High-relief glacial valleys shape the modern topography of the Southern Patagonian Andes, but their formation remains poorly understood. Two Miocene plutonic complexes in the Andean retroarc, the Fitz Roy (49°S) and Torres del Paine (51°S) massifs, were emplaced between 16.9–16.4 Ma and 12.6–12.4 Ma, respectively. Subduction of oceanic ridge segments initiated ca. 16 Ma at 54°S, leading to northward opening of a slab window with associated mantle upwelling. The onset of major glaciations caused drastic topographic changes since ca. 7 Ma. To constrain the respective contributions of tectonic-mantle dynamics and fluvio-glacial erosion to rock exhumation and landscape evolution, we perform inverse thermal modeling of a new dataset of zircon and apatite (U-Th)/He from the two massifs, complemented by apatite 4He/3He data for Torres del Paine. Our results show rapid rock exhumation recorded only in the Fitz Roy massif between 10 and 8 Ma, which we ascribe to local mantle upwelling forcing surface uplift and intensified erosion around 49°S. Both massifs record a pulse of rock exhumation between 7 and 4 Ma, which we interpret as enhanced erosion during the beginning of Patagonian glaciations. After a period of erosional and tectonic quiescence in the Pliocene, increased rock exhumation since 3-2 Ma is interpreted as the result of alpine glacial valley carving promoted by reinforced glacial-interglacial cycles. This study highlights that glacial erosion was the main driver to rock exhumation in the Patagonian retroarc since 7 Ma, but that mantle upwelling might be a driving force to rock exhumation as well.

Lydia Bailey

and 3 more

Extensive regions of yellow and white (‘bleached’) sandstones within the terrestrial Jurassic red bed deposits of the Colorado Plateau reflect widespread interaction with subsurface reduced fluids which resulted in the dissolution of iron-oxide grain coatings. Reduced fluids such as hydrocarbons, CO2, and organic acids have been proposed as bleaching agents. In this study, we characterize an altered section of the Slick Rock member of the Jurassic Entrada Sandstone that exposes bleached sandstone with bitumen-saturated pore spaces. We observe differences in texture, porosity, mineralogy, and geochemistry between red, pink, yellow, and gray facies. In the bleached yellow facies we observe quartz overgrowths, partially dissolved K-feldspar, calcite cement, fine-grained illite, TiO2-minerals, and pyrite concretions. Clay mineral content is highest at the margins of the bleached section. Fe2O3 concentrations are reduced up to 3x from the red to gray facies but enriched up to 50x in iron-oxide concretions. Metals such as Zn, Pb, and rare-earth elements are significantly enriched in the concretions. Supported by a batch geochemical model, we conclude the interaction of red sandstones with reduced hydrocarbon-bearing fluids caused iron-oxide and K-feldspar dissolution, and precipitation of quartz, calcite, clay, and pyrite. Localized redistribution of iron into concretions can account for most of the iron removed during bleaching. Pyrite and carbonate stable isotopic data suggest the hydrocarbons were sourced from the Pennsylvanian Paradox Formation. Bitumen in pore spaces and pyrite precipitation formed a reductant trap required to produce Cu, U, and V enrichment in all altered facies by younger, oxidized saline brines.