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Abstract 23 

We develop a data assimilation scheme with the Icosahedral Non-hydrostatic Earth System 24 

Model (ICON-ESM) for operational decadal and seasonal climate predictions at the German 25 

weather service. For this purpose, we implement an Ensemble Kalman Filter to the ocean 26 

component as a first step towards a weakly coupled data assimilation. We performed an 27 

assimilation experiment over the period 1960-2014. This ocean-only assimilation experiment 28 

serves to initialize 10-year long retrospective predictions (hindcasts) started each year on 1 29 

November. On multi-annual time scales, we find predictability of sea surface temperature and 30 

salinity as well as oceanic heat and salt contents especially in the North Atlantic.  The mean 31 

Atlantic Meridional Overturning Circulation is realistic and the variability is stable during the 32 

assimilation. On seasonal time scales, we find high predictive skill in the tropics with highest 33 

values in variables related to the El Niño/Southern Oscillation phenomenon. In the Arctic, the 34 

hindcasts correctly represent the decreasing sea ice trend in winter and, to a lesser degree, also in 35 

summer, although sea ice concentration is generally much too low in both hemispheres in 36 

summer. However, compared to other prediction systems, prediction skill is relatively low in 37 

regions apart from the tropical Pacific due to the missing atmospheric assimilation. In addition, 38 

we expect a better fine-tuning of the sea ice and the oceanic circulation in the Southern Ocean in 39 

ICON-ESM to improve the predictive skill. In general, we demonstrate that our data assimilation 40 

method is successfully initializing the oceanic component of the climate system. 41 

 42 

Plain Language Summary 43 

The Icosahedral Non-hydrostatic Earth System Model (ICON-ESM) became available recently. 44 

The German weather service plans to use the ICON model for operational decadal and seasonal 45 

climate predictions. We develop a data assimilation at first for the ocean component that 46 

integrates ocean temperature and salinity observations into ICON-ESM in order to start decadal 47 

and seasonal climate predictions. We assess the quality of our system with retrospective 48 

predictions over the period 1960-2014. We find decadal predictability of the ocean surface 49 

temperature and heat content globally and especially in the North Atlantic. Moreover, we find 50 

seasonal predictability for variables like sea surface height, surface temperature, air pressure and 51 

precipitation particularly in the tropical Pacific. The next step of the data assimilation would be 52 
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the additional assimilation of atmospheric observations. As a consequence of the missing 53 

atmospheric assimilation in our system, the prediction skill is relatively low in the extratropics. 54 

Moreover, a more realistic sea ice cover in ICON-ESM could also improve the predictability at 55 

the poles. With the implementation of the oceanic data assimilation into ICON-ESM, the first 56 

step towards our next-generation decadal and seasonal prediction system is successfully 57 

accomplished. 58 

 59 

1 Introduction 60 

The German Meteorological Service “Deutscher Wetterdienst” (DWD) plans to update its 61 

currently used climate model for operational seasonal and decadal climate predictions from the 62 

Max-Planck-Institute Earth System Model (MPI-ESM) to the Icosahedral Non-hydrostatic 63 

Model (ICON; Zängl et al., 2015). ICON is a joint development between DWD, Max Planck 64 

Institute for Meteorology (MPI-M), the Karlsruhe Institute for Technology (KIT), the German 65 

Climate Computing Center (DKRZ) and other institutions in Germany and Switzerland. The 66 

ICON-Earth System Model (ICON-ESM; Jungclaus et al., 2022) has become available recently. 67 

We develop - as a first step towards a weakly coupled assimilation - a data assimilation scheme 68 

for the oceanic component. 69 

 70 

Decadal climate prediction (Smith et al., 2019) is a relatively new field and research activities 71 

are supported by the Decadal Climate Prediction Project (DCPP) of the World Climate Research 72 

Program (WCRP), which is contributing to the Coupled Model Intercomparison Project (CMIP) 73 

phase 5 (CMIP5; Taylor et al., 2012) and phase 6 (CMIP6; Boer et al., 2016). Following an 74 

initiative of WCRP’s Grand Challenge on Near Term Climate Prediction (Kushnir et al. , 2019), 75 

decadal climate predictions are coordinated by the Lead Centre for Annual-to-Decadal Climate 76 

Prediction (LC ADCP) of the World Meteorological Organization (WMO). About a dozen global 77 

producing centers and other contributing centers publish decadal climate predictions in this 78 

framework (Hermanson et al., 2022). 79 

 80 

Seasonal climate predictions, on the other hand, are well established. The WMO Lead Centre for 81 

Long-Range Forecast Multi Model Ensemble (LC LRFMME) and the WCRP’s Climate System 82 
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Historical Forecast Project (CHFP; Tompkins et al., 2017) organize seasonal climate prediction 83 

activities. Another platform for coordinated seasonal predictions is established by the European 84 

Union’s COPERNICUS program (https://climate.copernicus.eu). The Working Group on 85 

Seasonal to Interannual Prediction (WGSIP) has changed its name recently to the Working 86 

Group on Subseasonal to Interdecadal Prediction (WGSIP) to combine the efforts on the two 87 

time-scales. 88 

 89 

Most of the seasonal and decadal climate prediction systems nowadays use a weakly coupled 90 

data assimilation, i.e. data assimilation is applied to each component of the climate system 91 

separately. Examples for ocean-only initializations are from the beginning of decadal climate 92 

predictions (e.g., Keenlyside et al., 2008; Pohlmann et al., 2009; Dunstone, 2010; Swingedouw 93 

et al., 2013). Strongly coupled data assimilation, i.e. a common data assimilation for all climate 94 

components, might reduce the imbalances between the components caused by the weakly 95 

coupled data assimilation further (Penny et al., 2019). Eventually, we are planning a strongly 96 

coupled seasonal to decadal data assimilation system. The assimilation of the oceanic component 97 

with ICON-ESM is our first step to approach this aim. 98 

 99 

A multi-initialization comparison (Polkova et al., 2019) with our previous climate model MPI-100 

ESM has shown best results for the Ensemble Kalman Filter (EnKF) method of the Parallel Data 101 

Assimilation Framework (PDAF; Nerger & Hiller, 2013). With this method, we assimilate 102 

temperature and salinity profiles from observations into ICON-ESM over the past ca. 55 years to 103 

obtain initial conditions for the decadal hindcast simulations. Evidently, a model-consistent 104 

initialization strategy avoids some of the problems emerging from a combination of employing 105 

two different (ocean) models (Brune et al., 2018), e.g. as has been the case in DWD’s previous 106 

operational seasonal (Fröhlich et al., 2021) and decadal (Pohlmann et al., 2019) prediction 107 

systems, which were initialized from an oceanic reanalysis product. 108 

 109 

For high quality climate predictions, it is necessary to preserve the atmosphere-ocean feedback, a 110 

task that is not easy to sustain (Brune & Baehr, 2020). With our approach of initializing only the 111 

oceanic part, we aim to answer the question for which part of the climate system, that is, with a 112 

focus on the ocean itself or the atmosphere by feedback, this method already yields realistic 113 
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predictions, and which parts remain to be improved. We organize this paper as follows: In 114 

chapter 2, we introduce the experiments and methods and we present our analysis in chapter 3. In 115 

chapter 4, we conclude with a summary and discussion of our results. 116 

 117 

2 Method 118 

We employ ICON-ESM in the configuration used for the CMIP6 historical simulations 119 

(Jungclaus et al., 2022) using transient external forcing from the CMIP6 (Eyring et al., 2016). 120 

ICON-ESM consists of the components ICON-Atmosphere (Giorgetta et al., 2018; Crueger et 121 

al., 2018), ICON-Ocean (Korn, 2017), ICON-Land based on the Jena Scheme for Biosphere 122 

Atmosphere Coupling in Hamburg (JSBACH; Reick et al., 2021) and ICON-Biogeochemistry 123 

based on the Hamburg Ocean Carbon Cycle (HAMOCC; Maerz et al., 2020). Ocean and 124 

atmosphere are coupled with the “Yet-Another-Coupler” (YAC; Hanke et al., 2016). We use the 125 

ICON-ESM at a resolution of 160 km (R2B4) in the ICON-Atmosphere and 40 km (R2B6) in the 126 

ICON-Ocean. Jungclaus et al. (2022) have evaluated the Diagnosis, Evaluation, and 127 

Characterization of Klima (DECK) simulations with ICON-ESM against observations and find 128 

that the mean state and variability is in general similar to other climate models from the CMIP5 129 

and CMIP6. 130 

 131 

We produce retrospective decadal climate predictions (hindcasts) with ICON-ESM following the 132 

Decadal Climate Prediction Project protocol-A (DCPP-A; Boer et al., 2016). In a first step, we 133 

produce an ensemble of 10 assimilation runs with the PDAF EnKF (Nerger & Hiller, 2013) over 134 

the period 1960-2014. Monthly ocean temperature and salinity profiles from the EN.4.2.1 data set 135 

(Good et al., 2013) are assimilated into ICON-ESM, which is then integrated to the next 136 

assimilation step a month later, when the cycle is repeated (Fig. 1). In a second step, we initialize 137 

an ensemble of 10 decadal hindcast simulations from the (10) assimilation runs started in each year 138 

on the first of November. 139 

 140 

The PDAF EnKF offers various parameter settings. In our oceanic assimilation implementation 141 

with PDAF EnKF we use a localized singular evolutive interpolated Kalman filter (SEIK; Pham, 142 

2001; Nerger & Hiller, 2013). The horizontal localization range determines the spread of the 143 
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temperature and salinity observations to neighboring grid cells and the error range determines the 144 

decay of the SST observations. We use no vertical spread of the observations and let the climate 145 

model transport the information during the relatively long assimilation step of one month. Based 146 

on our experience from previous experiments (Brune et al., 2015), we choose in the present study 147 

a local range of 5° and the error range of 1 K and 1 PSU for the temperature and salinity, 148 

respectively. 149 

 150 

In the following chapter, we analyze the hindcasts with respect to their lead-time dependent 151 

prediction skill. While many different skill metrics exist, we choose the Pearson’s correlation 152 

coefficient (Wilks, 2011) because of its independence on the bias of the hindcasts. Eventually, 153 

 
 

Figure 1. Schematic of the data assimilation. The PDAF Ensemble Kalman Filter assimilates 
once a month oceanic salinity and temperature profiles into ICON-ESM. The assimilation 
step is followed by a one-month ICON-ESM run with 10 ensemble members. The procedure 
is repeated in the next assimilation cycle. This way, the assimilation run is performed over 

the period 1960-2014 and provides the initial conditions for the decadal hindcast simulations. 
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post-processing can correct the biases in the climate predictions (Pasternack et al., 2018). We 154 

define the lead-time l dependent correlation coefficient cor as  155 

 156 

𝑐𝑜𝑟𝑙 =
∑ (𝑥𝑖𝑙−𝑥̅𝑙)(𝑦𝑖𝑙−𝑦̅𝑙)
𝑛
𝑖=1

√∑ (𝑥𝑖𝑙−𝑥̅𝑙)2
𝑛
𝑖=1 √∑ (𝑦𝑖𝑙−𝑦̅𝑙 )2

𝑛
𝑖=1

                                (1) 157 

 158 

with x represents the ensemble mean hindcast variable of interest and y represents the observed 159 

value; i.e. their covariances divided by the product of their standard deviations. Correlation 160 

values close to one express a perfect prediction, values around zero mean no prediction skill and 161 

negative values indicate an anti-relation between the prediction and observation. We estimate the 162 

significance of the correlation values with a student’s t-test (Wilks, 2011). To estimate the 163 

decadal prediction skill, we analyze annual means for different lead-years (ly). We start the 164 

decadal hindcasts on the first of November in each year. Ly1 represents the average over the 165 

following calendar year, starting January first hence the last complete year is ly9. We also 166 

analyze seasonal prediction skill for lead months (lm) 2-4, which represents the average over 167 

December, January and February (DJF) of our hindcasts. 168 

 169 

3 Results 170 

3.1 Decadal predictability  171 

Sea surface temperature (SST) variability of ICON-ESM hindcasts exhibits high correlation 172 

values with observations from the Hadley Centre Sea Ice and Sea Surface Temperature data set 173 

(HadISST; Rayner et al., 2003) over the globe for ly1 (Fig. 2a) and averages over ly1-5 (Fig. 2c). 174 

We find high prediction skill in the Atlantic, Indian Ocean and western Pacific, while in parts of 175 

the eastern Pacific predictability is low. The comparison of our results with the verification of 176 

other models from the LC ADCP (https://hadleyserver.metoffice.gov.uk/wmolc/; Hermanson et 177 

al., 2022) shows that the skill in our system is lower in the subtropical gyres of the Pacific and 178 

parts of the Southern Oceans and elsewhere competitive. 179 

 180 

Some of the regions with high SST prediction skill retain high correlation values also for the 181 

upper 700m oceanic heat content (HC-700m), referenced against observations from the Frontier 182 
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Research System for Global Change (Ishii et al., 2006), but the regions with significant 183 

predictive skill are much smaller for averages over ly1 as well as ly1-5 (Fig. 2b, d). At least 184 

some of the areas with low prediction skill of SST and HC-700m can be attributed to the missing 185 

atmospheric data assimilation in our system. The wind has a strong influence on the 186 

predictability by its impact on ocean dynamics and mixed layer depths (Thoma et al., 2015). 187 

Another source of prediction skill from the atmosphere is the air temperature that is directly 188 

influencing the temperature of the ocean by heat fluxes. Other atmospheric sources of 189 

predictability stem from effects that are more indirect such as precipitation, cloud effects on 190 

radiation, evaporation, etc.  191 

 192 

We further analyze the North Atlantic SST and HC-700m as the average over the region 60°W-193 

10°W, 50°N-60°N, where we found high predictive skill in our previous prediction system 194 

(Kröger et al., 2018). The time series of the observed North Atlantic SST and HC-700m show a 195 

low-frequency modulation with low values in the period 1970-1995 and high values thereafter 196 

 

 
Figure 2. Correlation of (a, c) sea surface temperature (SST) and (b, d) upper 700m heat 
content (HC-700m) from the ICON-ESM hindcasts with observations (HadISST and Ishii, 
respectively) for lead-years 1 (a, b) and 1-5 (c, d). The correlations are based on averages of 

10 ensemble members over the period (a, c) 1961-2015 and (b, d) 1961-2012, respectively. 
Stippling indicates regions with non-significant values at the 95% level according to a t-test. 
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(Fig. 3a, b). The hindcasts with ly1 and averages over ly1-5 follow the observed signal and the 197 

correlation coefficients are statistically significant. For North Atlantic SST the correlation values 198 

are 0.78 and 0.86 for ly1 and ly1-5, respectively. Additionally, for North Atlantic HC-700m the 199 

correlation values are 0.77 and 0.74 for ly1 and ly1-5, respectively. 200 

 201 

Next, we give an overview of the correlation values for all possible periods with different start 202 

and end lead years (Fig. 3c, d). The idea to display the correlation values in this format was 203 

 
 

 
 

Figure 3. Time series of ensemble and North Atlantic mean (60°W-10°W, 50°N-60°N) (a) 
sea surface temperature (SST) and (b) upper 700 m heat content (HC) anomalies from 
ICON-ESM hindcasts (red) and observations (HadISST and Ishii, respectively, black). The 
time-series of the observations are shown for annual (thin) and 5 year-running means (thick), 

and the hindcasts for lead-year 1 (thin) and lead-years 1-5 (thick). The diagrams below 
display the correlation coefficients for different lead-year ranges defined by the start and end 
years of the time-series for the North Atlantic SST (c) and HC-700m (d). Framed tiles 
indicate significant values at the 95% level according to a t-test. 
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introduced by Athanasiadis et al. (2020) where it was applied to decadal predictability of 204 

blocking and North Atlantic Oscillation. For North Atlantic SST, highest correlation values 205 

(cor=0.87) are present for ly1-6, ly1-7 and ly1-8 and the correlation remains statistically 206 

significant up to ly6-8 and ly5-9. For North Atlantic HC-700m the highest correlation value 207 

(cor=0.81) is present for ly1 and the correlation is significant up to ly1-7. 208 

 209 

 

 
 

Figure 4. Correlation of (a, c) sea surface salinity (SSS) and (b, d) upper 700m salt content 
(SC-700m) from the ICON-ESM hindcasts with observations (Ishii) for lead-years 1 (a, b) 

and 1-5 (c, d). The correlations are based on averages of 10 ensemble members over the 
period 1961-2012. Stippling indicates regions with non-significant values at the 95% level 
according to a t-test. 
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The sea surface salinity (SSS) variability of the ICON-ESM hindcasts exhibits high correlation 210 

values with observations from the Frontier Research System for Global Change (Ishii; Ishii et al., 211 

2006) in the North Atlantic and central tropical and subtropical Pacific for averages over the ly1 212 

(Fig. 4a) and ly1-5 (Fig. 4c) while elsewhere the prediction skill is low. The upper 700m oceanic 213 

salt content (SC-700m) shows high correlation values with observations from the Frontier 214 

Research System for Global Change (Ishii et al., 2006) in the North Atlantic and tropical Atlantic  215 

(Fig. 4b, d). Similar to the SSS, the SC-700m prediction skill is low apart from these regions. 216 

 

 
Figure 5. Time series of ensemble and North Atlantic mean (60°W-10°W, 50°N-60°N) (a) 

sea surface salinity (SSS) and (b) upper 700 m salt content (SC) anomalies from ICON-ESM 
hindcasts (red) and observations (Ishii, black). The time-series of the observations are shown 
for annual (thin) and 5 year-running means (thick), and the hindcasts for lead-year 1 (thin) 
and lead-years 1-5 (thick). The diagrams below display the correlation coefficients for 

different lead-year ranges defined by the start and end years of the time-series for the North 
Atlantic SSS (c) and SC-700m (d). Framed tiles indicate significant values at the 95% level 
according to a t-test. 
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Salinity observations are sparser than temperature observations and SSS observations from 217 

satellites are available only since 2009 (Olmedo et al., 2021) and too short for the evaluation of 218 

the prediction skill. We find SSS and SC-700m predictability only in regions where salinity 219 

measurements are available over the whole assimilation period.  220 

 221 

We analyze time series of area averaged SSS and SC-700m for the same North Atlantic region as 222 

for SST/HC-700m (60°W-10°W, 50°N-60°N). The time series of the observed North Atlantic 223 

SSS and SC-700m show a similar low-frequency signal as before with low values in the period 224 

1970-1995 and high values thereafter (Fig. 5a, b). The amplitudes of the simulated SSS and SC-225 

700m are larger than in the observations. For North Atlantic SSS the correlation values are 0.61 226 

and 0.69 for ly1 and ly1-5, respectively. Additionally, for North Atlantic SC-700m the 227 

correlation values are 0.73 and 0.74 for ly1 and ly1-5, respectively.  228 

 229 

The overview of the correlation values in the diagrams below the time series (Fig. 5c, d) show 230 

that for North Atlantic SSS, highest correlation values (cor=0.82) are present for ly1-9 and the 231 

correlation remains statistically significant up to ly6-9. For North Atlantic SC-700m the highest 232 

correlation value (cor=0.79) is present for ly3, ly2-2 and ly2-3 and the correlation is significant 233 

up to ly1-7 and ly5. The predictability in the North Atlantic region is important via its 234 

teleconnections for example for the European climate (e.g. Borchert et al., 2019). 235 

 236 

3.2 Mean state and variability of AMOC 237 

The long-term mean of the Atlantic Meridional Overturning Circulation (AMOC) of the 238 

assimilation run over the period 1960-2014 shows the expected structure (e.g. Jackson et al., 239 

2019) with an upper cell with a maximum of 18 Sv (1 Sverdrup=106 m3 s-1) at about 25°N in 240 

1000m depth and a weak counter-cell below (Fig. 6a). We show additionally the time series of 241 

AMOC at 26°N (Fig. 6b). The observed strength of the AMOC from the Rapid Climate Change 242 

Programme (RAPID) array (Moat et al., 2020) is of comparable strength. The AMOC from the 243 

assimilation has a positive trend in the 1960s and is thereafter relatively stable. However, the 244 

assimilation does not show the observed strength of the decline of more than 4 Sv around 2009. 245 

We argue that the overlap of only 12 years between the start of the observations in 2004 and the 246 
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end of ly1 of our hindcast in 2015 is too short for a robust estimate of the prediction skill. The 247 

Intergovernmental Report on Climate Change (IPCC) 6th assessment report (AR6; Arias et al., 248 

2021) indicates that the AMOC at 30°N was relatively stable in the 20th century and is expected 249 

to decrease over the 21st century. That way, the relatively stable AMOC during the period 1970-250 

2000 looks reasonable but we do not see signs of a decreasing AMOC in our hindcasts in the first 251 

two decades of the 21st century.  252 

 253 

3.3 Seasonal predictability of surface variables  254 

We analyze the seasonal predictability as the average of lm2-4. Since we started our hindcasts on 255 

every 1 November, this represents the average over December, January and February (DJF). 256 

Table 1 gives an overview of the correlation values of the seasonal hindcasts against 257 

observations for different variables. The correlation of sea surface height (SSH) of the hindcasts 258 

with satellite observations from the Archiving, Validation and Interpretation of Satellite 259 

Oceanographic Data project (AVISO; Fablet et al., 2018) is high in the tropical Pacific and 260 

Indian Ocean (Fig. 7a). The correlation of surface temperature (TS, i.e. SST over the ocean and 261 

land surface temperature over land) with observations from Goddard Institute for Space Studies 262 

 

 
 
Figure 6. (a) Ensemble mean of the Atlantic meridional overturning circulation (AMOC) 
averaged over the period 1960-2014 from the assimilation. (b) Time series of ensemble mean 
AMOC anomalies at 26°N in 1000m depth from ICON-ESM hindcasts (red) and observations 

(RAPID, black). 
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Surface Temperature Analysis (GISTEMP; Lenssen et al., 2019) is also high in these regions and 263 

additionally in large parts of the North Atlantic and North Pacific (Fig. 7b).  264 

 265 

Our prediction system is capable of predicting El Niño/Southern Oscillation (ENSO) events on 266 

seasonal time-scales. Important for ENSO is the variability in the NINO3.4 region, representing 267 

averaged values in the region 170°W-120°W, 5°S-5°N. The NINO3.4 SSH hindcasts of boreal 268 

winter (DJF) largely agree with satellite observations (cor=0.80, Fig. 7c). The agreement of the 269 

NINO3.4 SST anomalies with observations from GISTEMP also lies in this range (cor=0.79, 270 

Fig. 7d). The prediction skill from other models is usually in the range of cor=0.90 for the shorter 271 

period from 1980-2001 (Jin et al., 2008). Our NINO3.4 SST prediction lies also in this range for 272 

the shorter period (cor=0.89). 273 

 274 

Next, we analyze some atmospheric variables that are associated with ENSO. The correlation of 275 

precipitation of the hindcasts with observations from the Global Precipitation Climatology 276 

Project (GPCP; Adler et al., 2003) is significantly positive only in relatively small regions in the 277 

East and West Pacific (Fig. 8a). ENSO teleconnections are biased in ICON-ESM in particular at 278 

the equator (Jungclaus et al., 2022). We define an East Pacific precipitation index as the average 279 

over the region 160°E-90°W, 10°S-10°N. The precipitation anomalies of the hindcasts in the 280 

East Pacific correspond with observations in this region and season (cor=0.82, Fig. 8c). We also 281 

 
Table 1. Overview about the seasonal boreal winter prediction skill values for the different 
variables, regions and periods (see text). Numbers in bold indicate significant values at the 
95% level according to a t-test. 

 
Variable SSH TS Precipitation SLP  

Region NINO3.4 NINO3.4 East 

Pacific 

West 

Pacific 

Tahiti Darwin 

Period 1993-2015 1961-2015 1979-2015 1979-2015 1961-2015 1961-2015 

Correlation 0.80 0.79 0.82 0.72 0.55 0.59 

Reference AVISO GISTEMP GPCP HadSLP2 

Citation Fablet et 
al., 2018 

Lenssen et 
al., 2019 

Adler et al., 2003 Allan & Ansell, 2006 
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define a West Pacific precipitation index as the average over the region 110°E-140°E, 5°N-25°N. 282 

The West Pacific precipitation anomalies of the hindcasts agree also well with observations in 283 

this region and season (cor=0.72, Fig. 8e).  284 

 285 

For sea level pressure (SLP), we find high correlation values of the hindcasts against 286 

observations from the Hadley Centre Sea Level Pressure dataset (HadSLP2; Allan & Ansell, 287 

2006) in the East Pacific and West Pacific/Indian Ocean (Fig. 8b). The two regions are 288 

associated with the Southern Oscillation Index (SOI). We show two times series for SLP. We 289 

define the SLP index near Tahiti as the average over the region 145°W-155°W, 0°-20°S. The 290 

correlation of the Tahiti SLP data with observations is statistically significant (cor=0.55, Fig. 291 

8d). We define the SLP index near Darwin as the average over the region 125°E-135°E, 0°-15°S. 292 

 
 
Figure 7. Correlation of (a) sea surface height (SSH) and (b) surface temperature (TS) from 
the ICON-ESM hindcasts with observations (AVISO and GISTEMP, respectively) for lead-

month 2-4 (DJF). The correlations are based on averages of 10 ensemble members over the 
periods (a) 1993-2015 and (b) 1961-2015. Stippling indicates regions with non-significant 
values at the 95% level according to a t-test. (c, d) Time series of (c) SSH and (d) TS 
anomalies in the NINO3.4 region (5°S-5°N, 170°-120°W) from observations (AVISO and 

GISTEMP, respectively, black) and ICON-ESM hindcasts (red). 
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The positive correlation of the Darwin SLP data with observations is also statistically significant 293 

(cor=0.59, Fig. 8f). 294 

 295 

 

 
 

Figure 8. Correlation of (a) precipitation (Precip) and (b) sea level pressure (SLP) from the 
ICON-ESM hindcasts with observations (GPCP and HadSLP2, respectively) for lead-month 
2-4 (DJF). The correlations are based on averages of 10 ensemble members over the periods 
(a) 1979-2015 and (b) 1961-2015. Stippling indicates regions with non-significant values at 

the 95% level according to a t-test. (c, d) Time series of Precip anomalies in the (c) East 
Pacific (5°S-5°N, 170°-120°W) and (d) West Pacific (5°S-5°N, 170°-120°W) from 
observations (black) and ICON-ESM hindcasts (red). (e, f) Time series of SLP anomalies 
near (c) Tahiti (5°S-5°N, 170°-120°W) and (f) Darwin (5°S-5°N, 170°-120°W) from 

observations (black) and ICON-ESM hindcasts (red).  
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3.4 Mean state and predictability of sea ice  296 

We show averages of the Arctic and Antarctic sea ice concentration (SIC) as the mean over the 297 

period 1979-2014 together with the sea ice extent (SIE, i.e. the area with at least 15% SIC) from 298 

the assimilation and observations from HadISST (Rayner et al., 2003) in the respective summer 299 

 
 

 
 
Figure 9. Mean sea ice concentration (SIC) of the assimilation averaged over the period 

1979-2014 in the (a, b) Northern Hemisphere (NH) and (c, d) Southern Hemisphere in (a, c) 
March and (b, d) September (colored). A dashed and full line indicates the sea-ice extent 
(area with at least 15% ice-concentration) from the assimilation and observations, 
respectively. 
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and winter (Fig. 9). In the respective winter, the long-term mean of the SIE from the assimilation 300 

run shows relatively good agreement with observations in both hemispheres (Fig. 9a, d). In the 301 

Arctic, positive deviations from the observed long-term mean SIE are present in the Labrador 302 

and Bering Seas in winter (Fig. 9a). In the Antarctic, negative deviations from the observed SIE 303 

climatology are present almost circumpolar in winter (Fig. 9d). In summer, the SIE is much too 304 

low compared with observations in both hemispheres (Fig. 9b, c). In the Arctic, regions with SIC 305 

exceeding the 15% threshold can only be found in a relatively small area at the north coast of 306 

Greenland and extending further east, whereas in observations the Arctic remains almost 307 

completely ice covered in summer. In the Antarctic, regions with SIC exceeding the 15% 308 

threshold are limited to small areas in the Ross and Weddell Seas, while the observed sea ice 309 

cover remains much larger in summer. The sea ice biases in our assimilation experiment are 310 

similar to the biases in the ICON-ESM historical simulations (Jungclaus et al., 2022).  311 

 312 

We analyze the SIE correlation of the hindcasts with observations from the National Snow and 313 

Ice Data Center (NSIDC; Fetterer et al., 2017) for the months with maximum and minimum SIE 314 

(i.e. March and September). Since our hindcasts are started on every 1 November this is for lead 315 

month 5 (March) and 11 (September), respectively. Table 2 gives an overview of the correlation 316 

values of the hindcasts against observations. The correlation of SIE of the hindcasts with 317 

observations is significantly positive only in the Northern Hemisphere in both seasons, summer 318 

and winter, due to the agreement of the decreasing trend. For winter (NH, March), the strength of 319 

the trend agrees with the observed trend (Fig. 10a), but in summer (NH, September), the 320 

hindcasts underestimate the trend possibly due to the general underestimation of the SIE during 321 

this season (Fig. 10b). This may also be the reason for the missing variability of SIE in the SH in 322 

 

Table 2. Overview about the prediction skill values of sea ice extent (SIE) for the Northern 
Hemisphere (NH) and Southern Hemisphere (SH) in winter and summer against observations 
from NSIDC (Fetterer et al., 2017) over the period 1979-2015.  
 

Variable SIE 

Region NH SH 

Season (Month of 
minimum and maximum) 

March 
(Winter) 

September 
(Summer) 

March 
(Summer) 

September 
(Winter) 

Correlation 0.80 0.80 -0.34 -0.24 
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summer (Fig. 10c). In winter in the SH, the SIE trend of the hindcasts agrees with the observed 323 

trend only in the later period from the late 1990s (Fig. 10d). This may be also due to general 324 

problems with simulated variability in the Southern Ocean, e.g. the Antarctic circumpolar current 325 

is too weak in ICON-ESM compared to observations (Jungclaus et al., 2022). 326 

 327 

 328 

4 Discussion and summary 329 

We developed an oceanic initialization technique based on the PDAF EnKF as a first step 330 

towards a weakly coupled data assimilation in ICON-ESM. We performed an assimilation run 331 

over the period 1960-2014. The assimilation serves to initialize decadal hindcasts started on 1 332 

November in each year. In general, the PADF EnKF successfully assimilates oceanic 333 

temperature and salinity profile observations into ICON-ESM. With our approach of initializing 334 

only the oceanic part, we find - largely in agreement with expectations - high predictive skill in 335 

the following variables and regions: 336 

 

 
 
 

Figure 10. Time series of sea ice extent (SIE) anomalies in the (a, b) Northern Hemisphere 

(NH) and (c, d) Southern Hemisphere (SH) in (a, c) March and (b, d) September from 
observations (NSIDC, black) and the hindcasts from ICON-ESM for lead months (a, c) 5 and 
(b, d) 11 (red). 
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 337 

We find multi-annual predictability of SST, SSS, HC700m and SC-700m especially in the North 338 

Atlantic. Additionally, seasonal predictability is present in the tropics with highest values in 339 

variables related to ENSO. We find high predictive skill of SST and SSH especially in the 340 

tropical Pacific (ENSO) implicating a high predictive skill for precipitation and SLP in this 341 

region. ENSO predictability lies in the range of other models for DJF. However, compared to 342 

other prediction systems, prediction skill is relatively low in regions apart from the tropical 343 

Pacific due to the missing atmospheric assimilation. Additionally, the hindcasts correctly 344 

represent the decreasing SIE trend in the Arctic in winter and to a lesser degree also in summer 345 

although the mean SIE in ICON-ESM is much too low in summer in both hemispheres. This, and 346 

additional general problems with simulating the variability in the Southern Ocean, causes the 347 

mismatch between simulated and observed SIE in the Antarctic in winter and summer. 348 

 349 

We have used the ICON-ESM in our prediction system in relatively low resolution compared to 350 

other systems. However, the advantage of ICON is its good performance at high resolution due 351 

to the scalability of the code and the use of non-hydrostatic equations for the atmosphere that 352 

allow high resolution convection permitting simulations (Stevens et al., 2019). Another 353 

advantage is the availability of adaptive grids as well for the atmosphere (Maurer et al. , 2022) as 354 

for the ocean (Logemann et al., 2021). The role of such improvements for seasonal and near-term 355 

predictions will be investigated in forthcoming studies. 356 

 357 

In general, we can confirm that our data assimilation method is successfully initializing the 358 

oceanic component of the climate system. We expect that the second step towards a weakly 359 

coupled data assimilation - an additional atmospheric assimilation - will enhance the prediction 360 

skill further and will lead to high quality seasonal and decadal climate predictions.  An additional 361 

fine-tuning of the climate model could also improve the prediction skill, e.g. with a more realistic 362 

Arctic and Antarctic sea ice climatology in summer and an improved oceanic circulation in the 363 

Southern Ocean. We are currently restructuring the ICON code by unifying the physical 364 

parameterization packages for numerical weather preditions and climate applications. The 365 

ICON-seamless project is working on advancing all aspects of the coupled climate system 366 
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(atmosphere, land, ocean, cryosphere and data assimilation) for improved weather and climate 367 

predictions on time sclaes from days to centuries. 368 

 369 
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temperature and salinity analyses (Ishii et al., 2005) were downloaded from the research data 397 

archive at the National Center for Atmospheric Research, Computational and Information 398 

Systems Laboratory from https://rda.ucar.edu/dataset/ds285.3 (accessed 2022-02-02). Data from 399 

the RAPID AMOC monitoring project (Moat et al., 2020) is funded by the Natural Environment 400 

Research Council and are freely available from www.rapid.ac.uk/rapidmoc (accessed 2021-12-401 

05). AVISO data (Fablet et al., 2018) were processed by SSALTO/DUACS and distributed by 402 

AVISO+ (https://www.aviso.altimetry.fr) with support from CNES. The AVISO data set 403 

SEALEVEL_GLO_PHY_L4_REP_OBSERVATIONS_008_047 was downloaded from 404 

https://resources.marine.copernicus.eu (accessed 2021-12-10). The following data are provided 405 

by NOAA/OAR/ESRL PSL, Boulder, Colorado, USA: GPCP precipitation data (Adler et al., 406 

2003) are obtained from https://psl.noaa.gov/data/gridded/data.gpcp.html (accessed 2021-12-10). 407 

GISTEMPv4 data (Lenssen et al., 2019) were downloaded from 408 

https://downloads.psl.noaa.gov/Datasets/gistemp/combined/250km/air.2x2.250.mon.anom.comb.409 

nc (accessed 2021-12-10). The HadSLP2 data (Allen & Ansell, 2006) are obtained from 410 

https://psl.noaa.gov/data/gridded/data.hadslp2.html (accessed 2021-12-10). NSIDC Sea ice 411 

extent data (Fetterer et al., 2017) are downloaded from 412 

https://psl.noaa.gov/data/timeseries/monthly/SHICE/ and 413 

https://psl.noaa.gov/data/timeseries/monthly/NHICE/ (accessed 2021-12-10).   414 
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