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Abstract 9 

Bedload movement is fundamentally probabilistic. Our quantitative understanding 10 

of gravel transport is particularly limited when flow conditions just exceed thresholds of 11 

motion, in part because of difficulties in measuring transport statistics during floods. We 12 

used accelerometer-embedded tracer clasts to precisely measure the timing of grain 13 

motions and rests during snowmelt floods in Halfmoon Creek, a gravel-bed mountain 14 

stream in Colorado, USA. These new data let us explore how probabilities of tracer 15 

movement vary with snowmelt discharge. Bedload hysteresis occurred over both daily 16 

and seasonal timescales, and included clockwise, counter-clockwise, and figure-eight 17 

patterns. We quantitatively explain these observations in terms of how thresholds of 18 

motion progressively evolved over 22 days during a seasonal snowmelt flood. Our results 19 

suggest that thresholds of motion are functions of both (a) cumulative shear stress and (b) 20 

temporal changes in shear stress during floods.  21 
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Plain Language Summary 22 

Predicting the effects of floods on mountain river channels remains difficult but 23 

important because floods affect people, communities and ecosystems. Our research paper 24 

shows that the amount and timing of gravel that moves downstream depends not only on 25 

how much water is flowing in the channel at a given time, but also on how much flow 26 

and sediment movement has occurred previously during a flood or previous recent floods.  27 

We developed “smartrocks” that each hold sensors and batteries to measure the exact 28 

timing of these artificial tracer gravels.  We collected field data during a month-long 29 

flood in a stream in the Rocky Mountains near Leadville, Colorado, USA.  By measuring 30 

exactly when grains move during floods we can better understand how to predict when 31 

channels will be stable or change during future floods of different sizes, and how much 32 

change is likely occur.  33 

 34 

1. Introduction 35 

Interactions between society and the natural environmental have motivated our 36 

understanding of sediment transport since the early days of its study. Gilbert (1914, 1917) 37 

quantified movement in order to evaluate how hydraulic mining and agriculture affected 38 

channel aggradation and flooding. Supplies of water and sediment to river channels 39 

continue to be perturbed by human land use, and also by climate-related changes in flood 40 

frequency and magnitude. Changes in sediment transport dynamics can also critically 41 
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affect natural ecosystem and habitat health. Predicting bedload transport and 42 

corresponding erosion and deposition during high-flow events of all different sizes is 43 

therefore important for the effective management of the interface between natural and 44 

engineered systems.  45 

Bedload transport in gravel-bed rivers is controlled not only by spatial and 46 

temporal variations in flow, but also by thresholds of motion (e.g., Buffington and 47 

Montgomery, 1997; Bunte et al., 2013;  Church et al., 1998; Yager et al., 2018). Even at a 48 

given discharge, gravel transport rates in individual rivers can span orders of magnitude 49 

(e.g., Lenzi et al., 2004; Rickenmann, 2001; Turowski et al., 2011). Many of the simplest 50 

yet arguably most widely-used bedload transport models have a typical form of 𝑞𝑠 ∝51 

(𝜏 − 𝜏𝑐𝑟)
3

2⁄  , empirically assuming that transport rate (𝑞𝑠) is a power-law function of just 52 

two variables: shear stress (𝜏, a function of discharge) and a threshold for grain motion 53 

(𝜏𝑐𝑟) (e.g., Meyer-Peter and Müller, 1948; Wong and Parker, 2006).  Although threshold 54 

data usually exhibit a great deal of scatter, 𝜏𝑐𝑟 values are generally treated as temporally 55 

constant (e.g., Buffington and Montgomery, 1997; Lamb et al., 2008). However, factors 56 

related to grain interactions such as clast clustering, sheltering and protrusion, 57 

overlapping and interlocking, packing density, surface roughness, force chain 58 

development, sand and gravel supply, and local erosion and deposition have been shown 59 

to influence thresholds of motion, and can also evolve through time in response to flow 60 

history (e.g., Hassan et al., 2020; Kirchner et al., 1990; Marquis and Roy, 2012; Masteller 61 

and Finnegan, 2017; Ockelford and Haynes, 2013; Recking, 2012; Sanguinito and 62 
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Johnson, 2012; Wilcock and Crowe, 2003; Yager et al., 2012). Using field data, 63 

Turowski et al. (2011) found systematic differences in the discharges at which bedload 64 

transport started and ended and started again from one flood to the next, suggesting 65 

systematic changes in thresholds. Building on these results, Masteller et al. (2019) 66 

demonstrated that 𝜏𝑐𝑟 tended to progressively increase over seasonal timescales in 67 

response to small to intermediate flood discharges. In contrast, the largest floods caused 68 

thresholds to decrease. Johnson (2016) developed a equations to describe the temporal 69 

evolution of 𝜏𝑐𝑟 as a function of sediment supply and local erosion and deposition, and 70 

compared them to laboratory experiments. Yager et al. (2018) combined field, laboratory 71 

and numerical model constraints to argue that friction and interlocking between grains is 72 

a key control on thresholds of motion.  73 

Bedload hysteresis is a specific example of discharge-dependent transport 74 

variability that is almost always observed in both field and laboratory settings (e.g., 75 

Alexandrov et al., 2007; Mao et al., 2014; Meirovich et al., 1998; Moog and Whiting, 76 

1998; Olinde and Johnson, 2015). Current bedload transport models have difficulty 77 

predicting hysteresis. Clockwise hysteresis (higher transport rates on rising limbs of 78 

hydrographs) is sometimes attributed to gradual decreases in sediment availability, or to 79 

progressive increases in bed surface stability through the evolution of structures such as 80 

coarse grains clustering or the degree of surface armoring (e.g., Mao, 2012;  Roth et al., 81 

2014). Counter-clockwise hysteresis (higher transport rates on falling limbs) can be 82 

caused by temporal lags as bedforms adjust to changing discharge (Bombar et al., 2011; 83 
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Martin and Jerolmack, 2013), or to the destabilization of surface structures during 84 

hydrograph rising limbs, increasing falling limb transport rates (Kuhnle, 1992).  Many of 85 

these mechanisms proposed to explain hysteresis have also been shown to cause changes 86 

in thresholds of motion.  Bedload equations such as 𝑞𝑠 ∝ (𝜏 − 𝜏𝑐𝑟)
3

2⁄  could predict 87 

transport hysteresis if 𝜏𝑐𝑟 evolved systematically through time. 88 

The overall goal of the present research is to better understand how and why 89 

bedload transport probabilities and corresponding thresholds of motion change in 90 

response to river discharge during floods. Over what timescales do thresholds evolve? 91 

How well (or poorly) can we predict timeseries of threshold changes from timeseries of 92 

discharge? What physical mechanisms for threshold evolution are consistent with our 93 

unique smartrock-based constraints on transport probabilities? We found that thresholds 94 

changed between daily hydrographs, and even between rising and falling limbs of 95 

hydrographs, which could explain hysteresis. Thresholds evolved systematically with 96 

both cumulative shear stress and with the change in shear stress from one flood to the 97 

next.  Finally, we interpret that changes in grain interlocking probably provide the most 98 

plausible physical mechanism for rapid changes in thresholds. 99 

Instrumented tracer particles offer great potential for improving our statistical 100 

understanding of coarse particle transport in Earth surface processes, but their use also 101 

poses many challenges (e.g., Gimbert et al., 2019; Gronz et al., 2016; Maniatis et al., 102 

2017). Because another goal of this work has been to improve the design of instrumented 103 

tracer “smartrocks”, we next describe the sensors, their new housings, and equipment 104 
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limitations. Methods developed for data analysis include an algorithm to infer rest and 105 

hop durations from our time series of particle acceleration, validated using flume 106 

experiments. We then use our field data to calculate how transport probabilities changed 107 

through time. 108 

2. Methods 109 

2.1 Tracer Design and Motion Sensor Technology 110 

Olinde and Johnson (2015) used concrete-encased accelerometer tracers to 111 

measure the timing of bedload motion during snowmelt floods in Reynolds Creek, Idaho, 112 

USA. They used Onset HOBO Pendant G data loggers which have ample battery life but 113 

limited data storage. Sensors were sampled once every 10 minutes, which allowed them 114 

to determine if a given particle had moved in the last 10 minutes. However, the duration 115 

and number of particle hops were unknown over shorter timescales.  116 

The “smartrock” tracers we developed for this study sample nearly 4 orders of 117 

magnitude faster, letting us measure the precise timing and duration of motions and rests. 118 

We chose an off-the-shelf motion sensor from Gulf Coast Data Concepts which used an 119 

InvenSense 9150 9-axis inertial measurement unit (IMU) to measure acceleration, 120 

rotation rate, and compass direction with a 3-axis ±16g accelerometer, 3-axis ±2000 °/𝑠 121 

gyroscope, and 3-axis ± 1200 𝜇𝑇 magnetometer, respectively (Figure 1). The IMU can 122 

sample at up to 100 Hz, but because faster sampling consumes more power, a slower rate 123 

of 10 Hz was chosen to balance duration of data collection with data resolution. Each 124 
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sensor was powered using three 3.6V, 2.6 Ah non-rechargeable lithium batteries 125 

connected in parallel, which together could power the device for as long as 40 days. Each 126 

battery had the same dimensions as a common 1.5V AA battery. Each sensor recorded 127 

data on a micro SD card. Battery life, rather than data storage, limited data collection. 128 

Each tracer clast also held a backup HOBO Pendant G logger, which sampled 3 129 

orthogonal axes of acceleration once every 10 minutes. These allowed data to be logged 130 

for approximately five months, ensuring that we would have some constraint on motions 131 

that occurred after the sampling span of the other sensors.  132 

Each motion sensor was enclosed in a custom manufactured case which we 133 

designed (Figure 1). The case dimensions were chosen to make the tracer as small as 134 

possible, but with enough room to hold the motion sensors, batteries, and a circular 30 135 

mm RFID tag. We chose an ellipsoid-like shape for the case with major, intermediate, 136 

and minor axes diameters of 12.0, 7.2, and 6.4 cm, respectively. The case was injection-137 

molded using a highly-durable thermoplastic mixed with a copper powder to increase the 138 

density to 3.3 g/cm3. Accounting for void space, batteries and sensor components the 139 

bulk tracer density was 2.65 g/cm3. Two identical halves were held together in four 140 

places with bolts and nuts resistant to loosening. An o-ring helped prevent water from 141 

entering the cavity (Figure 1). 142 

The high-density plastic was originally chosen instead of metal with the hope of 143 

using RFID-technology for tracer recovery, as metal interferes with radio frequencies. 144 

Although preliminary testing suggested that tags would be readable through this plastic, 145 
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after production we found that the dispersed copper powder, batteries, and sensors were 146 

unfortunately sufficient to block the RFID signal. Therefore, the passive RFID tag was 147 

used for identification purposes when cases were open, but tracers were found visually on 148 

the stream bed and by using a metal detector when buried.  149 

2.2 Study site: Halfmoon Creek, Colorado, USA 150 

Previous bedload transport studies conducted in Halfmoon Creek, a gravel-bed 151 

stream that drains Mount Elbert and Mount Massive in Colorado, USA (Figure 2a), 152 

include Torizzo and Pitlick (2004), Mueller and Pitlick (2005), Bradley and Tucker 153 

(2012), and Bradley (2017). The drainage area at the study site is approximately 61.5 km2 154 

and the elevation is approximately 3015 m. There are no significant tributaries between 155 

our study site and USGS gage 07083000 located 1.5 km downstream. The gage has 156 

operated continuously since August 1946. Discharge is dominated by spring snowmelt 157 

and produces an annual flood that typically lasts from mid-May to Mid-July. The spring 158 

2015 flood peaked at 11.5 m3/s on June 17th (Figure 2b). Based on a 69-year record, this 159 

discharge had a 10-year recurrence interval.  160 

The study reach is alluvial, with bed-surface grain sizes ranging from fine gravel 161 

to meter-scale boulders. For this study, we measured median surface grain sizes (𝐷50) of 162 

6.4 and 12.9 cm based on two Wolman-type point counts (N=400) in two short reaches 163 

(Figure 2a). 𝐷84 for both locations was about 29 cm. Our 7.2 cm intermediate axis tracers 164 

correspond to the 51st and 40th percentiles of surface grain sizes in the upstream and 165 

downstream locations, respectively. Bradley and Tucker (2012) reported 𝐷50=5.5 cm 166 
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measured over a somewhat longer reach which includes our study area. Mueller and 167 

Pitlick (2005) report surface D50 between 5.0 and 7.2 cm for six reaches within ~2 km 168 

upstream and downstream of the gaging station. Considering the reach-scale variability in 169 

grain sizes, we estimate that our tracer with intermediate axis of 7.2 cm is a reasonable 170 

approximation of the reach-averaged 𝐷50.  171 

The thalweg of the channel is approximately 1 m below the banks and the channel 172 

is approximately 10 m wide. The slope of the thalweg of the longer study reach from 173 

Bradley and Tucker (2012) is approximately 1%, while Mueller and Pitlick (2005) report 174 

slopes over similar reaches of 0.84-0.86%. There are several low-angle alternating bars 175 

with one large bar in the inside of a sharp bend approximately 200 m downstream of the 176 

deployment location (Figure 2a).  177 

This field site was chosen for several reasons. First, the timing of snowmelt floods 178 

is predictable, usually peaking in late May or early June. Due to limited battery life, 179 

predictability in the timing of flow above transport thresholds was important. Second, 180 

Bradley and Tucker (2012) conducted a multi-year passive tracer campaign in this reach 181 

which provides important context for this study. Finally, the stream is wadeable at low 182 

flow, allowing tracer recovery necessary to retrieve the motion data. 183 

2.3 Field Methods 184 

We deployed 33 motion tracers on May 13th, 2015 in Halfmoon Creek, Colorado, 185 

in a similar location to the RFID-embedded tracers deployed by Bradley and Tucker 186 
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(2012) (Figure 2a). Tracers were positioned across the width of the portion of the channel 187 

that was subaqueous at the time of deployment. Following the methodology of Bradley 188 

and Tucker (2012), tracers were placed on the streambed inside the pocket made by 189 

gently removing a similarly sized grain, with the goal of minimizing enhanced mobility 190 

during the first few motions. Deployment occurred when channel discharge was 191 

approximately 0.8 m3/s, well below the threshold of motion for the tracers. Pressure 192 

transducers (HOBO depth loggers) were installed in two locations in our study reach near 193 

the channel bank, and recorded the water depth at each location once every five minutes 194 

(Figure 2a).  195 

Tracers were recovered in October 2015, when the stream discharge was 196 

approximately 0.3 m3/s and easily wadeable. We were able to recover 27 of the 33 197 

deployed tracers, an 82% recovery rate. Search efforts extended approximately 400 198 

meters downstream beyond the farthest recovered tracer. Most of the recovered tracers 199 

were on the bed surface and were found by eye. Four recovered tracers were buried 200 

below the surface of the large aggrading bar, and were located with a metal detector. 201 

Because the remaining six unrecovered tracers were likely buried, our data may have a 202 

bias toward surface grains. Deployment positions were surveyed using a total station with 203 

sub-centimeter resolution. Recovery positions were measured with a Trimble XT GPS 204 

giving ±1 m accuracy after post-processing. Of the 27 recovered, five tracer housings 205 

leaked due to subtle unrecognized warping of the housings during manufacture, and those 206 

IMUs did not record any motions before logging failed. One IMU logger malfunctioned 207 
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despite remaining dry. The following analysis uses the remaining 21 tracers. Total 208 

logging times ranged from 24 to 40 days, with most lasting at least 30 days. The HOBOs 209 

recorded data once every 10 minutes until recovery in October.  210 

2.4 ALGORITHM TO IDENTIFY MOTIONS AND RESTS 211 

The accelerometer and gyroscope record the near-instantaneous acceleration and 212 

rate of rotation along three axes (x, y, and z) at 10 Hz. We use these data to detect the 213 

timing of particle entrainment and disentrainment. In practice, raw sensor data are noisy, 214 

and the motion sensors record all grain movements including wobbling of grains in place. 215 

We therefore developed a simple empirical algorithm using acceleration, rotation, and 216 

duration thresholds to identify motions which likely correspond to downstream 217 

translation of the particle. Controlled laboratory experiments were used to validate the 218 

algorithm and calibrate its parameters.  219 

When a particle is at rest, the gyroscope records a rotation rate of zero for all three 220 

axes. When at rest, the accelerometer feels gravity and should record a vector sum of 221 

acceleration ( 222

zyx AAA ++  ) equal to 1 g (where g is gravitational acceleration, 9.81 222 

m/s2, and Ax, Ay, Az are accelerations measured along each axis). In practice, noise on the 223 

±16g accelerometers produces a vector sum of 1±0.1g at rest. Changes in acceleration on 224 

different axes as well as non-zero gyroscope readings should indicate particle motion. To 225 

remove acceleration noise during rests while preserving acceleration changes indicating 226 

motion, we applied a two-second moving window median filter to accelerations along all 227 

three axes. Cobble motion is generally initiated as a grain rotation out of a bed pocket. 228 
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Significant acceleration changes may not be detected on all three axes because the change 229 

in acceleration of a given axis can vary from 0 to 1 g depending on the particle 230 

orientation relative to the axis of rotation. Therefore, entrainment was detected when the 231 

value of the filtered accelerometer data of at least one axis changed by 0.1 g/s. We found 232 

that the gyroscope data were most effective at determining when a particle movement 233 

ended. A tracer particle was considered at rest when the gyroscope reading falls below an 234 

empirically derived threshold (0.3 rad/s) for any of the three axes. Motions and rests are 235 

only detected if they persist for two or more samples (0.2 s).  236 

Flume experiments were used to evaluate and calibrate the algorithm, and suggest 237 

that it accurately identifies movements > 0.5 s in duration. We video-recorded a sample 238 

tracer in a 0.5 m wide laboratory flume with a mobile gravel bed, and compared manually 239 

detected motions from the video to the motion detection algorithm (Figure 3). To make 240 

sure the timing of entrainments and disentrainments was clearly observable in the video, 241 

we set the flume discharge to be large enough to maintain motion if the particle was 242 

already in motion, but not too large so that the particle would instantly begin moving 243 

once placed on the bed. Throughout the test, the particle was placed on the bed surface in 244 

the upstream portion of the video frame, and then pushed slightly by hand to initiate 245 

motion. Once the particle reached the edge of the video frame and stopped moving, we 246 

repositioned the tracer to the upstream portion of the video frame. The threshold values 247 

(0.1 g/s, 0.3 rad/s) were determined in order to allow all observed displacements to be 248 

identified correctly. Two instances of particle wobble (500 and 740 seconds) and three 249 
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impacts by another larger cobble (540, 550, and 690 seconds) were correctly not 250 

identified as motions. 251 

While the algorithm reasonably identifies particle entrainment and 252 

disentrainment, the flume test revealed two limitations. First, in two instances a single 253 

motion was incorrectly identified as two motions separated by a brief 0.2 second rest 254 

when the particle stopped rotating and momentarily slid across the pea gravel surface. 255 

The algorithm only detects particle rotations as a motion indicating displacement 256 

downstream, and not pure sliding with no rotation. However, the coarse and rough bed 257 

surface in Halfmoon Creek means that our ellipsoid-like tracer particles are not likely to 258 

be able to slide across the bed surface without rotation very often. Second, two brief 259 

motions were identified when the particle was not actually displaced, approximately 580 260 

and 810 seconds into the test. In both cases, the particle was artificially jostled by a hand 261 

resulting in a permanent rotation but not displacing it downstream (arrows in Figure 3). 262 

This would most likely occur in the field when a particle partially rotates up from the bed 263 

but does not fully exit its pocket. The results suggest that identified motions less than 264 

about 0.5 s may be less reliably detected than longer-duration motions. We assume that 265 

these uncertainties in detecting movements are acceptable for our analyses.  266 

2.5 Hydraulic Forcing and Bedload Transport Probabilities 267 

 To frame results in terms of hydraulic forcing, we calculate bed shear stress τ 268 

using the depth-slope product, 𝜏 = 𝜌𝑔ℎ𝑆, where ρ is water density (1000 kg/m3) and h is 269 

water depth. For reach slope S we use the average water surface slope between the two 270 
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pressure transducers, 0.5%. Unfortunately, temporal changes in water surface slope were 271 

not resolved with sufficient accuracy relative to noise in the pressure transducer data, and 272 

so for simplicity we assume that the water surface slope remained at 0.5% during both 273 

rising and falling limbs of the floods. We also confirmed that the reach bed slope was 274 

0.5% using the surveyed recovery positions of the tracers found in the channel thalweg. 275 

The time-dependent record of water depth is derived from the two pressure transducer 276 

records (Figure 2a). An offset measured in the field was used to infer water depths from 277 

the stage records. The two depth records were averaged so the time series of shear stress 278 

best represented reach-averaged conditions. Finally, we calculate dimensionless shear 279 

stress (Shields stress) as 280 

 𝜏∗ =
𝜏

(𝜌𝑠 − 𝜌)𝑔𝐷
 ,  (1) 

where ρs is sediment density (2650 kg/m3) and D is intermediate grain diameter (0.072 281 

m).  282 

From the time series of tracer motions and rests we calculate the probability of 283 

transport, 𝑃𝑞 , as: 284 

 𝑃𝑞 =
𝑛𝑚

𝑛𝑠
⁄  ,  (2) 

where 𝑛𝑚 is the number of measurements that indicate a particle is in motion, and 285 

𝑛𝑠 is the total number of measurements in that sampling interval, calculated for all of the 286 

tracers recording data over a given time interval. For temporal calculations of 𝑛𝑠 we used 287 
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10 minute intervals. For example, 10 tracers recording data over 10 minutes at a sampling 288 

frequency of 10 Hz would correspond to 60,000 total records, so 𝑛𝑠=60,000. If, during 289 

the same interval and for the same tracers, we detected that 120 of these measurements 290 

(0.1 s each sample) indicated motion, then 𝑛𝑚=120 and 𝑃𝑞=120/60,000. 291 

3. Results 292 

Beginning June 3rd, 2015 (21 days after deployment), there were 32 consecutive days 293 

with tracer transport. Because only the first 22 days had a substantial number of tracers 294 

recording data, the following analysis of hysteresis and thresholds of motion is limited to 295 

the first 22 diurnal flood events (Figure 4). Discharge increased over the first 15 days and 296 

then decreased (Figure 4a). Superimposed diurnal floods are defined from the flow 297 

minimum of one day to the next.  We began with a population of 21 functional tracers. 298 

Different sensors stopped working at different times (Figure 4b), and our calculations of 299 

qP  account for decreasing numbers of functional tracers. Olinde and Johnson (2015) 300 

calculated qP in the same way but since their motion sensors sampled once every 10 301 

minutes, values of sn represent fewer samples collected in a period of time. As a result, 302 

our qP  values are much lower than those presented in Olinde and Johnson (2015).  303 

We first explore how transport probabilities varied with Shields stress (Figure 5). 304 

Rather than binning in time, samples (𝑛𝑠) and motions (𝑛𝑚) were binned into 𝜏∗ 305 

increments of 0.0004. qP  was calculated for each bin using equation (2). From these data 306 
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we visually determine an overall threshold of motion of *

cr =0.0387, which corresponds 307 

to a probability of transport of about 10-4 (Figure 5). The corresponding threshold stage 308 

and discharge are 0.92 m and 3.5 𝑚3 𝑠⁄ , respectively. Several short-duration motions less 309 

than half a second were identified during lower flows, but with exceedingly small 310 

transport probabilities.  311 

A logistic function fits the relationship between 𝑃𝑞 and 𝜏∗ well (Figure 5; 𝑅2 =312 

0.96): 313 

A power law can also be fit with 𝑅2 = 0.95: 314 

We use the logistic function for most of our analyses below because it asymptotes 315 

towards the physical limit of 
qP =1 for higher 

* . For example, equation (3) predicts 
qP316 

≈0.97 for 
* =0.071. In contrast, the power-law fit predicts mathematically possible but 317 

unphysical transport probabilities of 
qP >1 for 

* ≥0.065. Nonetheless, neither equation is 318 

expected to be accurate outside of the range of the fitted data (0.0387 < 𝜏∗ < 0.05; 319 

Figure 5). 320 

 

 

𝑃𝑞 =
1

1 + 𝑒−429.5(𝜏∗ − 0.0625)
 for 𝜏∗ ≥ 0.0387. 

(3) 

 𝑃𝑞 = 1024.2 𝜏∗20.4 for 𝜏∗ ≥ 0.0387. (4) 
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3.1 Bedload Hysteresis 321 

The time-averaged analysis in Figure 5 effectively treats transport hysteresis as 322 

noise, which it is not. Figure 6 compares temporal relationships between transport 323 

probability 𝑃𝑞 and hydraulic forcing characterized by 𝜏∗. Over the 22 days of snowmelt 324 

flood used in our analysis, average discharge increased over 15 days and then decreased, 325 

with superimposed diurnal floods (Figure 4a). Figure 6a plots 𝑃𝑞 and 𝜏∗ calculated every 326 

hour, but averaged over a 24-hour moving window to smooth away the diurnal 327 

fluctuations. We find overall clockwise hysteresis with significantly higher transport 328 

probabilities on the overall rising limb (events 1-15) compared with the falling limb. A 329 

decrease in discharge corresponding to events 10 – 12 (Figure 4a) produced the smaller 330 

clockwise loop superimposed in the rising limb (Figure 6a).  331 

 A similar procedure is applied to each of the 22 diurnal flood events. Figure 6b-f 332 

shows events 8, 9, 13, 14, and 15; all 22 events are plotted in the supplementary material. 333 

Probability of transport is calculated over 15 minute intervals with data smoothed over a 334 

2-hour moving window to reduce variability. Over the 22 diurnal flood events, hysteresis 335 

patterns are highly variable.  For convenience we categorize them into four groups: 336 

Clockwise hysteresis (events 7, 8, 12, 13, 15, 16, and 18), counter-clockwise hysteresis 337 

(events 1 and 14), figure-eight hysteresis with higher transport at different times on both  338 

rising and falling limbs (events 10, 17, and 19-22), and “low-transport” with both 339 

minimal hysteresis and low transport rates throughout (events 2-6 and 11). Some events 340 

could be classified in two ways. For example, event 9 has figure-eight hysteresis but also 341 
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higher average transport probabilities on the falling limb indicating net counter-clockwise 342 

hysteresis (Figure 6c).  343 

3.2 Thresholds of Motion 344 

Next, we determine how thresholds of motion that are a function of time, notated 345 

as 𝜏𝑐𝑟
∗ (𝑡), would have to change to explain the observed transport hysteresis. The flow-346 

based 
*  timeseries (Figure 4a) and population-averaged *

cr =0.0387 are used to 347 

calculate what the dimensionless transport rate (
*q ) would be following the modified 348 

Meyer-Peter and Müller bedload formulation of Wong and Parker (2006): 349 

 𝑞∗ = 4.93(𝜏∗ −  𝜏𝑐𝑟
∗ )1.6 . (5) 

We also calculate a transport rate based instead on transport probability (
qP ). To do this, 350 

we first rearrange equation (3) and change notation by substituting 
*

qP for * : 351 

 
𝜏𝑃𝑞

∗ =  
−1

429.5
 𝑙𝑛 (

1

𝑃𝑞
− 1)  + 0.0625. 

(6) 

 *

qP  represents a time-dependent Shields stress, calculated from the time-dependent 352 

probability of transport. Next, we modify equation (5) in two ways, by first setting 𝜏𝑐𝑟
∗ =353 

0.0387 and second substituting in 𝜏𝑃𝑞

∗  for *  using equation (6), to develop an equation 354 

for *

qPq , a non-dimensional transport rate estimate based on 
qP : 355 
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𝑞𝑃𝑞

∗ = 4.93 [
−1

429.5
 𝑙𝑛 (

1

𝑃𝑞
− 1) + 0.0625 −  0.0387]

1.6

 . 
(7) 

We then assume that **

qPqq = , and that temporal discrepancies between shear stress-356 

based 
*q  and motion tracer-based *

qPq  are caused by temporal changes in *

cr . We equate 357 

equations (5) and (7) and solve for time-dependent 𝜏𝑐𝑟
∗ (𝑡) to give:  358 

 
𝜏𝑐𝑟

∗ (𝑡) =  𝜏∗ +
1

429.5
𝑙𝑛 (

1

𝑃𝑞
− 1) − 0.0238 , 

(8) 

where 𝜏𝑐𝑟
∗ (𝑡), * , and 

qP  all vary through time. Figure 7a shows the evolution of 𝜏𝑐𝑟
∗ (𝑡) 359 

calculated from our data, both averaged over each diurnal flood event, and also averaged 360 

separately over each falling and rising hydrograph limb. Lower thresholds on rising limbs 361 

than falling limbs correspond to clockwise hysteresis, and vice versa (Figure 5, S1).  362 

The diurnal-averaged 𝜏𝑐𝑟
∗ (𝑡) gradually increases during the 22 days of flood.  At 363 

the same time, 𝜏𝑐𝑟
∗ (𝑡) tends to decrease when discharge increases from one day to the 364 

next. To quantitatively evaluate correlations between diurnal flood-averaged thresholds 365 

of motion and flow, we conducted an ordinary least squares multi-parameter linear 366 

regression analysis (MLR) using five hydraulic variables: (a) flood-averaged shields 367 

stress (𝜏 ∗̅), (b) peak shields stress (𝜏 ∗̂), (c) difference between average rising and average 368 

falling shields stress within each diurnal flood (𝜏∗
𝑟𝑓), (d) cumulative shields stress (𝜏∗

+), 369 

and (e) the change in flood-averaged shields stress (∆𝜏∗). The parameter 𝜏∗
+ is a 370 

cumulative sum of Shields stress over the analyzed 21 events. Positive values of ∆𝜏∗ 371 
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indicate an increase in Shields stress from one diurnal flood event to the next. For 372 

example, ∆𝜏∗ for flood event 2 is equal to 𝜏 ∗̅ for flood event 2 minus 𝜏 ∗̅ for flood event 1. 373 

Flood event 1 is used to calculate change in Shields stress (∆𝜏∗), but is excluded from the 374 

other regression analyses because its low critical Shields stress indicates that these 375 

motions were likely influence by the initial placement of the tracers on the channel bed. 376 

Table 1 shows regression analysis results for each variable individually and 377 

considered together. Figure 7b-7d shows correlations between select variables. Single 378 

variable linear regressions indicate that ∆𝜏∗ is best correlated with 𝜏𝑐𝑟
∗ (𝑡) (𝑅2=0.496), 379 

while 𝜏∗
+ is only slightly lower (𝑅2=0.453). Inclusion of all variables in the MLR 380 

resulted in 𝑅2 = 0.77, but with coefficient-specific t-test p-values > 0.05 for all variables 381 

except ∆𝜏∗. Because these variables have some degree of inter-dependency, various 382 

groupings were calculated using MLR to infer the most relevant variables without over-383 

fitting the data. Every MLR that did not include ∆𝜏∗ had a considerably lower 𝑅2 (Table 384 

1). No combination of three parameters produced a MLR in which all parameters had 385 

statistically significant t-test p-values for the slope coefficient. In a two-parameter MLR, 386 

use of ∆𝜏∗ with either 𝜏 ∗̅, 𝜏∗
+, or 𝜏 ∗̂ resulted in statistically significant coefficients and 387 

with 𝑅2 ranging from 0.726 to 0.748. The MLR using 𝜏∗
+ and ∆𝜏∗ predicts 𝜏𝑐𝑟

∗ (𝑡) with 388 

𝑅2 = 0.726 (Figure 7d): 389 

 𝜏𝑐𝑟
∗ (𝑡) = 0.002𝜏∗

+ − 0.897∆𝜏∗ + 0.0389 (9) 
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Equation (9) shows that, in our data, thresholds of motion tend to (a) increase with 390 

cumulative discharge, and (b) decrease when discharge increases from one diurnal flood 391 

to the next. Although both of the other two-parameter MLR produce similar results, we 392 

selected 𝜏∗
+ as the second parameter as it explains a higher proportion of the data 393 

variability alone than the other two variable choices (i.e. 𝑅2 = 0.453).  394 

4. Discussion 395 

Because smartrock-based transport probabilities are a novel but untested method 396 

for quantifying bedload transport variables, we first demonstrate that our calculated 397 

transport capacities ( 𝜏∗ 𝜏𝑐𝑟
∗⁄  ) are reasonable for gravel-bed rivers.  Similarly, the logistic 398 

and power-law fits to our temporally-averaged transport data (equations (3) and (4); 399 

Figure 5) provide new insights while being consistent with previous work. We then 400 

interpret that the evolution of grain interlocking is probably the most plausible 401 

mechanism to explain transport hysteresis and how motion thresholds changed quickly in 402 

our data, although coarse grain clustering may also adjust rapidly.  403 

4.1 Threshold channels 404 

Threshold compilations suggest that 𝜏𝑐𝑟
∗  can easily vary between perhaps 0.02 and 405 

0.1 for gravel-bed rivers with slopes comparable to Half Moon Creek (e.g., Buffington 406 

and Montgomery, 1997; Mueller et al., 2005; Lamb et al., 2008). Mueller and Pitlick 407 

(2005) present a relation suggesting 𝜏𝑐𝑟
∗ ≈ 0.039 for a Halfmoon Creek reach close to 408 

ours (their equation 6 for their reach 3), comparable to the average 𝜏𝑐𝑟
∗  we found. While 409 

transport thresholds vary systematically in our data, the range of 𝜏𝑐𝑟
∗ (𝑡) is small, from 410 
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≈0.038 to 0.043 when thresholds are averaged over each diurnal hydrograph (Figure 7a). 411 

However, threshold values only control transport in relation to shear stresses. The range 412 

of daily-averaged Shields stress during the 22 days of monitored flooding is ≈0.040-0.048 413 

(e.g. Figure 6a). Thus, even though nondimensional threshold stresses only varied over a 414 

small range of values (≈0.05), they span over half of the range of Shields stresses (≈0.08) 415 

that occurred while flow was above threshold conditions during this 10-year flood.  416 

In addition, the average transport capacity for this flood was 𝜏∗ 𝜏𝑐𝑟
∗⁄ ≈417 

0.044/0.04 ≈ 1.1. Previous empirical and theoretical work suggests that bedload 418 

transport during bankfull floods usually occurs close to thresholds of motion for gravel 419 

bed rivers (e.g., Parker, 1978; Mueller et al., 2005; Phillips and Jerolmack, 2016, 2019), 420 

although sediment supply may also influence 𝜏∗ 𝜏𝑐𝑟
∗⁄  at bankfull (Pfeiffer and Finnegan, 421 

2018). Quantitatively, our 𝜏∗ 𝜏𝑐𝑟
∗⁄ ≈ 1.1 value is similar to the “closure” condition of 422 

𝜏∗ 𝜏𝑐𝑟
∗⁄ ≈ 1.2 for the middle of channels proposed by Parker (1978) for bankfull flow in 423 

gravel-bed rivers. Dunne and Jerolmack (2018) suggest that alluvial river banks adjust 424 

(through widening or narrowing) to have 𝜏∗ 𝜏𝑐𝑟
∗⁄ ≈ 1. Thus 𝜏∗ 𝜏𝑐𝑟

∗⁄ ≈ 1.1 is expected for 425 

threshold channels, suggesting that our probability-based smartrock threshold 426 

calculations are reasonable. Statistics calculated from the relatively small number of 427 

smartrocks that successfully recorded data (Figure 4b) appear to be sufficient for 428 

calculating bulk transport characteristics for gravels, probably because each tracer 429 

recorded large numbers of individual movements and rests. 430 

 431 
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4.2 Power law logistics 432 

Interestingly, equation (4)—which shows that transport probabilities scale highly 433 

nonlinearly as 𝜏∗20.4
 for Shields stresses between 0.0387 and 0.05—is arguably 434 

consistent with previous work showing that transport is strongly nonlinear at low Shields 435 

stresses. Parker (1990) suggested that gravel movement should scale with 𝜏15.7 for “very 436 

low sediment transport rates”. Paintal (1971) empirically found that transport rates scaled 437 

as 𝑞𝑠
∗ ∝ 𝜏16 for 0.01 < 𝜏∗ < 0.050, and then transitioned to much less nonlinear 438 

transport with 𝑞𝑠
∗ ∝ 𝜏2.5 for 𝜏∗ > 0.05.  While our best-fit exponent is 20.4, Figure 5 439 

shows that imposing a 𝜏∗ exponent of 16 and regressing to find the scaling factor alone 440 

also gives a strong fit of 𝑃𝑞 = 1018.4 𝜏∗16
, with R2=0.93, p<0.0001. 441 

Mathematically equation (4) predicts that transport probability Pq = 1 at 𝜏∗ 𝜏𝑐𝑟
∗⁄ ≈442 

0.065

0.0387
≈ 1.8 . This transport capacity of 1.8 is high but not unphysical for gravel-bed 443 

rivers during floods. Flume experiments clearly demonstrate that gravel transport rates do 444 

not saturate near these flow conditions (e.g., Wilcock and Crowe, 2003). Therefore, Pq 445 

must be much less than 1 at 𝜏∗ 𝜏𝑐𝑟
∗⁄ ≈ 1.8. The extremely nonlinear 𝜏∗20.4

 or 𝜏∗16
 scaling 446 

exponents must decrease systematically at Shields stresses higher than the range of our 447 

data (Figure 5), and would be different when measured over different data ranges.  448 

In addition to fitting our data slightly better than the power law, the key benefit of 449 

our proposed logistic function (equation 3) is that it asymptotes to the physical transport 450 

limit of 𝑃𝑞 = 1. However, our particular empirical fit asymptotes at a transport capacity 451 

of ≈ 2, which is undoubtedly too low. Equation (3) describes a symmetric sigmoid. An 452 

asymmetric logistic function, with one or more additional fitting parameters, would likely 453 

be required to also fit higher 𝜏∗ 𝜏𝑐𝑟
∗⁄  data. Powell et al. (2001) present bedload data 454 

collected up to 𝜏 𝜏𝑐𝑟⁄ ≈ 8.5, and found that a gradual transition from size-selective to 455 
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size-independent gravel transport occurred at 𝜏 𝜏𝑐𝑟⁄ ≈ 4.5. Wilcock and Crowe (2003) 456 

present experimental bedload data up to 𝜏 𝜏𝑐𝑟⁄ ≈ 10, which is broadly where grains 457 

gradually transition from energetic saltation to suspension (e.g. Sklar and Dietrich, 2004).  458 

 459 

4.3 Threshold evolution and correlations with flow 460 

The pervasiveness of near-threshold conditions ( 𝜏∗ 𝜏𝑐𝑟
∗⁄ ≈ 1.1 ) in gravel-bed 461 

channels highlights the importance of understanding subtle changes in 𝜏𝑐𝑟
∗ (𝑡) in order to 462 

accurately predict bedload transport rates and corresponding channel changes during 463 

floods. Our data suggest that temporal changes in thresholds of motion ( 𝜏𝑐𝑟
∗ (𝑡) ) can be 464 

driven by the history of hydraulic forcing, in particular changes in diurnal Shields stress 465 

(∆𝜏∗) and cumulative above-threshold Shields stress (𝜏+
∗ ) (Figure 7; Table 1). Together, a 466 

multiple linear regression with both variables gives a higher 𝑅2 = 0.726 (equation 9; 467 

Figure 7d) than either variable alone. Furthermore, ∆𝜏∗ and 𝜏+
∗  are not significantly 468 

correlated in our data (𝑅2 = 0.096, 𝑝 = 0.073). We interpret that cumulative Shields 469 

stress and the change in Shields stress both are sufficiently independent to influence 470 

𝜏𝑐𝑟
∗ (𝑡) evolution in different ways.  471 

When shear stress increases from one event to the next (∆𝜏∗ > 0), the threshold of 472 

motion tends to decrease (Figure 7b). This is most noticeable for events 4, 7, 13, and 14, 473 

which have relatively large increases in stress compared to the other events (Figure 7a). 474 

Much smaller increases in the diurnal flood event peak stress do not seem to produce the 475 

same decrease in 𝜏𝑐𝑟
∗ (𝑡) (event 6, 9, 18). This is consistent with equation (9), because 476 
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cumulative shear stress also increases with each event. Small 𝜏𝑐𝑟
∗ (𝑡) decreases predicted 477 

by the ∆𝜏∗ term in equation (9) may be offset by small 𝜏𝑐𝑟
∗ (𝑡) increases predicted from 478 

the cumulative 𝜏+
∗  term.  479 

4.4 Possible mechanisms for threshold evolution over short timescales  480 

Our analysis suggests that gravel thresholds of motion can evolve surprisingly 481 

quickly, e.g. within rising and falling limbs of individual daily floods (Figure 7a). Our 482 

field data provide a unique window into cobble transport statistics, but we do not have 483 

simultaneous observations of the bed surface or spatial interactions with other grains that 484 

could prove which flow-dependent mechanisms caused thresholds to evolve.  485 

In the absence of independent constraints, we highlight different flow and 486 

transport conditions and corresponding mechanisms that previous work suggests might 487 

cause rapid threshold evolution. We then hypothesize which mechanisms may best 488 

explain our data. First, cumulative discharge both somewhat below and somewhat above 489 

“threshold” flow conditions tends to increase bed stabilization through a variety of 490 

recognized mechanisms including bed compaction, changes in bed surface roughness, 491 

and decreasing protrusion (e.g., Marquis and Roy, 2012; Masteller and Finnegan, 2017; 492 

Ockleford and Haynes, 2013; Paphitis and Collins, 2005).  Second, changes in sediment 493 

supply from upstream can influence local bed mobility and thresholds of motion through 494 

grain size size distribution changes, grain impacts, and other possible mechanisms (e.g., 495 

Johnson, 2016; Pfeiffer and Finnegan, 2018; Recking, 2012). For example, grains smaller 496 

than the bed surface average (including sand sizes) can preferentially fill topographic 497 
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lows and smooth the bed, in turn influencing near-bed shear stresses (e.g., Wilcock and 498 

Crowe, 2003; Venditti et al., 2010).   499 

Third, sorting during transport can spatially organize surface grains into coarse 500 

grain clusters and other stabilizing structures, which in turn influence drag and bedload 501 

transport. Most although not all studies have found that increased clustering tends to 502 

enhance the overall stability of the bed surface, decreasing transport rates (e.g.,  503 

Church et al., 1998; Hassan and Church, 2000; Hassan and Reid, 1990; Johnson, 2017; 504 

 Piedra et al., 2012; Strom et al., 2004). Using flume experiments, Hassan et al. (2020) 505 

showed that clusters can dynamically expand, contract, and change through particle 506 

exchange between the cluster and transported grains, and interpret that clusters may 507 

buffer the bed by rapidly changing in response to short-term supply perturbations.   508 

Fourth, forces between surrounding grains—due to interlocking, intergranular 509 

friction, and overlapping—can evolve over short timescales and may be dominant and 510 

underlying controls on thresholds of motion. In this granular physics view, force chains 511 

and particle contacts dictate mobility, though are difficult to view directly. Intergranular 512 

friction is a distinct mechanism from coarse grain clustering in that it that does not 513 

require grains becoming spatially reorganized by moving past other grains. Yager et al. 514 

(2018) combined field measurements of dislodgment forces with discrete element 515 

modeling of interacting spheres to support their model in which interparticle friction and 516 

grain protrusion relative to the surrounding bed are key variables controlling grain 517 
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threshold distributions. In their model and data, grain resistance to motion can be 3-10 518 

times larger than grain weight for particles with low protrusion. Earlier work has 519 

explored related factors that enhance thresholds of motion such as friction angles due to 520 

pocket geometry and resisting forces from grain overlap (e.g., Kirchner et al., 1990; 521 

Sanguinito and Johnson, 2012). 522 

Overall, we hypothesize that the mechanisms described by Yager et al. (2018)—523 

intergranular friction, protrusion, and overlap—are the primary drivers of 𝜏𝑐𝑟
∗ (𝑡) 524 

evolution in our dataset. These factors can evolve quickly, explaining the observed  525 

transport hysteresis in our data, and describing 𝜏𝑐𝑟
∗ (𝑡) changes over timescales 526 

significantly shorter than individual floods. The first hydrograph had an anomalously low 527 

𝜏𝑐𝑟
∗ (𝑡), which we associate with initial tracer positions being less stable (Figure 7) 528 

because the grains were not interlocked with surrounding grains. However, starting as 529 

soon as event 2 it appears that grains had attained more stable positions. We observe that 530 

when hydrograph-averaged shear stress was stable or slightly decreasing from one 531 

hydrograph to the next, 𝜏𝑐𝑟
∗ (𝑡) tended to gradually increase. We interpret that this was 532 

caused by grains being gradually jostled in place (building force chains and increasing 533 

intergranular friction while also compacting the bed over time) and/or transported to 534 

adjacent positions that were more stable (Masteller and Finnegan, 2017). Statistically, 535 

some grains will be transported to less stable adjacent positions as well, but it is less 536 

probable that those grains remain there, as continued flow and turbulence will 537 

progressively move grains until they find more stable and interlocked positions. Thus, 538 

cumulative flow slightly above threshold conditions tends to increase thresholds of 539 

motion.  540 
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In general, given constant or perhaps very gradual increases in discharge, we 541 

interpret that intergranular friction remains constant and/or increases to balance the 542 

applied shear stress. When discharge drops and 𝜏∗ subsequently decreases, the higher 543 

intergranular friction remains, resulting in modest macroscopic increases in 𝜏𝑐𝑟
∗ (𝑡) that 544 

depend on the previous level of 𝜏∗ (e.g. events 10, 11, 16). A grain will tend to be stable 545 

at shear stresses less than or equal to the stress that initially transported the grain to a 546 

given position.  However, we interpret that moderate increases in shear stress from one 547 

hydrograph to the next (i.e., the ∆𝜏∗ term in equation 9) can break up force chains and 548 

overwhelm the intergranular friction developed at lower 𝜏∗, “releasing” grains. This 549 

transport may further disrupt the bed through particle impacts and/or changes in local bed 550 

geometry. The net result is an increase in transport rates and decrease in thresholds of 551 

motion.  552 

In addition to changes in intergranular friction among adjacent grains, it is also 553 

possible that our data reflect coarse grain clusters or other surface structures that 554 

developed through transport and were broken up over short timescales, enhancing 555 

stability as they expanded by adding grains, and enhancing transport by releasing 556 

sediment when they shrank or disintegrated (Hassan et al., 2020). Strom et al. (2004) 557 

found, using experiments with spherical grains over an immobile bed, that clustering 558 

generally increased over a range of 𝜏∗ 𝜏𝑐𝑟
∗⁄ ≈1.25 to 2, acting as a net sink for moving 559 

grains. Clusters broke up and then decreased due to increasingly energetic transport for 560 

𝜏∗ 𝜏𝑐𝑟
∗⁄ > 2.25, acting as a net source. However, our stresses are much lower than these 561 

values.  This may suggest that intergranular friction/grain interlocking are more important 562 

than cluster changes in our data, assuming that these transport capacity ranges are 563 

appropriate for natural grains and mobile beds. 564 
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We cannot discount the possibility that the overall trend of increasing 𝜏𝑐𝑟
∗ (𝑡) with 565 

time and cumulative shear stress primarily reflects tracers being progressively worked 566 

into the bed or scour and fill effects (e.g., Haschenburger, 2011), and that the gradual 567 

threshold increase is an artifact of unstable initial conditions. However, nearly all of our 568 

particles were found on the bed surface, which suggests that progressive burial or scour 569 

and fill effects are unlikely to explain the gradual threshold increase found in our dataset. 570 

In addition, previous work shows that thresholds increase with cumulative flow without 571 

relying on tracer data (e.g., Paphitis and Collins, 2005). Using 19 years of monitoring 572 

data from the Erlenbach Torrent, Switzerland, Masteller et al. (2019) found that gravel 573 

thresholds tended to progressively increase due to the cumulative effects of small floods 574 

and below-threshold flows between floods, but that larger floods caused thresholds to 575 

decrease. Earlier monitoring work showed similar trends over multiple years of floods 576 

(Lenzi et al., 2004). Masteller et al. (2019) interpret that intense sediment transport in 577 

sufficiently large events disrupts bed surface grains enough to reset the “memory” of past 578 

flow conditions that led to shear stress increases. 579 

While these researchers found increasing and decreasing transport thresholds 580 

from before and after relatively large floods over multi-year timescales, our results 581 

expand the parameter space of our understanding by documenting systematic threshold 582 

evolution over shorter timescales (changes within individual diurnal floods) and smaller 583 

changes in discharge. We interpret that threshold changes need not reflect complete 584 

surface destabilization or a significant reduction in the availability of mobile sediment, 585 

but can also reflect subtle changes in grain interlocking. 586 

We also cannot discount the possibility that the threshold evolution we observed 587 

was caused by changes in surface grain size. Perhaps thresholds increased because the 588 



 30 

bed progressively coarsened overall over the 22 day period, while sand or finer gravel 589 

pulses also moved through the reach during times of highest discharge, temporarily 590 

decreasing thresholds, but were then transported out of the reach. While we did not did 591 

repeat surface GSD measurements directly before or during the data collection period, the 592 

point counts done after smartrock recovery (fall 2015) are consistent with previous 593 

measurements in Halfmoon creek (Bradley and Tucker, 2012). We thus feel like it is 594 

unlikely that overall surface coarsening with punctuating fining within our 22-day study 595 

period are responsible for observed trends. Masteller et al. (2019) similarly see no 596 

evidence that their threshold trends were controlled by systematic seasonal coarsening.  597 

Hysteresis in bedload transport can likely be caused by a variety of mechanisms 598 

which are not mutually exclusive. Mao et al. (2014) observed day-to-day changes 599 

between clockwise and counterclockwise hysteresis, and suggested that a combination of 600 

migrating sediment waves and seasonal sediment supply changes from melting banks 601 

might explain daily to seasonal hysteresis trends. Roth et al. (2014) observed bedload 602 

hysteresis using near-stream seismic signals in a channel with high gravel sediment 603 

supply, and explore plausible mechanisms for gravel-bed systems including time lags 604 

between discharge and  bedform adjustment or surface roughness changes (Mao, 2012; 605 

Martin and Jerolmack, 2013), bedload wave migration, and surface sorting/grain size 606 

changes (Humphries et al., 2012). Our data are similarly insufficient to confirm any 607 

particular mechanism responsible for the hysteresis we observe. Nonetheless, we suggest 608 

that grain interlocking and intergranular friction (Yager et al., 2018) may cause surface 609 

thresholds to evolve over timescales of individual diurnal floods, explaining hysteresis. 610 

Existing bedload transport models could predict transport hysteresis if threshold 611 
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parameters evolve over time as functions of discharge as well as sediment supply 612 

(Johnson, 2016).  613 

4.5 Implications and Applications 614 

Our results may help improve predictions of bedload transport and bed stability, 615 

particularly in managed gravel-bed rivers. Channel reaches downstream of large dams 616 

tend to develop static and tightly interlocked armor layers, both as a function of reduced 617 

sediment supply, and decreased transport capacity as a result of reservoir-attenuated flood 618 

peaks (e.g., Viparelli et al., 2011). An increasing number of dam managers are 619 

considering downstream impacts to habitat (e.g. salmonid spawning) and including a 620 

‘naturalized’ flow hydrograph with flow sufficient to mobilize the bed and reduce 621 

embeddedness of gravels. Understanding evolving thresholds of motion, and in particular 622 

how larger controlled floods might cause thresholds to decrease, could improve estimates 623 

and uncertainties of bed mobilization, as well as guide monitoring plans that could be 624 

implemented during managed floods and used for real-time decision making and 625 

hydrograph adjustment. For example, knowing when beds first destabilize during floods 626 

could be used to minimize water volumes released while still attaining bed mobilization 627 

goals. Conversely, overly mobile transport could potentially destabilize salmonid redds or 628 

impact other aquatic habitat. Future work could also explore how rates of hydrograph rise 629 

and fall influence bed mobilization. 630 

Erosion and deposition can lead to channel avulsions and bank failures which can 631 

negatively impact life and infrastructure. In gravel-bed rivers, thresholds of motion are 632 
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critical for predicting stability and transport across the range of flood magnitudes, 633 

including destructive floods that cause the most rapid channel evolution. Understanding 634 

bedload dynamics in flood events will become critically important in predicting river 635 

behavior as climate change and human land use change continue to impact the natural 636 

environment. Increases in the frequency and magnitude of floods are expected in many 637 

locations for decades or centuries to come (e.g. Milly et al., 2002), combined with 638 

climatic changes to hillslope hydrology and vegetation that will influence sediment 639 

supply to river networks. Our data suggest that how mountain channels respond to these 640 

environmental perturbations will be influenced by history-dependent thresholds of 641 

motion. 642 

5. Conclusion 643 

In 2015 we measured accelerations of Smart Rock tracer particles in Halfmoon 644 

Creek, Colorado during a seasonal snowmelt flood with a 10-year recurrence interval. 645 

Transport data was collected during 22 daily hydrographs which had flow above 646 

threshold transport conditions. We used tracer particle accelerations to infer the precise 647 

timing of motion and rest using an empirical algorithm, which was tested and calibrated 648 

in a controlled laboratory setting.  649 

Our results suggest that the critical thresholds of motion for populations of 650 

particles evolved systematically over time with changes in discharge. In particular, 651 

increases in average shear stress from one day to the next correlate with decreases in 652 

thresholds of motion. Conversely, thresholds of motion increase as cumulative shear 653 
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stress increases over the duration of the entire flood. Together, these two factors can 654 

explain ≈73% of the variability we observe in transport thresholds (Figure 7b; equation 655 

9). Mechanistically, a variety of processes that influence bed stability could potentially 656 

explain our results, including changes in surface armoring, grain size changes and 657 

sediment supply pulses, clustering, and interlocking of grains. Given that we observe 658 

rapid changes in thresholds of motion between rising and falling limbs of daily 659 

hydrographs, we interpret that changes in intergranular friction and evolving force chains 660 

between grains are most likely the explanation, as these mechanisms could evolve rapidly 661 

and sensitively in response to local shear stresses.  662 

Evolving threshold of motion are also illustrated by hysteresis in transport rates, 663 

which occurs in clockwise, counter-clockwise, and figure eight patterns. Progressive 664 

stabilization of grains and increasing thresholds of motion are supported by overall 665 

clockwise hysteresis over the 22-day above-threshold measurement period, and 666 

increasing entrainment thresholds after successive diurnal flood events with similar 667 

Shields stress. Counter-clockwise hysteresis after increases in Shields stress from one 668 

daily flood to the next suggests that thresholds decrease, potentially due to changes in 669 

grain interlocking or clustering. Our data provide a unique look into the dynamics of 670 

coarse sediment transport in the field under rapidly changing hydraulic forcing.  671 
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Figures and tables 682 

 683 

Figure 1. Tracer high-density plastic case with HOBO, IMU, and battery pack (left, 684 

mostly covered in black electrical tape) visible. The tape measure is in cm. Major, 685 

intermediate, and minor axis diameters are 12.0, 7.2, and 6.4 cm, respectively. X, Y, and 686 

Z axes for the IMU are indicated. 687 
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688 

 689 

Figure 2. (a) Halfmoon Creek drainage area and project site, including installation and 690 

recovery locations of tracers. “PT” means pressure transducers, used to monitor reach 691 
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flow depth. (b) Summer 2015 Halfmoon Creek Hydrograph from USGS gage 07083000. 692 

Shaded grey region indicates 22 diurnal events used in the threshold of motion analysis. 693 

c. Bed surface GSD from two Wolman-type point counts (N=400). Dotted line is 694 

intermediate diameter of tracers.  695 

 696 

 697 

 698 

Figure 3. (a) Acceleration and (b) gyroscope data from experimental motion test. Black 699 

bars indicate when particle displacement actually occurred. Red bars indicate motions 700 

identified by the algorithm. Data not plotted when test particle was repositioned inside 701 

video frame. Arrows indicate two times identified by algorithm as motion but were not a 702 

displacement. 703 

 704 
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 705 

Figure 4. (a) Shields stress (dark gray lines) and 15-minute 𝑃𝑞 (light grey) verses time. 706 

The shaded region covers daily flood events 1-22 that are used in the threshold of motion 707 

analysis. Black points are event-averaged values of 𝑃𝑞. (b) Number of rocks sampling 708 

over the 22-day analysis window. 709 

 710 
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 711 

Figure 5. Gray dots represent unsmoothed 15 minute data. The open circles are bin-712 

averaged data, in increments of 𝜏∗=0.0004. The “Logistic Function” and “Power” refer to 713 

equations (3) and (4) respectively.  A small number of unsmoothed 15 minute data fall  714 

above Pq=0.004.  715 
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 716 

Figure 6. (a) Hysteresis curve for 22 days of recorded data. Pq and 𝜏∗ were smoothed 717 

using a 24-hour median moving window, plotted every hour. Calculated over 22 flood 718 

events, transition from rising to falling coincides with peak flow in event 15. (b-f) 719 

Examples of clockwise (b, d, f), figure-eight (c), and counter-clockwise (e) hysteresis 720 

patterns found in daily flood events, calculated using a 2-hour median moving window 721 

plotted every 15 minutes. Hysteresis plots for all 22 hydrographs are in the 722 

supplementary material. 723 
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 724 

Figure 7 (a) Daily threshold of motion, averaged over the duration of each daily flood 725 

event (avg 𝜏𝑐𝑟
∗ (𝑡) ), and also averaged separately over each rising and falling limb. Error 726 

bars are standard deviation of threshold of motion for 15-minute data; the grey triangles 727 

and circles represent the critical threshold of motion for each rising and falling limb, 728 

respectively. (b) Linear regression between ∆𝜏∗ and 𝜏𝑐𝑟
∗ (𝑡), (c) Linear regression between 729 

𝜏∗
+ and 𝜏𝑐𝑟

∗ (𝑡), and (d) equation (9) vs 𝜏𝑐𝑟
∗ (𝑡).  730 

 731 

 732 

 733 

 734 
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Table 1. Regression results 735 

 Single Linear Regression Results 

Parameter 𝑅2  p-value Equation 

 𝜏∗
+ 0.453 0.0008 τcr

∗ (t) = 0.003τ∗
+ + 0.0383 

∆𝜏∗ 0.496 0.0004 τcr
∗ (t) = −1.151∆𝜏∗ + 0.0401 

𝜏 ∗̅ 0.265 0.0170 τcr
∗ (t) = 0.314𝜏 ∗̅ + 0.0260 

𝜏 ∗̂  0.248 0.0217 τcr
∗ (t) = 0.272𝜏 ∗̂ + 0.0027 

 𝜏∗
𝑟𝑓 0.107 0.1475 τcr

∗ (t) = −0.321𝜏∗
𝑟𝑓 + 0.0396 

    

 Two-parameter Regression Results 

Parameters 𝑅2  p-value Equation 

∆𝜏∗, 𝜏∗
+ 0.726 <0.0001 

τcr
∗ (t) = 0.002τ∗

+ − 0.897∆τ∗ + 0.0389 

(Equation (9)) 

∆𝜏∗, 𝜏 ∗̅ 0.747 <0.0001 τcr
∗ (t) = 0.305𝜏∗̅̅̅ − 1.135∆τ∗ + 0.0275 

∆𝜏∗, 𝜏 ∗̂ 0.748 <0.0001 τcr
∗ (t) = 0.271𝜏∗̂ − 1.156∆τ∗ + 0.0266 

 Multiple Linear Regression Results 

Parameters 𝑅2  p-value Equation  

 0.077 0.0002 
τcr

∗ (t) = 0.0008𝜏∗
+ − 1.061∆𝜏∗ −

0.244𝜏 ∗̅ +0.393𝜏 ∗̂ − 0.144𝜏∗
𝑟𝑓 + 0.0323 

    

 
𝑅2 without 

parameter 

Paired t-test 

p-value of 

coefficient 

 

 𝜏∗
+ 0.453 0.5368  

∆𝜏∗ 0.496 0.0006  

𝜏 ∗̅ 0.265 0.7493  

𝜏 ∗̂  0.248 0.5638  

 𝜏∗
𝑟𝑓 0.107 0.3071  
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