Daan Reijnders

and 2 more

North Atlantic Subtropical Mode Water (NASTMW) serves as a major conduit for dissolved carbon to penetrate into the ocean interior by its wintertime outcropping events. Prior research on NASTMW has concentrated on its physical formation and destruction, as well as Lagrangian pathways and timescales of water into and out of NASTMW. In this study, we examine how dissolved inorganic carbon (DIC) concentrations are modified along Lagrangian pathways of NASTMW on subannual timescales. We introduce Lagrangian parcels into a physical-biogeochemical model and release these parcels annually over two decades. For different pathways into, out of, and within NASTMW, we calculate changes in DIC concentrations along the path (ΔDIC), distinguishing contributions from vertical mixing and biogeochemical processes. While the mean ΔDIC for parcels that persist within NASTMW in one year is relatively small at +6 µmol/L, this masks underlying dynamics: individual parcels undergo interspersed DIC depletion and enrichment, spanning several timescales and magnitudes. The strongest ΔDIC is during subduction of water parcels (+101 µmol/L  in one year), followed by transport out of NASTMW due to increases in density in water parcels (+10 µmol/L). Most DIC enrichment and depletion regimes span timescales of weeks, related to phytoplankton blooms. However, mixing and biogeochemical processes often oppose one another at short timescales, so the largest net DIC changes occur at timescales of more than 30 days. Our new Lagrangian approach complements bulk Eulerian approaches, which average out this underlying complexity, and is relevant to other biogeochemical studies, for example on marine carbon dioxide removal.

Laura Gomez-Navarro

and 8 more

Understanding the pathways of floating material at the surface ocean is important to improve our knowledge on surface circulation and for its ecological and environmental impacts. Virtual particle simulations are a common method to simulate the dispersion of floating material. To advect the particles, velocities from ocean models are often used. Yet, the contribution of different ocean dynamics (at different temporal and spatial scales) to the net Lagrangian transport remains unclear. Here we focus on tidal forcing, only included in recent models, and so our research question is: What is the effect of tidal forcing on virtual particle dispersion at the ocean surface? By comparing a twin simulation with and without tidal forcing, we conclude that tides play an important role in horizontal Lagrangian dynamics. We focus on the Açores Islands region, and we find that surface particles travel a longer cumulative distance and a lower total distance with than without tidal forcing and a higher variability in surface particle accumulation patterns is present with tidal forcing.  The differences found in the surface particle accumulation patterns can be more than a 40\% increase/decrease. This has important implications for virtual particle simulations, showing that more than tidal currents need to be considered.  A deeper understanding of the dynamics behind these tidal forcing impacts is necessary, but our outcomes can already help improve Lagrangian simulations. This is particularly relevant for simulations done to understand the connectivity of marine species and for marine pollution applications.
Model simulations of past climates are increasingly found to compare well with proxy data at a global scale, but regional discrepancies remain. A persistent issue in modeling past greenhouse climates has been the temperature difference between equatorial and (sub-)polar regions, which is typically much larger in simulations than proxy data suggest. Particularly in the Eocene, multiple temperature proxies suggest extreme warmth in the southwest Pacific Ocean, where model simulations consistently suggest temperate conditions. Here we present new global ocean model simulations at 0.1° horizontal resolution for the middle-late Eocene. The eddies in the high-resolution model affect poleward heat transport and local time-mean flow in critical regions compared to the non-eddying flow in the standard low-resolution simulations. As a result, the high-resolution simulations produce higher surface temperatures near Antarctica and lower surface temperatures near the equator compared to the low-resolution simulations, leading to better correspondence with proxy reconstructions. Crucially, the high-resolution simulations are also much more consistent with biogeographic patterns in endemic-Antarctic and low-latitude-derived plankton, and thus resolve the long-standing discrepancy of warm subpolar ocean temperatures and isolating polar gyre circulation. The results imply that strongly eddying model simulations are required to reconcile discrepancies between regional proxy data and models, and demonstrate the importance of accurate regional paleobathymetry for proxy-model comparisons.

Daan Reijnders

and 2 more

To capture the effects of mesoscale turbulent eddies, coarse-resolution Eulerian ocean models resort to tracer diffusion parameterizations. Likewise, the effect of eddy dispersion needs to be parameterized when computing Lagrangian pathways using coarse flow fields. Dispersion in Lagrangian simulations is traditionally parameterized by random walks, equivalent to diffusion in Eulerian models. Beyond random walks, there is a hierarchy of stochastic parameterizations, where stochastic perturbations are added to Lagrangian particle velocities, accelerations, or hyper-accelerations. These parameterizations are referred to as the 1st, 2nd and 3rd order ‘Markov models’ (Markov-N), respectively. Most previous studies investigate these parameterizations in two-dimensional setups, often restricted to the ocean surface. On the other hand, the few studies that investigated Lagrangian dispersion parameterizations in three dimensions, where dispersion is largely restricted to neutrally buoyant surfaces, have focused only on random walk (Markov-0) dispersion. Here, we present a three-dimensional isoneutral formulation of the Markov-1 model. We also implement an anisotropic, shear-dependent formulation of random walk dispersion, originally formulated as a Eulerian diffusion parameterization. Random walk dispersion and Markov-1 are compared using an idealized setup as well as more realistic coarse and coarsened (50 km) ocean model output. While random walk dispersion and Markov-1 produce similar particle distributions over time when using our ocean model output, Markov-1 yields Lagrangian trajectories that better resemble trajectories from eddy-resolving simulations. Markov-1 also yields a smaller spurious dianeutral flux.