.247

over the domain where the solution at the second step has the largest errors.248

As a final model experiment we performed the three-step RDC-based nested modeling.249

At the second step, one coarse cell in the y, z-directions and two coarse cells in the x-250

direction were considered as the rim domain, while one coarse cell in the y-direction and two251

coarse cells were considered in the x, z-directions at the third step. The lateral discretization252

used in this experiment is exactly the same as the one in the three-step nested modeling253

without considering RDC. Very good agreement between the responses based on the three-254

step nested IE (red stars in the Figure 10) and the “true” responses is now observed. This255
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Figure 9. As in Figure 8, but for the period of 1000 sec.

demonstrates again that the usage of the RDC is essential for obtaining accurate results in256

the local domain, especially for the multi-step realization of the nested IE approach.257

4.2 Realistic conductivity model around Gan geomagnetic observatory258

The second test aims to illustrate the ability of the nested tool to deal with the realistic con-

ductivity models, where both the distant non-uniform structures and the local bathymetry

have to be taken into account. Our previous study (Chen et al. 2020) shows that the re-

sponses of islands at periods longer than a few days (Banks 1969) are strongly affected by the

ocean induction effect, which can be accounted for by using the high-resolution bathymetry

and a nested approach. Here we look at the shorter-period island responses, namely, mag-

netic MT transfer functions (tippers) that relate the vertical magnetic field, Hz, with the
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Figure 10. Apparent resistivities (ρxy and ρyx) and phases (ϕxy and ϕyx) of MT impedance at the

period of 1000 sec along the profile shown in Figure 3. The results are for the reference modeling

and for three scenarios of three-step NIE. See details in the text.

horizontal magnetic field, Hτ

Hz(rs, ω) = T (rs, ω)Hτ (rs, ω), T = [Tzx Tzy]. (47)

As an island geomagnetic observatory we consider the observatory Gan located at the259

southernmost island of the Maldives archipelago (longitude: 73.1537◦ E; latitude: 0.6946◦ S;260

INTERMAGNET code: GAN). The realistic conductivity model consists of a 1-D Earth’s261

conductivity overlaid by an oceanic layer with a 3-D conductivity distribution. The 1-D con-262

ductivity (shown in Figure 11a) is taken from Morschhauser et al. (2019), whereas the 3-D263

conductivity distribution is constructed by using the 30 ′′ × 30 ′′ bathymetry data from the264

General Bathymetry Chart of the Oceans (GEBCO; Becker et al. (2009)); note that 30 ′′×30 ′′265

(spherical) resolution corresponds to ≈ 0.9×0.9 km2 resolution at the equator. Laterally, the266
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domain V is confined to 70.66◦−75.66◦ longitudes and −3.20◦−1.80◦ latitudes. Bathymetry267

in this region is shown in Figure 11b. In order to obtain the bathymetry distribution in Carte-268

sian coordinates, the Mercator map projection as described in Snyder (1982) is employed.269

Eventually, the modeling domain V occupies the volume of 555× 555× 5.5 (x× y× z) km3.270

Furthermore, the obtained bathymetry is used for the construction of 3-D conductivity271

distribution in the model. We also used a (much) higher-resolution coastline database (of272

resolution of ≈ 60 × 60 m2 in GAN region) from the Global Self-consistent, Hierarchi-273

cal, High-resolution Geography Database (GSHHG) (Wessel & Smith 1996; Bohlander &274

Scambos 2007) in order to correct the bathymetry-based model when constructing a high275

resolution 3-D conductivity model in the local domain. The conductivities of seawater are276

obtained from the World Ocean Atlas at the 1◦× 1◦ resolution and are available in the sup-277

plementary material of Grayver et al. (2016). The conductivity within the cells that contain278

the land-seawater interface is computed as the depth-integrated average. Gan island is very279

flat, thus the topography is not included in the model. The constructed 3-D conductivity280

model is shown in Figure 12.281

In this model experiment, we compare tippers computed using the NIE and FEM solvers.282

The FEM results are from Morschhauser et al. (2019); in that paper the authors used the283

FEM solver of Grayver & Kolev (2015) to model the GAN tippers.284

NIE modeling was performed using the three-step scheme. Table 3 summarizes the details285

(number and sizes of cells) for each NIE step. We note here that the highest NIE resolution286

(61.7× 61.7× 15 m3 at the third step) was made comparable with the highest resolution of287

FEM modeling (62.5 × 62.5 × 15.6 m3). We also notice that the rim domain at the second288

and third steps of NIE had a width of two cells (from the previous step) in all directions.289

Final comment on the NIE modeling set up is that we adopted the first order polynomial290

basis for all steps, assuming that the cell’s sizes (at least at the second and the third steps)291

are small enough not to consider a higher-order polynomial basis.292

Figure 13 presents the modeled tippers at 16 periods from 10 to 10000 sec. In addi-293
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Figure 11. (a) 1-D conductivity profile beneath GAN observatory; (b) Bathymetry distribution

in the vicinity of the GAN geomagnetic observatory.

tion, the figure demonstrates the observed (i.e. estimated from the data) tippers and their294

uncertainties.295

It is seen from the figure that NIE- and FEM-based tippers agree (within experimental296

uncertainties) at all periods in both components and in both real and imaginary parts.297

It is important to stress that we did not expect an “ideal” fit, since we cannot make the298
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Table 3. Number of cells and their sizes in three-step NIE modeling in the GAN model.

Nx ×Ny ×Nz dx× dy dz

1st step of NIE (at V) 600× 600× 10 926× 926 m2 5× 500, 5× 600 m

2nd step of NIE (at V1) 380× 380× 4 185× 185 m2 15, 35, 150, 300 m

3rd step of NIE (at V2) 588× 588× 4 61.7× 61.7 m2 15, 35, 150, 300 m

Table 4. Computational loads (memory and CPU time) used for three-step NIE modeling in the

GAN model. The computational time is the averaged time for the simulation at one period and for

one plane wave excitation. Computations are performed using 600 CPUs. Computational loads for

the conventional IE method (at V, and a fine grid corresponding to the NIE 3rd step resolution) are

estimated without actual computations; this is due to the fact that such modeling would require

enormous computational resources.

RAM (GB) Wall time (sec)

Nested IE approach 146 543

Conventional IE, fine 5.6× 104 1.6× 105
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conductivity distributions identical due to the substantially different grids used by NIE and299

FE solvers.300

It is noteworthy that both NIE- and FEM-based results for the real part of Tzy differ301

from the observed tippers. As pointed out by Morschhauser et al. (2019) the noticeable302

disagreement may result from 3-D conductivity structures that are incompatible with the303

assumed 1-D model beneath the ocean, for example, due to conductive seafloor sediments304

at some distance from the station, or to inaccuracies of the bathymetry model.305

Lastly, Table 4 illustrates one of the most significant results of the paper: remarkable306

computational efficiency of the developed nested IE. As is seen from the table, the nested IE307

modeling significantly outperforms the modeling based on the most advanced conventional308

IE solver (Kruglyakov & Kuvshinov 2018) in terms of memory and CPU time.309

5 CONCLUDING REMARKS310

We have developed an efficient and accurate 3-D EM modeling tool based on an IE approach311

with multi-nested domains. We successfully verify the workability and accuracy of the devel-312

oped nested IE tool by performing modelings in both idealized and realistic 3-D conductivity313

models. We demonstrate that the new tool is two orders of magnitude more efficient – in314

terms of both memory and CPU time – than one of the most advanced conventional IE315

solvers (Kruglyakov & Kuvshinov 2018).316

An important novelty of the paper is a development of the “rim domain” concept which317

further improves the efficiency of the multi-nested IE approach.318

The developed tool, in combination with the global-to-Cartesian EM modeling tool (Chen319

et al. 2020), which aims to efficiently model longer-period responses, gives us an opportunity320

to invert EM responses in as wide a range of periods as practicable, and thus to constrain321

the electrical structure of the Earth’s interior from the crust to the middle mantle.322
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APPENDIX A: BASIS FUNCTIONS CONSTRUCTION467

Let domain Ṽ be divided into N cells = NxNyNz rectangular cells468

Ṽn = [xn xn + hnx]× [yn yn + hny ]× [zn zn + hnz ], n = 1, 2, . . . , N cells. (A.1)

Then, the local scalar basis functions Ψ
nx,ny ,nz
n (x, y, z) for each cell Ṽn are expressed as469

Ψnx,ny ,nz
n (x, y, z) =

2
√

2√
hnxh

n
yh

n
z

Lnx

(
2
x− xn
hnx

− 1

)
× Lny

(
2
y − yn
hny

− 1

)
× Lnz

(
2
z − zn
hnz

− 1

)
.

(A.2)

Here, Ln =
√

2n+1
2
Pn, Pn is the Legendre polynomial of n-th order, and nx(y,z) = 0, 1, . . . , NP

x(y,z),470

where NP
x(y,z) are the maximum polynomial orders along x-, y- and z-directions.471

Then, the vector basis functions Ψn, n = 1, 2, . . . , N ,N = 3N cells
(
NP
x + 1

) (
NP
y + 1

) (
NP
z + 1

)
472

are assembled as Ψ = (Ψx,Ψy,Ψz), where Ψx,y,z stand for Ψ
nx,ny ,nz
n in eq. (A.2). Note that473

Ψn are orthonormal at Ṽn due to the orthonormality of the Ln. To obtain the orthonormality474

of Ψn at the whole domain Ṽ one just needs to define Ψn(r) = 0, r 6∈ Ṽn.475

APPENDIX B: CALCULATING INTEGRALS OF THE BASIS476

FUNCTIONS PRODUCTS477

As explained in the main text, the realization of the nested approach requires computation478

of the following expression479

(
Eadd (c),Ψ

(f), loc
n,k

)
≈

∑
V

(c)
m ⊂Vloc

Kc∑
l=1

u
add (c)
m,l

∫
V

(f),loc
n

Ψ
(f), loc
n,k (r)Ψ

(c)
m,l(r)dV(f),loc

n ,

n = 1, 2, . . . , Nf , k = 1, 2, . . . , Kf .

(B.1)

or, in other words, one has to calculate the integral over V
(f),loc
n in eq. (B.1). Below we show480

how this integral can be calculated analytically.481

To do this, let us first substitute the basis functions introduced in Appendix A into the482

integral in eq. (B.1). As a result we have483
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∫
V
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(B.2)

As is seen from eq. (B.2) it is sufficient to show how to compute one, for instance, the first484

integral; other integrals can be computed in a similar way. Let us introduce the following485

notations486

s = x, s1 = x(f)m , s2 = x(f)m + hm(f)
x , q1 = x(c)n , q2 = x(c)n + hm(c)

x , l = n(c)
x , k = n(f)

x . (B.3)

Then the first integral in eq. (B.2), with the corresponding prefactor, is rewritten as487
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dt

= Ck
l (t1, t2),

(B.4)

where488
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t1 = 2
s1 − q2+q1

2

q2 − q1
, t2 = 2

s2 − q2+q1
2

q2 − q1
. (B.5)

Let us further introduce an auxiliary integral489

Ċk
l (t1, t2) =

2k + 1

t2 − t1
1

l

t2∫
t1

Ṗl(t)Pk

(
2
t− t1
t2 − t1

− 1

)
dt, (B.6)

where Ṗl(t) = d
dt
Pl(t). Finally, using recursion formulas for Legendre’s polynomials and490

their derivatives, after some algebra we obtain a set of recursion formulas that allows us to491

calculate Ck
l (t1, t2), i.e., the required integral492

Ck
l (t1, t2) =
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l (t1, t2) = 0, l < k,

Ċk
l (t1, t2) = 0, l ≤ k.

(B.7)
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