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Abstract. Automatically extracting buildings from remotely sensed imagery has always been a challenging 

task, given the spectral homogeneity of buildings with the non-building features as well as the complex 

structural diversity within the image. Traditional machine learning (ML) based methods deeply rely on a 

huge number of samples and are best suited for medium resolution images. Unmanned aerial vehicle 

(UAV) imagery offers the distinct advantage of very high spatial resolution, which is helpful in improving 

building extraction by characterizing patterns and structures. However, with increased finer details, the 

number of images also increase many fold in a UAV dataset, which require robust processing algorithms. 

Deep learning algorithms, specifically Fully Convolutional Networks (FCNs) have greatly improved the 

results of building extraction from such high resolution remotely sensed imagery, as compared to 

traditional methods. This study proposes a deep learning based segmentation approach to extract buildings 

by transferring the learning of a deep Residual Network (ResNet) to the segmentation based FCN U-Net. 

This combined dense architecture of ResNet and U-Net (Res-U-Net) is trained and tested for building 

extraction on the open source Inria Aerial Image Labelling (IAIL) dataset. This dataset contains 360 

orthorectified images with a tile size of 1500m2 each, at 30cm spatial resolution with red, green and blue 

bands; while covering total area of 805km2 in select US and Austrian cities. Quantitative assessments show 

that the proposed methodology outperforms the current deep learning based building extraction methods. 

When compared with a singular U-Net model for building extraction for the IAIL dataset, the proposed 

Res-U-Net model improves the overall accuracy from 92.85% to 96.5%, the mean F1-score from 0.83 to 

0.88 and the mean IoU metric from 0.71 to 0.80. Results show that such a combination of two deep learning 

architectures greatly improves the building extraction accuracy as compared to a singular architecture. 

Keywords: transfer learning, fully convolutional networks, image segmentation, building extraction. 

1 Introduction  

1.1 Background 

Remote sensing imagery, both satellite and aerial, contains a lot of terrain-feature specific information 

such as land-cover spread, building footprints, waterbody extent, vegetation and forest boundaries etc. 

Extracting this feature information without losing relative context within the image is a very important 

remote sensing image processing milieu [1], [2]. Feature extraction is usually done by identifying a 

common pattern among pixels and grouping them together, that group of pixels then being a feature [3]. 

One of the most crucial aspects for accurate image feature extraction is finer spatial details such as 

edges and corners. Primitive feature extraction methods were time consuming and required a lot of 

expensive human intervention [4]. This was mostly because of the unavailability of higher spatial 

resolution data in conjunction with the technical infrastructure at the time. However, with advancements 

in digital systems for image processing and also the increased availability and accessibility of high 

spatial resolution data from both satellites and Unmanned Aerial Vehicles (UAVs), image feature 

extraction has consistently been one of the hottest research topics in remote sensing image processing 

[5]. 

1.2 Previous Works 

In remote sensing feature extraction, building extraction is one of the most vital aspects of research. 

With its applications spread in various pipelines of urban mapping and management, disaster 
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management, change detection, maintaining and updating geodatabases etc., building extraction has 

caught the attention of researchers worldwide for developing robust and accurate algorithms to 

automate the process.[6]. Primitive methods of building extraction were based on applying statistical 

and morphological operations on individual pixels to group them together [7], hence automating the 

task up to some extent. One of the most prevalent issues in building extraction that has propagated from 

early methods to the recent methods is the differentiation of foreground and background as well as 

building and non-building objects [8]. To be able to differentiate between these, spectral and 

geometrical cues such as colour, shape and line have been used to extract buildings from very high 

resolution imagery  [9]. Another study combined distinctive corners while estimating building outlines 

to extract buildings [10], but was unable to extract irregular shaped buildings. In the beginning of the 

decade, a generic index called Morphological Building Index (MBI) was introduced to extract buildings 

from high resolution satellite imagery, based on spectral information [11]. While this method was able 

to successfully extract buildings with irregular shape, it failed in shadowy regions and also could not 

extract buildings located close-by (instance extraction). A consequent study to MBI proposed a 

Morphological Building/Shadow Index which defined a building index as well as a shadow index, and 

was specifically aimed at bridging the shortcomings of the MBI method [12].  

 

With the recent availability of strong computing systems as well as finer resolution data, artificial 

intelligence based deep learning algorithms such as Convolutional Neural Networks (CNNs) are being 

aggressively used for building extraction given their advantage of hierarchical feature extraction 

without losing any contextual information [13]–[15]. In general, a deep learning architecture consists 

of a network structure with many hidden layers leading to hierarchical feature extraction thus, 

eliminating the problem of inadequate representation of learning features [16]. Building-A-Nets is an 

adversarial network to for robust extraction of building rooftops. Multiple Feature Reuse Network 

(MERN) is a resource efficient rich CNN to detect building edges from high spatial resolution satellite 

imagery [17]. A special type of pre-trained CNN, called a Fully Convolutional Network (FCN) is also 

being widely used for transfer learning based building extraction. A few such popular FCNs are VGG-

16 [18], ResNet [19], Deeplab [20], DenseNet [21], SegNet [22] and U-Net [23]. Studies specifically 

on building extraction from UAV images have also increased of late. SegNet and U-Net have been used 

in an ensemble manner to improve building footprint extraction from high resolution UAV imagery 

[24]. Techniques such as dilated spatial pyramid pooling [25], multi-stage multi-task learning [26], 

channel attention mechanisms [27] have been used to improve the building segmentation accuracy from 

UAV data. Variants of U-Net architecture have also been tested for building extraction and a studies 

indicate that the U-Net is the most suitable for dense image building extraction [15], [28], [29]. 

1.3 Objective and Summary 

Sometimes, the FCN based segmentation is visually degraded in case of blurred building boundaries 

[30]. Moreover, high spatial resolution data is generally restricted to three or four spectral channels, 

which makes it difficult to differentiate buildings and other spatially similar features [24]. To address 

these issues, this study proposes a deep learning based segmentation approach that combines a pre-

trained FCN with a U-Net being trained for building extraction, to extract buildings from high resolution 

RGB UAV imagery. The learning of a deep Residual Network (ResNet) trained on the ImageNet dataset 

is transferred to the segmentation based FCN U-Net, hence forming a combined Res-U-Net architecture. 

In this Res-U-Net, the pre-trained ResNet helps capture more context in case of features spatially similar 

to buildings while the U-Net learns building segmentation based on a unique loss function (discussed 

in Section 2.3) that simultaneously accounts for crispness as well as the region of a segmented building, 

hence preventing prediction leakage outside of feature in case of blurred boundaries. Consequent 
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sections of the paper discuss the dataset details, data preparation and training methodology, results and 

their inferences, and conclude the study. 

2 Dataset Details 

This study uses the Inria Aerial Image Labelling (IAIL) dataset. This dataset contains a total of 360 

orthorectified images (180 for training and 180 for testing) with a tile size of 1500m2 each, at 30cm 

spatial resolution with red, green and blue bands. Each image is of size 5000 x 5000 pixels. While 

covering an area of 81km2/city in select US cities of Austin, Chicago, Kitsap County and select Austrian 

cities of Vienna and West Tyrol, this dataset contains 36 images from each city having high variance in 

terms of urban density and building spacing. Moreover, numerous instances of shadowy features and 

shadowy background are present, especially in the images from Chicago, US. The ground truth of the 

training set is provided as a binary feature image with only two classes namely building and non-

building. Since ground truth is provided only for the training set of 180 images, we use only those 180 

images to train and validate our model. Figure 1 shows the UAV image and its corresponding ground 

truth as available from the IAIL training set, for each of the five cities. 

 

 
Fig. 1. Data samples from the IAIL dataset, one from each city (a) Austin, USA (b) Chicago, USA (c) Kitsap 

County, USA (d) West Tyrol, Austria (e) Vienna, Austria 

3 Methodology 

3.1 Data Preparation Methodology 

A single image is of size 5000 x 5000 pixels. We further split it into small data chips of size 224 x 224 

pixels in accordance to the proposed network architecture. This results into 484 such tiles from a single 

image. However, certain number of chips contain no buildings or hardly any buildings at all, creating a 

bias in the type of data which could result in model misfit. To ensure uniformity of 224 x 224 chips in 

terms of buildings, we further filter the 484 chips using a High Label Filter (Equation 1). This is 

basically a ratio of the number of labelled pixels to the total number of pixels in a 224 x 224 chip. We 

use a threshold of 0.3 in the High Label Filter to further filter these 484 chips. This excludes the chips 

having label density less than 30% and hence the earlier bias in the data is now removed. Figure 2 shows 

the data preparation methodology for a single image. This process is performed for all 180 images as 
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well as labels. Passing the 87,120 224x224 chips obtained from 5000x5000 180 images (180*484) 

through the High Label Filter, we get 27,164 224x224 chips. The proposed model is trained and 

validated on these 27,164 chips and entire images of size 5000x5000 are used for testing. 

 

𝐻𝐿𝐹 =  
∑ 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔_𝑝𝑖𝑥𝑒𝑙𝑖

224∗224
𝑖=0

∑ 𝑖𝑚𝑎𝑔𝑒_𝑝𝑖𝑥𝑒𝑙𝑖
224∗224
𝑖=0

    (1) 

  
Fig 2. Data preparation methodology for a single image 

3.2 Network Architecture 

In this study, the U-Net architecture is implemented with a dynamic decoder to learn building extraction 

as a fully convolutional network (FCN). The whole architecture essentially consists of two major 

operations – image contraction performed by the encoder and image expansion performed by the 

decoder (Fig 3). The encoder is responsible for pooling out the necessary information from within the 

convolution kernel which is done by max pooling operations. The decoder helps preserve precise local 

information such as building edges in case of blurred images which is done by upsampling and 

convoluting over transposed kernels. Each step of encoder is connected with the corresponding inverse 

step of the decoder using successive skip connections. The advantage of using a dynamic network is 

the automatic creation of the decoder based on how the encoder is initialized [31] as well as working 

with almost any patch-size [32]. 

 

 
Fig 3. Proposed Res-U-Net architecture described in terms of U-Net encoders and decoders, along with the pre-

trained ResNet34 layers 

 

U-Net being an end-to-end FCN can easily initialized with the weights of a deeper CNN. We further 

initialize the proposed dynamic U-Net architecture with the weights of ResNet34 trained on ImageNet, 
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forming a Res-U-Net. The proposed Res-U-Net comprises of multiple sequential blocks as well as 

dynamic U-Net blocks initialized with ResNet34. Each encoder-decoder block of the architecture 

consists of a series of 2D batch normalization and ReLU activations which extract the trainable features 

from the data. Table 1 shows the specific network architecture of the proposed Res-U-Net architecture. 

The input to the network is an RGB image of shape (224, 224, 3) to which the network segments 

buildings and outputs segmented maps of shape (224, 224, 2). Here, the prediction contains two 

channels, one of which is a boolean array having discrete prediction for every pixel being a building or 

not and the other is a float32 array which contains the logit probability score for every pixel being a 

building. This is helpful in refining the results by further pooling the probability scores with bounded 

functions such as sigmoid. 

Table 1. Specific proposed network architecture with each layer parameters 

Layer Kernel Size Output Shape Stride 

Conv2d     7 x 7 64 x 112 x 112 2 

Sequential Block 1 

Conv2d   3 x 3 64 x 56 x 56 1 

Conv2d  3 x 3 64 x 56 x 56 1 

Conv2d   3 x 3 64 x 56 x 56 1 

Sequential Block 2 

  Down Block 1 1 x 1 128 x 28 x 28 2 

Conv2d  3 x 3 128 x 28 x 28 1 

Conv2d  3 x 3 128 x 28 x 28 1 

Conv2d  3 x 3 128 x 28 x 28 1 

Conv2d   3 x 3 128 x 28 x 28 1 

Sequential Block 3 

  Down Block 2 1 x 1 256 x 14 x 14 2 

Conv2d  3 x 3 256 x 14 x 14 1 

Conv2d  3 x 3 256 x 14 x 14 1 

Conv2d  3 x 3 256 x 14 x 14 1 

Conv2d  3 x 3 256 x 14 x 14 1 

Conv2d   3 x 3 256 x 14 x 14 1 

Sequential Block 4 

  Down Block 3 1 x 1 512 x 7 x 7 2 

Conv2d  3 x 3 512 x 7 x 7 1 

Conv2d   3 x 3 512 x 7 x 7 1 

Conv2d     3 x 3 1024 x 7 x 7 1 

Conv2d     3 x 3 512 x 7 x 7 1 

U-Net Block 1 

Conv2d   3 x 3 1024 x 7 x 7   

Conv2d  3 x 3 512 x 14 x 14 1 

Conv2d  3 x 3 512 x 14 x 14 1 

U-Net Block 2 

Conv2d   3 x 3 1024 x 14 x 14   

Conv2d  3 x 3 384 x 28 x 28 1 

Conv2d  3 x 3 384 x 28 x 28 1 

U-Net Block 3 

  

Conv2d   3 x 3 768 x 28 x 28   

Conv2d  3 x 3 256 x 56 x 56 1 

Conv2d   3 x 3 256 x 56 x 56 1 

Conv2d  3 x 3 512 x 56 x 56   
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U-Net Block 4 

Conv2d  3 x 3 128 x 112 x 112 1 

Conv2d  3 x 3 96 x 112 x 112 1 

Conv2d   3 x 3 96 x 112 x 112 1 

Sequential Extension 
Conv2d   3 x 3 99 x 224 x 224 1 

Conv2d   3 x 3 99 x 224 x 224 1 

Conv2d     1 x 1 2 x 224 x 224 1 

3.3 Training the Network 

After weight initialization of the proposed Res-U-Net, transfer learning methodology was used to train 

for building extraction. Figure 4 shows the step-by-step training methodology. Out of 27,164 image-

label pairs, the network was trained on 23,089 pairs (85%) and was validated on the remaining 4075 

(15%) pairs of images and their corresponding labels. The network was trained with a batch size of 6 

and a patch size of 224x224 for 30 epochs, with roughly 1200 batches being processed per epoch. The 

training was cut-off based on loss convergence (Figure 5(a)). The learning was carried out on nearly 20 

million parameters extracted at different layers of the network. The network was optimized with ADAM 

optimizer at a learning rate of 0.0001 and a decay rate of 0.9. 

 

 
Fig. 4. Network training methodology for building extraction using transfer learning 

 

A unique combination of Binary Cross Entropy (BCE) loss (Equation 2) and dice loss (Equation 3) was 

used to train the network. BCE is a probability distribution based loss [33] and hence was used to 

minimize the entropy between the prediction and the ground truth in terms of buildings as features. It 

was also helpful in preserving the crispness near the boundary regions. Dice loss is a region based 

Intersection-over-Union like metric [34] and it was used to maximize the overlap and similarity between 

the predicted region and the ground truth of the feature region. Hence, a combo loss was defined 

(Equation 4) which focused on both boundary and region preservation. Fig. 5(a) shows the loss-based 

convergence of the model after 30 epochs of training. After training for 30 epochs and processing 

36,000 batches the model began to converge and was saved at the end of 30 epochs with an overall 

accuracy of 95.7% and mean Intersection over Union (IoU) of 0.83. 
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𝐵𝐶𝐸𝐿𝑜𝑠𝑠 = −
1

𝑝𝑎𝑡𝑐ℎ𝑠𝑖𝑧𝑒
∑ 𝑔𝑖

𝑝𝑎𝑡𝑐ℎ𝑠𝑖𝑧𝑒
𝑖=1 × log 𝑝𝑖 + (1 − 𝑔𝑖) × log(1 − 𝑝𝑖)   (2) 

𝐷𝑖𝑐𝑒𝐿𝑜𝑠𝑠 =
2×∑ 𝑝𝑖𝑔𝑖

𝑝𝑎𝑡𝑐ℎ𝑠𝑖𝑧𝑒
𝑖=0

∑ 𝑝𝑖
2𝑝𝑎𝑡𝑐ℎ𝑠𝑖𝑧𝑒

𝑖=0 +∑ 𝑔𝑖
2𝑝𝑎𝑡𝑐ℎ𝑠𝑖𝑧𝑒

𝑖=0

   (3) 

𝐶𝑜𝑚𝑏𝑜𝐿𝑜𝑠𝑠 = 𝐵𝐶𝐸𝐿𝑜𝑠𝑠 + 𝐷𝑖𝑐𝑒𝐿𝑜𝑠𝑠   (4) 
Where g = ground truth image and p = predicted image 

 

 
Fig 5. (a) Combo loss variation, (b) Accuracy variation and (c) IoU variation in 30 epochs of training 

4 Results and Discussion 

Figure 6 shows the results for building extraction for select RGB images from each city of the IAIL 

dataset. The first column is the input to the model, the second column is the ground truth, the third 

column is the segmented building map as predicted by the model and the fourth column shows the 

evaluation of the prediction with True Positives (TP) in white, True Negatives (TN) in black, False 

Positives (FP) in red and False Negatives (FN) in yellow. These are original images of size 5000x5000 

from the IAIL dataset. The predictions are obtained by clipping to chips of 224x224, segmenting 

buildings and then again merging to the original size of 5000x5000. In Figure 6 we try to show all 

different conditions for building extraction such as the surrounding land-cover classes, urban density, 

shadows etc. from each city. Figure 6(a,c,f) show successful building extraction in case of high urban 

density with closely spaced buildings, with rare instance segmentation challenges. Figure 6(b) shows 

effective building extraction even in shadowy regions. It can be noted that the shadows are not falsely 

classified as buildings, which has been a very popular challenge in building extraction [12]. Figure 

6(a,b,f) show successful building extraction in presence of spectrally similar features such as cemented 

roads and parking lots as well as spatially similar features such as roads, open grounds and vegetation 

patches having shape similar to buildings. The model is also able to segment buildings even when the 

dominant land cover in the image is not urban - Figure 6(d,e) contain a large cover of vegetation, Figure 

6(b,e) contain a large area of water. 
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Fig 6. Select instances of building extraction results from each city of the IAIL dataset. First column is RGB input 

to the model, second column is model prediction for building segmentation, third column is ground truth and 

fourth column is evaluation image showing TP (white), TN (black), FP (red) and FN (yellow). (a), (b) From 

Austin, USA (c) From Chicago, USA (d) From Kitsap County, USA (e) From Tyrol West, Austria (f) From 

Vienna Austria 

 

To quantify the prediction made by the model in terms of binary segmentation, the metrics of accuracy 

(4), precision (5), recall (6) and F1-score (7) were used. To further perform a feature-based evaluation, 

object-based metrics such as branching factor (8), miss factor (9), detection percentage (10) and IoU or 

quality percentage (11) (otherwise also popularly known as jaccard index) were used. Table 2 shows 

the metrics of the individual images in Figure 6.  

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑡𝑝+𝑡𝑛

𝑡𝑝+𝑡𝑛+𝑓𝑝+𝑓𝑛
  (5) 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡𝑝

𝑡𝑝+𝑓𝑝
  (6) 

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑡𝑝

𝑡𝑝+𝑓𝑛
  (7) 

𝑓1 = 2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
  (8) 

𝑏𝑟𝑎𝑛𝑐ℎ𝑖𝑛𝑔𝐹𝑎𝑐𝑡𝑜𝑟 =
𝑓𝑝

𝑡𝑝
  (9) 

𝑚𝑖𝑠𝑠𝐹𝑎𝑐𝑡𝑜𝑟 =
𝑓𝑛

𝑡𝑝
  (10) 

𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 = 100 ×
𝑡𝑝

𝑡𝑝+𝑓𝑛
  (11) 

𝑞𝑢𝑎𝑙𝑖𝑡𝑦𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 = 𝐼𝑜𝑈 = 100 ×
𝑡𝑝

𝑡𝑝+𝑓𝑛+𝑓𝑝
  (12) 

Where tp = True Positive, fp = False Positive, tn = True Negative and fn = False Negative 

 
Table 2. Metrics for individual images of Figure 6 

 Accuracy Precision Recall F1-

Score 

Branching 

Factor 

Miss 

Factor 

Detection 

Percentage 

Quality  

Percentage/ 

IoU 

Fig 6(a) 0.961 0.943 0.802 0.867 0.060 0.246 0.802 0.765 

Fig 6(b)  0.942 0.850 0.764 0.859 0.177 0.152 0.868 0.752 

Fig 6(c) 0.870 0.833 0.666 0.745 0.200 0.500 0.666 0.589 

Fig 6(d) 0.991 0.997 0.851 0.920 0.001 0.176 0.851 0.845 

Fig 6(e) 0.982 0.994 0.796 0.889 0.006 0.257 0.796 0.801 

Fig 6(f) 0.927 0.938 0.893 0.915 0.066 0.120 0.893 0.843 

 

 
Fig 7.  City-wise prediction metrics from the IAIL dataset validation part 
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Figure 7 shows the city-wise metrics of model validation. Tyrol West and Vienna from the IAIL 

dataset exhibit highly favourable conditions for building extraction. Extracting buildings from 

Chicago and Kitsap has been the most challenging. This is due to shadowy regions, typically the 

shadows being cast on other buildings. Though the proposed model successfully discriminates 

between shadowy regions and buildings and avoids shadows as false positives, it faces significant 

challenges in extracting the buildings which are under shadows. This drastically increases the rate 

of false negatives, as the model excludes the buildings under shadows as only shadowy regions 

(Figure 8(a,b)). A potential reason for this could be loss of spectral variance as well as spatial 

distinction of a building that is under shadow. Moreover, another isolated issue encountered in a 

Kitsap image is a patch of waterbody being falsely segmented as building, resulting into a high 

number of false positives (Figure 8(c)). This could be due to multiple reasons such as spectral 

similarity of the waterbody area due to turbidity, or saturation of DN values in those areas due to 

direct glint on sensor. Such instances of shadowed buildings and typical water areas are prominent 

in the images from Chicago and Kitsap and hence the extraction results are lowest for these two 

cities from the IAIL dataset. Figure 8 shows select instances buildings under shadows which result 

in a high number of false negatives. 

 

 
Fig 8. Select instances where buildings are covered under shadows, leading to high false negative rate. First 

column is RGB input to the model, second column is model prediction for building segmentation, third column is 

ground truth and fourth column is evaluation image showing TP (white), TN (black), FP (red) and FN (yellow). 

(a), (b) From Chicago, USA (c) From Kitsap county 
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Despite these specific challenges and rare instance segmentation issues, the overall performance of the 

model when evaluated on the validation set of 4075 images is highly favourable. The high values of the 

evaluation metrics, especially IoU, also indicate that the proposed model is able to segment buildings 

well within the feature edges and there is no region loss except for when the building itself is under a 

shadow. When compared with other deep learning based approaches, the proposed model increases the 

average IoU to 0.80 and average F1 score to 0.86. Table 3 shows the overall evaluation metrics of the 

model for the validation set as well as a comparison of those metrics with other studies on the same 

IAIL dataset. 

Table 3. Overall metrics of the proposed approach and their comparison with existing approaches 

Method Proposed 

Res-U-Net 

Dilated 

Spatial 

Pyramid 

Pooling [25] 

GAN-SCA 

[27] 

MSMT-

Stage-1 [26] 

AMLL [28] Dilated 

CNN [29] 

Overall Accuracy 0.965 0.894  0.966 0.961 0.959 0.928 

Precision  0.883 - - - - - 

Recall 0.861 - - - - - 

Mean F1-Score 0.88 - - - - 0.83 

Branching Factor 0.193 - - - - - 

Miss Factor 0.230 - - - - - 

Detection 

Percentage 

93.42 - - - - - 

Mean IoU 0.80 - 0.777 0.733 0.725 0.710 

5 Conclusion 

In this research work, building extraction from UAV imagery was explored using deep learning and 

transfer learning methodology. A Res-U-Net architecture consisting of U-Net blocks initialized with 

pre-trained ResNet34 weights and was used to learn building extraction from the IAIL dataset. The 

combination of ResNet and U-Net was used in an attempt to overcome the problems of blurred building 

boundaries and limited spectral resolution in building extraction. Moreover, a combined loss function 

that accounts both for the building region as well as building boundaries was used to train the proposed 

Res-U-Net. The model was trained and validated on 180 images from across five different cities of US 

and Austria. These images depicted high variance in terms of urban density and dominant land cover of 

the image. The proposed model was successfully able to segment buildings in all cases with rare 

instance segmentation issues. Model performance was measured using quantitative metrics of confusion 

matrix as well as object based metrics such as branching factor, miss factor and IoU. When comparing 

these metrics with those of existing deep learning based methods, highly favourable results were noted. 

Specific challenges such as extracting buildings lying under shadow and excluding turbid/active 

waterbody as a building were also identified and are open for research. 
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