loading page

The Contribution of N+ ions to Earth’s Polar Wind
  • Mei-Yun Lin,
  • Raluca Ilie,
  • Alex Glocer
Mei-Yun Lin
University of Illinois at Urbana-Champaign

Corresponding Author:[email protected]

Author Profile
Raluca Ilie
University of Illinois at Urbana Champaign
Author Profile
Alex Glocer
NASA/GSFC
Author Profile

Abstract

The escape of heavy ions from the Earth atmosphere is consequences of energization and transport mechanisms, including photoionization, electron precipitation, ion-electron-neutral chemistry and collisions. Numerous studies considered the outflow of O ions only, but ignored the observational record of outflowing N. In spite of 12% mass difference, N and O ions have different ionization potentials, ionospheric chemistry, and scale heights. We expanded the Polar Wind Outflow Model (PWOM) to include N as well as key molecular ions in the polar wind. We refer to this model expansion as the Seven Ion Polar Wind Outflow Model (7iPWOM), which involves expanded schemes for suprathermal electron impact and ion-electron-neutral chemistry and collisions. Numerical experiments, designed to probe the influence of season, as well as that of solar conditions, suggest that N is a significant ion species in the polar ionosphere and its presence largely improves the polar wind solution, as compared to observations.
28 Sep 2020Published in Geophysical Research Letters volume 47 issue 18. 10.1029/2020GL089321