Essential Site Maintenance: Authorea-powered sites will be updated circa 15:00-17:00 Eastern on Tuesday 5 November.
There should be no interruption to normal services, but please contact us at [email protected] in case you face any issues.

Andreas Colliander

and 47 more

NASA’s Soil Moisture Active Passive (SMAP) mission has been validating its soil moisture (SM) products since the start of data production on March 31, 2015. Prior to launch, the mission defined a set of criteria for core validation sites (CVS) that enable the testing of the key mission SM accuracy requirement (unbiased root-mean-square error <0.04 m3/m3). The validation approach also includes other (“sparse network”) in situ SM measurements, satellite SM products, model-based SM products, and field experiments. Over the past six years, the SMAP SM products have been analyzed with respect to these reference data, and the analysis approaches themselves have been scrutinized in an effort to best understand the products’ performance. Validation of the most recent SMAP Level 2 and 3 SM retrieval products (R17000) shows that the L-band (1.4 GHz) radiometer-based SM record continues to meet mission requirements. The products are generally consistent with SM retrievals from the ESA Soil Moisture Ocean Salinity mission, although there are differences in some regions. The high-resolution (3-km) SM retrieval product, generated by combining Copernicus Sentinel-1 data with SMAP observations, performs within expectations. Currently, however, there is limited availability of 3-km CVS data to support extensive validation at this spatial scale. The most recent (version 5) SMAP Level 4 SM data assimilation product providing surface and root-zone SM with complete spatio-temporal coverage at 9-km resolution also meets performance requirements. The SMAP SM validation program will continue throughout the mission life; future plans include expanding it to forested and high-latitude regions.

Pradeep Wagle

and 4 more

Understanding the consequences of different management practices on vegetation phenology, forage production and quality, plant and microbial species composition, greenhouse gas emissions, and water budgets in tallgrass prairie systems is vital to identify best management practices. As part of the Southern Plains Long-Term Agroecosystem Research (SP-LTAR) grassland study, a long-term integrated Grassland-LivestOck Burning Experiment (iGLOBE) has been established with a cluster of six eddy covariance (EC) systems on differently managed (i.e., different burning and grazing regimes) native tallgrass prairie systems located in different landscape positions. The purpose of this paper is to describe this long-term experiment, report preliminary results on the responses of differently managed tallgrass prairies under variable climates using satellite remote sensing and EC data, and present future research directions. In general, vegetation greened-up and peaked early, and produced greater forage yields in burned years. However, drought impacts were greater in burned sites due to reductions in soil water availability by burning. The impact of grazing on vegetation phenology was confounded by several factors (e.g., cattle size, stocking rate, precipitation). Moreover, prairie systems located in different landscapes responded differently, especially in dry years due to differences in water availability. The strong correspondence between vegetation phenology and eddy fluxes was evidenced by strong linear relationships of greenness index (i.e., enhanced vegetation index) with evapotranspiration and gross primary production. Results indicate that impacts of climate and management practices on vegetation phenology may profoundly impact carbon and water budgets of tallgrass prairie. Interacting effects of multiple management practices and inter-annual climatic variability on the responses of tallgrass prairie highlight the necessity of establishing an innovative and comprehensive long-term experiment to address inconsistent responses of tallgrass prairie to different intensities, frequencies, timing, and duration of management practices, and to identify best management practices.