Mary K. Hudson

and 5 more

Solar Energetic Protons (SEPs) have been shown to contribute significantly to the inner zone trapped proton population for energies < 100 MeV and L > 1.3 (Selesnick et al., 2007). The Relativistic Electron Proton Telescope (REPT) on the Van Allen Probes launched 30 August 2012 observed a double-peaked (in L) inner zone population throughout the 7-year lifetime of the mission. It has been proposed that a strong SEP event accompanied by a CME-shock in early March 2012 provided the SEP source for the higher L trapped proton population, which then diffused radially inward to be observed by REPT at L ~ 2. Here, we follow trajectories of SEP protons launched isotropically from a sphere at 7 Re in 15s cadence fields from an LFM-RCM global MHD simulation driven by measured upstream solar wind parameters. The timescale of the interplanetary shock arrival is captured, launching a magnetosonic impulse propagating azimuthally along the dawn and dusk flanks inside the magnetosphere, shown previously to produce SEP trapping. The MHD-test particle simulation uses GOES proton energy spectra to weight the initial radial profile required for the radial diffusion calculation over the following two years. GOES proton measurements also provide a dynamic outer boundary condition for radial diffusion. A direct comparison with REPT measurements 20 months following the trapping event in March 2012 provides good agreement with this novel combination of short-term and long-term evolution of the newly trapped protons.

Mary K. Hudson

and 6 more

As part of the Whole Heliosphere and Planetary Interactions (WHPI) initiative, contrasting drivers of radiation belt electron response at solar minimum have been investigated with MHD-test particle simulations for the 13 – 14 May 2019 CME-shock event and the 30 August – 3 September 2019 high speed solar wind interval. Both solar wind drivers produced moderate geomagnetic storms characterized by a minimum Dst = - 65 nT and - 52 nT, respectively, with the August - September event accompanied by prolonged substorm activity. The latter, with characteristic features of a CIR-driven storm, produced the hardest relativistic electron spectrum observed by Van Allen Probes during the last two years of the mission, ending in October 2019. MHD simulations were performed using both the Lyon-Fedder-Mobarry global MHD code and recently developed GAMERA model coupled to the Rice Convection Model, run with measured L1 solar wind input for both events studied, and coupled with test particle simulations, including an initial trapped and injected population. Initial electron phase space density (PSD) profiles used measurements from the Relativistic Electron Proton Telescope (REPT) and MagEIS energetic particle instruments on Van Allen Probes for test particle weighting and updating of the injected population at apogee. Results were compared directly with measurements and found to reproduce magnetopause loss for the CME-shock event and increased PSD for the CIR event. The two classes of events are contrasted for their impact on outer zone relativistic electrons near the end of Solar Cycle 24.

Emily J Bregou

and 4 more

Inner zone proton flux from 1980 to mid-2021is examined using NOAA POES satellite data, indicating a long-term increase corresponding to a one hundred year minimum in solar activity consistent with the Centennial Gleissberg Cycle. Variation of inner belt protons is correlated with decreasing F10.7 maxima over the 40-year period, serving as proxy for solar EUV input to Earth’s atmosphere. Extending an earlier study (Qin et al., 2014) of > 70 MeV protons from 1980 – 2021 using the South Atlantic Anomaly (SAA) peak flux, and at fixed L = 1.3, a comparison is made between the > 35, > 70 and > 140 MeV energy channels on POES. All three energies show an increase in proton flux over the period 1998 – 2021 using a single spacecraft. The observed flux increase is correlated with decreasing F10.7 over the longer 40-year time interval, as with the ~11-year solar cycle. A phase lag during Solar Cycle 24 (January 2010 – June 2021) between the F10.7 minimum and proton flux maximum was determined to be ~500 days, the same at all energies studied. A model calculation of the inner zone proton flux is found to generally confirm the long-term trend examined both in absolute magnitude and phase lag. It is concluded that this long-term trend is a manifestation of the concurrent Gleissberg cycle minimum and accompanying decrease in solar EUV. Reduced EUV at solar maximum (F10.7proxy) reduces proton loss to the atmosphere following solar maximum, thus explaining the long-term flux increase observed.