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Key Points

 We created the first map of drainage canals across Southeast Asian peatlands and find 
that they are present across 65% of the region.

 There is substantial variation in drainage density within land use types, indicating that 
land use is a poor proxy for drainage.

 Peat carbon emissions associated with subsidence are higher in areas with progressively 
more drainage canals.


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Abstract

Drainage canals associated with logging and agriculture dry out organic soils in tropical 
peatlands, thereby threatening the viability of long-term carbon stores due to increased emissions
from decomposition, fire, and fluvial transport. In Southeast Asian peatlands, which have 
experienced decades of land use change, the exact extent and spatial distribution of drainage 
canals are unknown. This has prevented regional-scale investigation of the relationships between
drainage, land use, and carbon emissions. Here, we create the first regional map of drainage 
canals using high resolution satellite imagery and a convolutional neural network. We find that 
drainage is widespread – occurring in at least 65% of peatlands and across all land use types. 
Although previous estimates of peatland carbon emissions have relied on land use as a proxy for 
drainage, our maps show substantial variation in drainage density within land use types. 
Subsidence rates, and corresponding carbon losses from decomposition, are 3.2 times larger in 
intensively drained areas than in non-drained areas, highlighting the central role of drainage in 
mediating peat carbon fluxes. Accounting for drainage canals was found to improve a subsidence
prediction model by 30%, suggesting that canals contain information about subsidence not 
captured by land use alone. Thus, our dataset can be used to improve carbon emissions 
predictions in peatlands and to target areas for hydrologic restoration.

Plain Language Summary

Tropical peatlands are swamp-like environments in which naturally wet conditions slow 
the decomposition of plant carbon that would otherwise be released to the atmosphere. However,
over the past few decades, humans have built drainage canals in Southeast Asian peatlands, due 
to economic pressure for logging and agriculture. These canals are a major threat to peatlands 
because they dry out peat soils, in turn speeding up decomposition and making soils susceptible 
to wildfire. Both of these mechanisms release massive amounts of carbon dioxide to the 
atmosphere, thereby accelerating climate change. Despite these risks, until now the extent of 
drainage in peatlands was unknown due to a lack of drainage canal maps. Here, we create the 
first regional map of drainage canals by training a computer algorithm to identify canals within 
high-resolution satellite images. We find that drainage is widespread – occurring in at least 65% 
of Southeast Asian peatlands. Furthermore, we find that more drainage canals are related to 
progressively larger emissions of carbon dioxide to the atmosphere. These findings suggest that 
it is important to know where and how much drainage is occurring to accurately predict carbon 
dioxide emissions and target areas for restoration.

1 Introduction
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Hydrology governs carbon storage dynamics in tropical peatlands (Cobb et al., 2017; 
Dommain et al., 2010; Hirano et al., 2009). In these wetland environments, persistent flooding 
and anoxic conditions suppress decomposition rates, allowing organic material to accumulate 
over time in deep peat deposits. This process, compounded over millennia, has made Southeast 
Asian (SEA) peatlands one of the world’s largest terrestrial pools of organic carbon: an estimated
67 Gt of carbon are stored in peatlands in Indonesia, Malaysia, and Brunei (Page et al., 2011; 
Warren et al., 2017). In recent decades, this carbon sink has been threatened by human 
disturbance (Leifeld & Menichetti, 2018). Widespread deforestation and conversion of peat 
swamp forests for agricultural use since the 1980’s have left only ~6% of primary forests intact
(Miettinen et al., 2016). Just as importantly, drainage canals constructed for transporting forestry 
products and improving agricultural yields (Bader et al., 2018) directly impact local hydrology 
by lowering water tables (Hooijer et al., 2010; Lim et al., 2012).

Hydrologic changes in peatlands have the potential to destabilize long-term peat carbon 
stocks, resulting in considerable carbon emissions. In situ studies measuring soil CO2 flux found 
that decomposition rates are closely linked to water table depth (e.g., (Hirano et al., 2009; Hoyt 
et al., 2019; Jauhiainen et al., 2005)). As soils dry out, aerobic respiration increases, in turn 
causing higher CO2 fluxes that result in peatland subsidence (Couwenberg et al., 2010; Hooijer et
al., 2012; Jauhiainen et al., 2012). These potential emissions are substantial, as a recent study 
estimated that tropical peatland emissions due to drainage may comprise over 1/3 of the 
greenhouse gas budget for keeping global temperature rise below 2 °C (Leifeld et al., 2019). Peat
fires, which also release massive amounts of carbon dioxide (Page et al., 2002) and cause 
regional haze events with widespread human health effects (Koplitz et al., 2016), have grown in 
recent decades, indicating that drainage is drying out peatlands on a large scale (Dadap et al., 
2019; Field et al., 2009). Furthermore, drainage canals increase fluvial export of dissolved 
organic carbon (Gandois et al., 2020; Moore et al., 2013).

Drainage of peatlands drives each of the regions’ major carbon emissions mechanisms. 
However, the extent, distribution, and spatial patterns of drainage canals are unknown. As a 
result, all recent studies estimating regional carbon emissions have instead relied on emissions 
factors based on land use and land cover type (e.g., (Carlson et al., 2013; Hiraishi et al., 2014; 
Leifeld & Menichetti, 2018; Miettinen et al., 2017; Murdiyarso et al., 2010)). Such estimates 
implicitly rely on the assumption that drainage characteristics are linked to land use type. 
However, land use classifications neglect differences in drainage practices (e.g. prevalence of 
drainage canals, canal and water table depth, canal maintenance, etc.) that may vary widely 
within a given land use class. Consequently, the use of land use-based emissions factors to 
estimate carbon emissions and peatland subsidence at larger scales may introduce significant 
inaccuracies.
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Here, we address these gaps by answering three central questions regarding hydrologic 
disturbance in SEA peatlands: 1) How widespread are drainage canals? 2) How does drainage 
differ between land use classes? and 3) Does drainage predict subsidence from peat oxidation at 
large scales? To answer these questions, we created the first region-wide, high-resolution (5 m) 
map of drainage canals in SEA peatlands, then compared drainage canal density to land use and 
subsidence data. We found that drainage is widespread and that drainage varies considerably 
within land use types. Carbon fluxes associated with peat subsidence are higher in areas with 
progressively higher drainage canal density throughout the region. Furthermore, accounting for 
drainage canals was found to substantially improve a subsidence prediction model, suggesting 
that canals contain information about subsidence not captured by land use alone.

2 Data and Methods

2.1 Development of drainage canal and drainage density maps

We mapped drainage canals across SEA peatlands, an area that encompasses 157,000 
km2 on the islands of Sumatra and Borneo, and on Peninsular Malaysia (approximately 6°S to 
6°N and 95°E to 120°E). This region is estimated to contain ~65% of all soil carbon stored in 
tropical peatlands (Page et al., 2011; Warren et al., 2017). In addition to 5 m resolution maps of 
drainage canals, we also created a second map depicting drainage density at 1 km resolution, 
defined here and throughout the manuscript as the length of drainage canals per unit area (in 
units of km/km2). We chose 1 km resolution for mapping drainage density because it is 
sufficiently coarse to reduce noise in the 5 m canal map but fine enough to capture land use 
features in this region.

2.1.1 Satellite imagery

To create the drainage canal map, we trained a model to identify canals within high-
resolution satellite images from 2017 produced by Planet Labs, Inc. (“Planet”) (Planet Team, 
2017). This dataset has wall-to-wall coverage throughout the study area at high, 5 meter 
resolution. Here, we used the “global_quarterly_2017q3_mosaic Basemap” product, which is a 
global mosaic of RGB images taken by the PlanetScope constellation of CubeSat sensors 
between July and September 2017. This dataset has two salient features that make it well-suited 
for the canal classification task. First, it has high – 5 meter – resolution that is necessary
(Wedeux et al., 2020) for identifying narrow drainage canals that can be just meters in width
(Evans et al., 2019; Jauhiainen & Silvennoinen, 2012). Secondly, this dataset exhibits very low 
cloud cover because Planet’s mosaicking algorithm layers images according to a ranking of 
image quality based on cloud cover and sharpness. The July-September time period was selected 
because it coincides with the SEA dry season (Aldrian & Dwi Susanto, 2003), further reducing 
cloud contamination in the dataset. The Basemap data was used without further correction or 
alteration.
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2.1.2 Training, validation, and test data

To our knowledge, there are no publically available drainage canal maps in the study area
that could be used for model development with complete and correct data, as well as accurate 
georeferencing to within a few meters. Even at the sub-regional scale, such maps are not 
available. Some hand-labeled canals are delineated in Open Street Maps, but these data appear to
be intermittent and of unknown origin and accuracy, likely due to the fact that labeled data on 
that platform are open source and contributor-driven. Thus, it is difficult to gauge the accuracy, 
completeness, and possible biases in the data, and cannot be easily used for scientific research on
drainage extent. Instead, we generated training, validation, and test data by manually labeling the
Planet Basemap satellite images (Fig. 1). This process was performed in Google Earth Engine
(Gorelick et al., 2017) by hand-tracing canals with line vectors, then extruding them to create a 
raster image of canal labels. We also labeled roads as canals because roads are commonly 
accompanied by drainage ditches and/or may inadvertently result in peatland drainage (Lim et 
al., 2012; Miettinen et al., 2012). In total, the labeled imagery spans ~2500 km2 across multiple 
land use types in the Bengkalis and Siak Regencies in Riau Province, Sumatra, Indonesia.

We also labeled images to generate validation and test datasets for assessing out-of-
sample accuracy (Figures S1 and S2 in the Supporting Information). Test data differs from the 
validation data in that it was labeled by an independent labeler, allowing for an assessment of 
potential systematic bias from human labeling error. The validation area were comprised of ~100
km2 or 4% of the labeled data in Riau, and were selected to span multiple land use types and 
drainage densities. Test data locations were selected for four areas spread across the study area, 
chosen via stratified random sampling (Figure S2).

 
Figure 1. Training data for canal classification. a) Example of 5 meter resolution Planet Basemaps imagery used 
for identifying drainage canals. b) Hand-labeled canals in turquoise overlay example image. c) Full training dataset 
in Riau Province, Sumatra, Indonesia. Training area (~2,500 km2) spans all land use types and a wide range of canal 
densities.

2.1.3 Classification Methodology

A convolutional neural network (CNN) was used to identify drainage canals within the 
satellite imagery. Originally developed in the context of handwriting recognition (LeCun et al., 
1998), CNNs have seen an increase in usage since 2012, when they were shown to achieve 
superior performance in image classification tasks (Krizhevsky et al., 2017). Pixel by pixel 
classification schemes fail at identifying drainage canals in images because canals exhibit 
variable radiative spectral signatures; canals can be covered by open water, soil, or vegetation 
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when covered by canopy or overgrown brush. Thus, the ability of CNNs to consider the context 
around a pixel to identify linear shapes is of paramount importance for canal identification. We 
further used a state of the art canal-segmentation algorithm that was originally designed to 
identify roads from satellite imagery (Oner et al., under review) because canals, like roads, are 
narrow linear features of varying width. This algorithm uses a recurrent CNN with U-Net 
architecture (Ronneberger et al., 2015), and incorporates in its objective function loss terms that 
promote global connectivity. As a result, it outperforms other state-of-the-art methods and we 
refer the interested reader to Oner et al. (under review) for more details.

2.1.4 Model Assessment

We assessed canal map accuracy using the quality metric, which is defined as the number
of true positives divided by the sum of true positives, false positives, and false negatives. This 
metric is commonly used in road mapping classification, and is more appropriate than the 
accuracy metric (defined as the number of true positives divided by the sum of true positives, 
true negatives, false positives, and false negatives) due to a high number of true non-canal pixels
(Wiedemann et al., 1998). As noted in Oner et al. (under review), the definition of a true positive
was relaxed to allow for positive matches within a distance of 5 pixels, to avoid penalizing the 
results for minor spatial mismatches in canal location. We also evaluated the accuracy of 
drainage density measurements by calculating the squared Pearson correlation coefficient (r2), 
root-mean-squared-error (RMSE), and bias between retrieved drainage density data to validation 
and test datasets at 1 km resolution. While classification results would ideally be compared to an 
independent “true” dataset that is based on ground-truthed data of canal locations, such a dataset 
does not exist in this region. As such, manually-labeled satellite images are currently the best 
method for generating training and validation data for canal mapping.

2.2 Land Use Analyses

To better understand the relationship between drainage and land use, we compared 
drainage density to land use data obtained from maps by Miettinen et al. (2016), which are based
on hand-delineation of 2015 Landsat images. Our analyses were conducted at 1 km resolution to 
match the selected resolution of our drainage density map. We filtered out pixels where the most 
common land use type did not constitute an absolute majority of the pixel. In accordance with 
the changes in land use classes applied by Miettinen et al. (2017), the ‘Seasonal water’, 
‘Ferns/low shrub’ and ‘Clearance’ categories were combined under the ‘Open undeveloped’ 
designation, to better reflect land use classes used in IPCC emissions factors. Drainage density 
categories were defined by binning drainage density values into 4 classes, as shown in Equation 
1. Examples of canal networks based on these drainage density categories are shown in Fig. 4 
and Figure S3.

Drainagedensity category=¿ (1)

2.3 Subsidence analyses

We analyzed the relationship between drainage and subsidence by comparing to data 
from Hoyt et al. (2020), who measured subsidence across eight 100 x 100 km frames in the study
area. These data were measured using interferometric synthetic aperture radar (InSAR) data from
Japan Aerospace Exploration Agency’s Advanced Land Observing Satellite (ALOS-1), and are 
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the only subsidence measurements in SEA peatlands available over a large area. InSAR-based 
subsidence measurement involves measuring phase changes in the reflected radar beam between 
subsequent passes of an observing satellite, allowing for millimeter-scale sensitivity to changes 
in elevation. We estimated the associated carbon fluxes from the subsidence data using the 
approach outlined by Hoyt et al. (2020), as described further in Text S1 of the Supporting 
Information. Note that these data represent the period 2007-2011, 6-10 years before the drainage 
estimates. 

We plotted probability distributions of subsidence as grouped by drainage density using 
kernel density estimation. The median subsidence and standard error were then calculated for 
each distribution. An independent sample T-test without assumption of equal variance was 
applied to each pair of distributions; p-values <<0.01 for all combinations imply that the 
difference in mean subsidence between all drainage groups is statistically significant. Due to the 
~8 year temporal mismatch between the subsidence and drainage density datasets, we present 
results only for areas where land use change did not occur between 2007 and 2015; however 
inclusion of those areas did not significantly change the results.

We further assessed the value of drainage metrics in predicting subsidence by creating a 
random forest model for subsidence, then evaluating the increase in model explanatory skill (as 
calculated by the coefficient of determination R2) when including drainage metrics. The non-
drainage predictor features used were land use type and distance to peat edge – two features that 
were previously used to predict subsidence at regional scales (Hoyt et al., 2020) – and active fire 
count, which was assumed to contain information regarding the hydrologic state of a given area. 
The drainage metrics used were drainage density (with continuous values, rather than discretized 
by categories) and average distance to canals. Both were calculated at 1 km resolution from the 5
m resolution canal map. Although drainage density and distance to canals have an inverse 
relationship (Figure S4), it is not exactly one-to-one, depending on the details of the canal 
geometry in a given location. Furthermore, distance to canals is a potentially more informative 
predictor of subsidence (relative to drainage density alone), since it is expected to more closely 
match the effect of canals on nearby water table depths than drainage density alone (Sinclair et 
al., 2020). Thus, we chose to include both drainage metrics in the model. Additional details on 
the development of the random forest subsidence model are provided in Text S2 of the 
Supporting Information.

3 Results

3.1 Canal classification accuracy

Our canal classification map exhibits high accuracy in the validation and test areas. 
Visual inspection of the 5 m resolution canal map show that the classification captures the 
overall spatial patterns of drainage canals (Figures S1 and S2). The dataset displays a quality 
score of 0.85 in the validation area, a value that compares favorably to recent road mapping 
efforts (Oner et al., under review). Because traditional binary classification metrics are highly 
imbalanced for canal maps (since most pixels are non-canals), we also assessed model 
performance on drainage density data aggregated to 1 km x 1 km resolution. To make this 
comparison, we created a map of drainage density (Methods, Fig. 3a). Drainage density results in
the validation area displayed high correlation with hand-labeled drainage density data (r2=0.89, 
RMSE = 0.77 km/km2) and were slightly conservative (underestimation of drainage density with 
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bias = -0.47 km/km2 vs. mean 3.08 km/km2; Fig. 2a). A comparison to a separate test dataset was 
also performed; the test data differs from the validation data in that it was labeled by an 
independent labeler, allowing for an assessment of potential systematic bias from human labeling
error. Similar performance between the validation and test results (r2=0.83, RMSE=1.3 km/km2, 
bias = -0.85 km/km2; Fig. 2b) suggest that there is no significant bias in the results due to 
labeling error. 

Figure 2. Canal classification performance. Scatterplots showing drainage density of classified canals 
vs drainage density of labeled canals in a) validation and b) test areas.

3.2 Extensive drainage in SEA peatlands

Our drainage density map (Fig. 3a) reveals that drainage is widespread: 65% of 1 km x 1 
km pixels (spanning 93,000 km2) in SEA peatlands were found to contain drainage canals. Given
the 5 m resolution of the input images, these results pertain only to canals ≥ 5 m width. The 
omission of narrow canals, in addition to the fact that the model exhibits negative bias, suggest 
that the true percentage of drained peatlands is likely even higher than the 65% estimate 
determined here. 

There are notable spatial patterns of drainage density within the drainage canal maps 
(Fig. 3b and 2c). For example, in northern Borneo, there is an abrupt shift in drainage density 
across the border between Malaysia and Brunei, corresponding to differences between 
plantations and conservation areas in each of the two countries. Similarly, areas in Central 
Kalimantan within the ex-Mega Rice Project area (much of which underwent extensive drainage 
in the 1990’s (Houterman & Ritzema, 2009)) still exhibit higher drainage densities than in the 
adjacent and relatively protected Sebangau National Park, which has little drainage. Accordingly,
this map of drainage density (Fig. 3a) and the 5 m resolution canal map (examples shown in Fig. 
3b and 3c) depict varying degrees of peatland hydrologic disturbance.
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Figure 3. Canal classification results. a) Map of drainage density [canal length per peat area, km/km2] across SEA 
peatlands at 1 km resolution as retrieved from 2017 satellite imagery. Non-peatland areas are shown in gray. Red 
boxes outline example areas showing 5 m resolution canal maps in b) Sarawak, Malaysia / Belait, Brunei and c) 
Block B of the former Mega Rice Project area in Central Kalimantan, Indonesia.

For subsequent analyses, we grouped the data into drainage density categories to reduce 
the sensitivity of our results to classification error. These encompass categories of None (no 
canals detected), Low (0 – 2.5 km/km2), Moderate (2.5 – 5 km/km2), and High (>5 km/km2) 
drainage density. To illustrate these categories, examples of the spatial pattern of canals 
underlying each category are shown in Fig. 4 and Figure S3. Areas with High or Moderate 
drainage density are generally indicative of dense, systematic drainage networks and account for 
37% (~36,000 km2) of all drained peatlands.
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Figure 4. Examples of drainage density categories. Classified canals (black) are shown in 3 km x 3 km squares, 
sorted by drainage density categories in each column. Examples were selected from areas in Sarawak, Malaysia and 
West Kalimantan, Indonesia. Drainage density categories of Low, Moderate, and High drainage correspond to 
drainage densities of 0 - 2.5, 2.5 - 5, and > 5 km / km2. Additional category examples are shown in Figure S3.

3.2 Drainage density varies within land use types

Across all of the major land use categories considered, except pristine forests, there is 
substantial variation in drainage density. For example, in industrial plantations, Moderate 
drainage density occurs in 51% of plantations and Low drainage density in 34% (Fig. 5a). 
Similarly, areas classified as smallholder plantations, open undeveloped, and degraded forest 
areas also exhibit considerable variation in drainage density, with each of these land use types 
containing at least two drainage density categories that span 15% of its area or more. Overall, the
variation in drainage density within each land use type (Fig. 5a) indicates that land use 
classifications alone are insufficient to capture hydrologic impacts from drainage canals in SEA 
peatlands.

Drainage density is generally higher in industrial and smallholder plantations than in 
pristine forest, degraded forest, or open undeveloped areas. Plantations comprise 91% of areas 
that have High or Moderate drainage density, and industrial plantations make up 75% of those 
categories alone. In contrast, areas with Low drainage density are more evenly distributed 
between smallholder plantations (42%), industrial plantations (24%), open undeveloped (18%), 
and degraded forest (13%) land use types (Fig. 5b). Although considerable peatland management
efforts and regulation have been focused on drainage in industrial plantations, they comprise 
only 43% of the total drained area.
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Figure 5. Distribution of drainage density in peatlands. a) Land use types are subdivided by drainage density 
categories, defined as None (no detected canals), Low (0 - 2.5 km/km2), Moderate (2.5-5 km/km2), and High 
drainage (> 5km/km2). PF denotes pristine forest, DF- degraded forest, OU- open undeveloped, SHP- smallholder 
plantation, and IP- industrial plantation. b) Drainage density categories are subdivided by land use type. The percent
of total peatland area for a given drainage density is shown next to the bar.

3.3 Drainage density predicts subsidence and peat carbon fluxes

In mapping peatland drainage across the region for the first time, we find that subsidence 
rates (a measure of carbon emissions) are higher in areas with progressively higher drainage 
density. To assess the effect of drainage on carbon fluxes, we compared drainage density to 
subsidence rates measured from 2007-2011 (Hoyt et al., 2020), and found that High drainage 
density areas have median subsidence rates that are 1.3x larger than in Moderate drainage density
areas, 1.5x larger than in Low drainage density areas, and 3.2x larger than in areas with no 
drainage (Fig. 6). This relationship holds even though drainage density data were measured 8 
years after the subsidence measurements. The positive relationship between drainage density and
subsidence, although not always evident, can sometimes be observed visually in maps depicting 
subsidence and canals, with several examples shown in Figure S5. Median subsidence values are 
significantly different between classes (for t-tests applied to distribution means, p<<0.01). 
However, it should be noted that the relationship between drainage density and subsidence does 
not hold in the ex-Mega Rice Project area in Central Kalimantan, Indonesia (Figure S6), likely 
due to the presence of deeper drainage canals and deeper overall water table depths in that area 
(see Discussion). Across all other areas, pixels with high drainage density have subsidence rates 
that are 1.86 ± 0.09 cm/yr greater than in areas with no drainage. These differences in subsidence
rates translate to significantly increased carbon fluxes, as CO2 emissions can be estimated based 
on characteristics of the peat lost during subsidence (see Methods and Supporting Information). 
Assuming a mean peat carbon content of 55% and dry bulk density of 0.08 g/cm3 (Couwenberg 
& Hooijer, 2013), the subsidence rate in intensively drained areas corresponds to 11.8 ± 1.9 
tC/ha/yr of emissions, a large flux relative to the 3.6 ± 0.6 tC/ha/yr emissions rate in areas where 
drainage canals were not detected. 
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Figure 6. Relationship between subsidence and drainage density. Distribution of subsidence rates are shown for 
each drainage density category. Dashed vertical lines show medians for each distribution. Median ± standard 
deviation is shown for each distribution next to median line. Positive subsidence denotes downward ground surface 
displacement and CO2 release to the atmosphere. Subsidence was measured by Hoyt et al. (2020) using ALOS-1 
PALSAR interferometric data from 2007-2011.

Accounting for drainage canals substantially improved our ability to predict subsidence 
rates, suggesting that drainage maps contain important hydrologic information not captured by 
land use alone. Here, we built a random forest model of subsidence (at 1 km resolution), and 
assessed model performance when including drainage metric inputs. Addition of drainage 
metrics to a model with land use, distance to peat edge, and fire-related predictor variables 
increased the amount of explained variability in subsidence by 30% (from R2 = 0.3 to R2=0.39). 
Drainage metrics were the second most important category of information in the random forest 
model (Table S1), underscoring the importance of including canal-based drainage metrics in 
assessing peatland carbon emissions.

4 Discussion

4.1 Implications of widespread drainage 

We created the first region-wide map of drainage canals and found that a majority of SEA
peatlands are drained (Fig. 3a). This map makes it possible to disentangle drainage from land 
use. While most of the literature has focused on assessing impacts of drainage within the context 
of industrial plantations, we found that 57% of areas containing drainage canals (i.e., 57% of 1 
km x 1 km tiles) are outside of industrial plantations, underscoring the importance of considering
drainage impacts across all peatland land use types. Areas with Moderate and High drainage 
density are mainly comprised of industrial plantations, and areas with Low drainage density are 
primarily smallholder plantations. Land use has often been used to parameterize drainage in 
hydrologic models and for upscaling of carbon emissions estimates (e.g., (Mezbahuddin et al., 
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2015; Miettinen et al., 2017; Taufik et al., 2020), and more). However, drainage density was 
found to vary within each land use type (Fig. 5a). This suggests that while drainage may convey 
information about possible land use types, particularly for high drainage densities (Fig. 5b), land 
use is a poor proxy for drainage in the region. Drainage metrics such as drainage density provide 
a means to compare hydrologic impacts at sub-regional scales even within homogenous land use 
types. 

Drainage canals affect respiration rates via a hydrologic link: drainage lowers water 
tables and dries out peat soils, which in turn increase peat oxidation (Carlson et al., 2015; 
Couwenberg et al., 2010; Couwenberg & Hooijer, 2013; Hooijer et al., 2010, 2012; Jauhiainen et
al., 2012). While these mechanisms have previously only been demonstrated at local scales, our 
results confirm the importance of these relationships at regional scales, as subsidence is found to 
vary with drainage density across the region (Fig. 6). This relationship holds despite a roughly 8 
year difference between the subsidence dataset (measured from 2007-2011) and the drainage 
density dataset (2017) which likely adds noise to the relationship. Still, subsidence rates may be 
affected by land use change impacts apart from drainage. For example, non-drainage 
disturbances to peatlands include deforestation, use of fire to clear land, and conversion for 
agricultural use (Dohong et al., 2017). These disturbances, independent of drainage, may in turn 
cause secondary impacts to ecohydrological variables, such as water table depth (Hirano et al., 
2009), soil physical properties such as bulk density, pore structure, and hydraulic conductivity
(Kurnianto et al., 2018; Sinclair et al., 2020; Wells et al., 2016). They can also 
impactevapotranspiration due to shifts in photosynthetic rates and rooting depth (Hirano et al., 
2015; Manoli et al., 2018). Such impacts may also partially explain why non-zero subsidence is 
evident in areas where drainage canals were not detected (Fig. 6). Secondary impacts of land use 
interact with those attributable to drainage, and a full assessment of the effects on subsidence 
would likely require the use of a hydrologic model. While such an analysis is beyond the scope 
of this study, we verified the utility of drainage metrics independent of land use using an 
empirical, random forest model for subsidence. When accounting for drainage metrics in the 
model that already accounted for land use, we found an improvement in model performance of 
40% (Table S1), suggesting that drainage provides significant information about subsidence not 
captured in land use data alone. Thus, our results indicate that future estimates of peatland 
emissions from decomposition would benefit from inclusion of drainage metrics.

Drainage also increases peatland fire risk (van der Werf et al., 2008). In peatlands, 
organic soil is flammable if sufficiently dry, and only soil above the water table can catch fire
(Usup et al., 2004). Accordingly, water tables lowered by drainage canals can increase the 
potential depth of peat fires and fire frequency (Konecny et al., 2016). Drainage impacts can 
extend beyond the areas adjacent to canals. For example, recent studies found that the presence 
of canals affected water table depths hundreds of meters away (Astiani et al., 2017; Evans et al., 
2019) and forest biomass growth up to 1 km away (Wedeux et al., 2020). Accordingly, even 
isolated canals can have far-reaching hydrologic impacts via their impact on water tables in the 
surrounding area, underscoring the utility of their detection. 

4.2 Beyond quantification of drainage density 

The classification of narrow, linear features such as canals from satellite images requires 
high resolution imagery, and can only occur at the resolution of the input data. For example, 
recent attempts to identify logging canals in SEA found that canals were invisible using 30 m 
resolution Landsat images (Wedeux et al., 2020). Tree canopies can obscure narrow canals
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(Jaenicke et al., 2010), but the 5 m resolution data used here allows for increased visibility of 
narrower canals through some vegetation cover. Nevertheless, 5 m resolution is still too coarse to
consistently capture drainage canals <5 m in width, which also contribute to peatland hydrologic 
disturbance. Thus, classification performance may be disproportionately worse in land use types 
with more dense vegetation cover. Accordingly, we recommend that future efforts to map 
drainage canals use imagery at sub-1 m resolution where available. Information from additional 
sources (e.g. remote sensing images from different types of instruments) may also improve canal 
detection, and the deep learning model used here is flexible to allow for multiple input data 
sources. In particular, low frequency microwave observations that can penetrate vegetation could
be promising for use in SEA peatlands (Dadap et al., 2019). However, the use of multiple sensors
may also introduce georeferencing errors if there is any spatial mismatch between datasets. 
Ultimately, our validation results suggest that a single data source with 3 optical channels (red, 
green, and blue wavelength observations) was sufficient for classification of the >5 m canals 
identified here.

In contrast to the observed drainage-subsidence relationship (Fig. 6) that exists 
throughout a majority of the region, the ex-Mega Rice Project area in Central Kalimantan 
(Figure S6), exhibits high subsidence even in areas with low or no apparent drainage. A possible 
explanation for this may stem from the presence of deep drainage canals that lead to lower water 
table depths compared to the rest of SEA. In this area, canals are on average 2 m deep 
(significantly deeper than the average canal depth elsewhere in the region) and in some cases 
extend multiple meters down to the underlying clay substrata (Suryadiputra et al., 2005). Such 
deep canals coupled with a lack of flow control structures have resulted in canal water levels that
are shifted multiple meters below the ground surface (Vernimmen, Hooijer, Mulyadi, et al., 
2020). Deep water levels within canals, in turn, may influence water table depths at further 
distances from the canals. In comparison, control structures such as weirs are now generally 
employed in other parts of the region (in part informed by the early failures of the ex-Mega Rice 
Project) aiming to maintain water table levels within 1 m of the ground surface (Lim et al., 
2012). Accordingly, tracking of canal water levels is needed to better understand the impact of 
drainage density and canal layout on water table depths away from canals. Lidar measurements, 
previously used in tropical peatlands for mapping carbon stocks (Vernimmen, Hooijer, Akmalia, 
et al., 2020) and for estimating carbon losses from burn scars (Ballhorn et al., 2009; Simpson et 
al., 2016) are especially promising for measuring canal water levels (Rahman et al., 2017; 
Vernimmen, Hooijer, Mulyadi, et al., 2020). Widespread lidar measurements would complement 
the drainage metrics introduced in this study.

4.3 Potential applications of canal maps 

In this study, we introduced a method for mapping drainage canals using satellite imagery
and deep learning; our methodology is transferable to other geographic locations that are 
sensitive to drainage, such as temperate and boreal peatlands. Currently, drainage canals are less 
prevalent in other tropical peatlands such as those in the Congo and Amazon river basins, which 
have so far experienced less extensive land use change (Dargie et al., 2019; van Lent et al., 2019;
Lilleskov et al., 2019). However, increasing economic pressure for timber extraction and oil 
palm, coupled with a dearth of protective regulations, indicate these basins are similarly 
vulnerable to the same path of peatland degradation as in SEA (Lilleskov et al., 2019). Long-
term drying in European peatlands has similarly been attributed in part to anthropogenic 
drainage, and a renewed focus on rewetting via canal-blocking has emerged (Swindles et al., 
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2019). Thus, there is a clear need to track the global expansion of peatland drainage. The 
growing availability of publically available, high-resolution satellite imagery, combined with our
classification method, open the door for monitoring drainage canal development in global 
peatlands across both space and time.

The drainage density maps produced here can also be used towards representing drainage
in modeling studies, both at individual sites and across larger areas. Recent investigations to 
simulate water table depth have relied on assumptions of drainage based on land use type to 
parametrize subsurface flow and boundary conditions in hydrologic models (e.g., (Mezbahuddin 
et al., 2015; Taufik et al., 2020)). Other recent studies have modeled fire risk in peatlands 
considering a wide range of factors (e.g., (Sloan et al., 2017; Sze & Lee, 2018)), but similarly 
have had to rely on land use metrics and road datasets as a proxies for drainage, due to the lack 
of regional drainage density information. Our dataset will facilitate more direct parametrization 
of drainage in both mechanistic and statistical modeling efforts. 

In addition to drainage density, canal maps provide information about canal network 
shapes which, in conjunction with natural rivers, determine the carbon storage potential in 
peatlands by altering the shape of the water table (Cobb et al., 2017). The thickness of the vadose
zone determines subsidence rates, so canal maps can provide information about which areas are 
likely to experience subsidence, as observed in Figure S4. Long-term peatland storage is also 
strongly governed by peat dome shape, which in turn is determined by boundary conditions. In 
drained systems, canal spacing limits the peat that can be preserved by waterlogging (Cobb et al.,
2020), so canal maps are essential for determining the potential capacity for peat carbon storage. 
Accordingly, canal maps will be essential for determining not only carbon fluxes in the present, 
but also long-term carbon storage potential for years to come.

Over the past decade, there has been increasing interest in the potential of peatland 
hydrological restoration to reduce greenhouse gas emissions (Leifeld et al., 2019; Morecroft et 
al., 2019; Wilson et al., 2016). Although questions remain about the potential for overall 
reductions in greenhouse gases, due to compensating methane emissions (Hemes et al., 2018), 
the long term mitigation potential of rewetting via canal-blocking likely outweighs the increase 
in methane emissions (Günther et al., 2020). Thus, an understanding of drainage conditions, 
including canal mapping, should be a crucial component for identifying areas of peatland 
degradation. When combined with other datasets in peatlands such as remotely sensed soil 
moisture (Dadap et al., 2019), our maps may help peatland managers prioritize areas for 
hydrologic restoration. The results presented here further suggest that drainage canal maps could 
be used to more accurately represent peatland carbon emissions and hydrology, and therefore 
will serve as an important tool for protecting peatland ecosystems.
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