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Introduction  

We provide additional details regarding the carbon flux calculations and subsidence 

model analyses performed. Additionally, we present supporting figures related to model 

assessment, drainage density category examples, subsidence-drainage spatial patterns, 

subsidence-drainage behavior in the ex-Mega Rice Project area, and the relationship 

between the drainage canal metrics used within the subsidence model. Finally, we 

provide a data table summarizing the results of the subsidence model. 
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Text S1. 

Carbon flux estimation. Extension of the subsidence rate to carbon flux estimate 

was determined using the approach outlined by Hoyt et al. (2020). Equation 1 assumes 

that carbon loss is equivalent to the volume of peat subsidence multiplied by mean peat 

carbon density. Furthermore, this approach has been found to yield similar results to an 

alternate flux estimation method based on near surface peat characteristics. 

 

CO2 emissions rate = Subsidence rate × Dry Bulk Density × Carbon Density  (1) 

 

Peat carbon density range (53-57%) and dry bulk density range (0.07-0.09 g/cm3) 

were based on a review of in situ measurements by Couwenberg & Hooijer (2013). 

Uncertainty estimates were calculated by aggregating uncertainties around the mean in 

the dry bulk density, carbon density, and subsidence estimates (Equation 2). This 

approach, as outlined by Hoyt et al. (2020), accounts for the fact that errors in dry bulk 

density and carbon concentration are likely correlated with each other but not with 

subsidence. 

 

∂C = mean C√(
∂subsidence

mean subsidence
)

2

+ (
∂DBD

mean DBD
+

∂CD

mean CD
)

2

   (2) 

 

Here, 𝜕𝐶 is the calculated uncertainty in the mean carbon emissions rate, C 

represents carbon emissions, and 𝜕𝑠𝑢𝑏𝑠𝑖𝑑𝑒𝑛𝑐𝑒, 𝜕𝐷𝐵𝐷, and 𝜕𝐶𝐷 represent the 

uncertainties in subsidence, dry bulk density, and carbon density respectively. Standard 

error of the mean was used as the uncertainty in subsidence, while half the range of the 

measurements in peat carbon density and dry bulk density was used as the uncertainty for 

those quantities. Uncertainties in the difference between any two uncertain quantities 

were calculated using the root sum of squares method. 
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Text S2. 

Subsidence modeling. To assess the value of drainage metrics in predicting 

subsidence, we created a model of subsidence. Here, we chose to use a random forest 

model because it captures the non-linear relationship between the variables, minimizes 

the impact of correlated predictor variables, and easily assesses predictor importance. 

Here, two models were compared: one that included land use (from 2007 and 1990), 

distance from the peatland boundary, active fire counts using VIIRS Active Fire product 

from 2015-2019, and drainage canal metrics as predictor variables, and another that 

omitted the drainage metrics of canal length and distance to canal. Following the method 

outlined by Hoyt et al. (2020), distance from peatland boundary was also included in the 

model as a proxy for both peat thickness and distance from the nearest river; distance 

from peatland boundary was calculated for all points using the distance transform 

function in Scipy python bindings applied to a map of SEA peatlands by Miettinen et al. 

(2016). Approximate time since forest conversion was also calculated from the land use 

datasets and included as a predictor; a given location was categorized as changing from 

forest to non-forest in categories of pre-1990, 1990-2007, 2007-2015, or not converted as 

of 2015. Feature importance was calculated using the Gini importance metric. These 

values were then summed for related features – for example, the importance of land use 

information overall was taken as the sum of the 2007 land use, 1990 land use, and time 

since forest conversion predictors. 

Random forest hyperparameters were optimized separately for the two models using 

cross-validation with an 80-20 train-test split. The fitting procedure sought to maximize 

the coefficient of determination R2 in the training data. To ensure that the model was not 

overfitting, we iterated over a randomized distribution of hyperparameter sets as to 

minimize the train-test difference. Training data were removed for areas where the land 

use changed between 2007 and 2015, to eliminate potential noise in the model due to the 

temporal differences between the InSAR and canal datasets. This model was also applied 

only to areas outside of the ex-Mega Rice Project area, which was found to diverge from 

the subsidence-drainage density relationship (Figure S5 and Discussion). Uncertainty in 

the model results were estimated by 5-fold cross validation (with 80-20 train-test split), 

measuring the standard deviation of the cross-validated training set R2, test set R2 values, 

and variable importance values.  
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Figure S1. Validation area results. a) Canals classified by model are shown next to b) 

“true” labels in the model validation area. 
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Figure S2. Test area results. a) Canals classified by model are shown next to “true” 

labels in the model test areas at four sample locations. Each location is a 16 km x 16 km 

square. Test locations were labeled by a different person than the person who labeled 

training and validation areas. b) Map showing test data locations. One location was 

randomly chosen from each geographic quadrant of the study area.  
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Figure S3. Examples of classified drainage density categories. Each example is a 3 km 

x 3 km square. Examples in top row are from the purple box in Sarawak, Malaysia. 

Examples in the second row are from the red box in South Sumatra, Indonesia. 
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Figure S4. Relationship between drainage density and distance to canals. Both 

quantities were used as predictor variables in the random forest subsidence model as 

metrics of drainage. 
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Figure S5. Example maps of subsidence rates and drainage canals. Colors denote 

subsidence rate while black lines denote drainage canals. Gray denotes either non-

peatland areas or areas where subsidence data is unavailable. a) and b) Labuhan Batu 

Regency, North Sumatra, Indonesia, c) Indragiri Hilir Regency, Riau, Indonesia, d) 

Kapuas Regency, Central Kalimantan, Indonesia. 
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Figure S6. Distribution of subsidence grouped by drainage density in ex-Mega Rice 

Project area. Dashed vertical lines show medians for each distribution. Median +/- the 

standard deviation is shown for each distribution next to median line. Positive subsidence 

denotes downward ground surface displacement and CO2 release to the atmosphere. 

Subsidence was measured by Hoyt et al. (2020) using ALOS-1 PALSAR interferometric 

data from 2007-2011. 
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Table S1. Subsidence random forest model results. Uncertainty in the model results 

were estimated by calculating the standard deviation of the average cross-validated 

training set R2, test set R2 values, and variable importance values. Colors in the Feature 

Importance row denote related features, as categorized in the last row. The last row of the 

table denotes the sum of the feature importance values across related predictor features. 

Uncertainties were propagated to the categorical sums via the root sum of squares 

method. 

  


