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Abstract13

Model error is one of the main obstacles to improved accuracy and reliability in numer-14

ical weather prediction (NWP) conducted with state-of-the-art atmospheric models.15

To deal with model biases, a modification of the standard 4D-Var algorithm, called16

weak-constraint 4D-Var, has been developed where a forcing term is introduced into17

the model to correct for the bias that accumulates along the model trajectory. This18

approach reduced the temperature bias in the stratosphere by up to 50% and is im-19

plemented in the ECMWF operational forecasting system.20

Despite different origins and applications, Data Assimilation and Deep Learning21

are both able to learn about the Earth system from observations. In this paper, a22

deep learning approach for model bias correction is developed using temperature re-23

trievals from Radio Occultation (RO) measurements. Neural Networks require a large24

number of samples to properly capture the relationship between the temperature first-25

guess trajectory and the model bias. As running the IFS data assimilation system26

for extended periods of time with a fixed model version and at realistic resolutions is27

computationally very expensive, we have chosen to train, the initial Neural Networks28

are trained using the ERA5 reanalysis before using transfer learning on one year of29

the current IFS model. Preliminary results show that convolutional neural networks30

are adequate to estimate model bias from RO temperature retrievals. The different31

strengths and weaknesses of both deep learning and weak constraint 4D-Var are dis-32

cussed, highlighting the potential for each method to learn model biases effectively33

and adaptively.34

Plain Language Summary35

The state of the Earth system is estimated via a combination of information from36

both previous weather predictions and Earth system observations. This complex,37

mathematical procedure is called data assimilation. Weather predictions could be38

improved if the error of the numerical models that are used could be reduced. Recent39

advances in data assimilation at the European Centre for Medium-Range Weather40

Forecasts (ECMWF) indicate that it is possible to estimate and correct for a large41

fraction of systematic model errors of those models. During data assimilation, the42

forecast model and Earth system observations are representing the same situation of43

the global atmosphere. A direct comparison between models and observations during44

the short time interval of the data assimilation process can be used to diagnose model45

errors.46

Deep learning is a comparably new method from machine learning that can be47

used to learn complex mapping procedures. The question we address in this paper is48

whether deep learning techniques can be used to predict model errors when they are49

trained to predict the mapping between the global temperature and the model error50

that was diagnosed during data assimilation.51

1 Introduction52

Machine learning (ML) has made rapid progress in many domains including53

natural language processing, computer vision, autonomous driving, healthcare and54

finance (Goodfellow et al., 2016). Machine learning applications can be very complex,55

and neural networks (NN) can consist of millions to billions of trainable parameters,56

large numbers of layers, and specialised architectures. In recent years, the weather and57

climate modelling community has started to explore machine learning techniques with58

many applications in Numerical Weather Predictions (NWP) (Dueben et al., 2021).59

In general, these applications can be divided into three groups: methods that improve60

computational efficiency, methods that improve the quality of the prediction system,61
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and methods that help improve our understanding of the Earth system, for example62

via unsupervised learning and causal discovery. This paper belongs to the group that63

aims to improve prediction quality. In particular, we will use deep learning to learn64

the systematic error of weather forecast models. Attempts to use DL techniques to65

estimate and correct for model errors have already been documented in the geophysical66

literature. For example, Watson (2019) uses an Artificial Neural Network (ANN) to67

estimate model error tendencies in the Lorenz-96 system. Predicting the error via68

deep learning is appealing, as errors can often be measured but are typically not69

easily described by a formula or theory, which makes them difficult to approach using70

conventional methods.71

While there are several papers that learn the error during post-processing of72

the model output (Rasp & Lerch (2018); Groenquist et al. (2021)), this paper will73

investigate learning model error within the data assimilation (DA) framework of the74

European Centre for Medium-Range Weather Forecasts (ECMWF). DA is the process75

that involves merging information from observations with previous model predictions76

to generate initial conditions for weather forecasts that are both close to the obser-77

vations and consistent with the state of the forecast models, in order to avoid shocks78

during model initialisation.79

Weather observations make a crucial contribution to the quality of today’s nu-80

merical weather forecasts. Satellites carry passive instruments (e.g. infrared or mi-81

crowave) to measure natural radiation, while active instruments (e.g. scatterometer82

or lidar) probe the surface, clouds, and winds by sending out signals and measuring83

the backscatter (Saunders, 2021). Radio occultation observations evaluate signals sent84

from one satellite to another (Kursinski et al. (1997)). This array of satellite obser-85

vations is complemented by a network of in-situ measurements coming from various86

platforms (e.g. surface stations, aircraft or radiosondes) with a rather inhomogeneous87

distribution compared to satellite data (Haiden et al., 2018). However, observations88

are inadequate to provide a complete and accurate picture of the state of the Earth89

system across the globe at a given point in time. The current model used in opera-90

tions at the ECMWF contains almost one billion grid points that are updated several91

times per hour, while only 40 million observations are processed every 12 hours. For92

this reason, the DA community came up with methods to estimate the most likely93

state of a system by combining different imperfect sources of information. On the one94

hand, most observations are unevenly distributed in space and time. They come with95

errors, and they do not measure the prognostic model variables directly. Instead, they96

measure quantities linked to these variables, such as radiances or radar echoes. On the97

other hand, NWP models include the dynamics of the atmosphere and the physical98

processes that occur. DA combines observations and models in a way that accounts99

for the uncertainties in each. A popular DA algorithm is the four-dimensional varia-100

tional (4D-Var) method that iteratively adjusts the initial conditions of a short-range101

forecast to bring it into closer agreement with meteorological observations in space102

and time (Rabier et al., 2000).103

4D-Var is particularly well-suited to satellite data assimilation as it include a104

radiative transfer model that simulates the top of atmosphere radiances, which are105

compared to the observed radiances from a specific instrument. This enables the106

direct application of satellite measurements and extracts the maximum amount of in-107

formation in clear-sky or all-sky conditions (A. J. Geer et al., 2018). Dealing with108

random and systematic errors in observations and models is critical for computing an109

accurate and unbiased estimate. For this reason, an observation error covariance ma-110

trix is introduced in the 4D-Var formulation to take into account stochastic observation111

errors arising from the instruments and from the observation operator (Janjic et al.,112

2018). The error covariance matrix can also represent spatial and inter-channel cross-113

correlations between observation errors (Waller et al., 2014). Similarly, a background114
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error covariance matrix is implemented to represent flow-dependent, spatially-random115

errors in the short-range forecast used in 4D-Var (Bonavita et al., 2016). This matrix116

weights the importance of the a-priori state and distributes information horizontally117

and vertically in space as well as between model variables (Bannister, 2008a,b). To118

deal with systematic observation errors, ECMWF played a pioneering role in the de-119

velopment of the Variational Bias Correction (VarBC) schemem, which is embedded120

in 4D-Var and automatically removes biases coming from observations and radiative121

transfer models. Similarly, the short-range forecast used in 4D-Var also contains sys-122

tematic errors which grow over time. A weak-constraint 4D-Var formulation has been123

proposed to estimate these model biases within the assimilation process and to correct124

the dynamical model accordingly (Laloyaux, Bonavita, Dahoui, et al., 2020).125

There are strong mathematical similarities between the 4D-Var formulation in126

data assimilation and the training of NNs. Both use gradient descent techniques, and127

the adjoint method for calculating gradients in 4D-Var is mathematically identical to128

the standard backpropagation method used in NN training. From a broad enough129

viewpoint, DA and ML may be viewed as two flavours of inverse methods that can be130

united under Bayesian statistics (A. Geer, 2020). Brajard et al. (2020) demonstrated131

a way to combine ML with DA when observations are noisy and partial. In their132

scheme, DA and ML alternate and compute progressively more accurate estimates of133

the state and of the surrogate predictive model. Following this idea, (Farchi, Laloyaux,134

et al., 2021) used a dataset of analysis increments to train a ML statistical/empirical135

model that complements the original dynamical model. The resulting hybrid surrogate136

model significantly improves the accuracy of the analysis and produces better short-137

and mid-range forecasts in a two-layer, two-dimensional, quasi-geostrophic channel138

model. These encouraging results with a simplified system have been confirmed to139

a certain extent in the operational atmospheric Integrated Forecasting System (IFS)140

model developed at ECMWF (Bonavita & Laloyaux, 2020). The idea of using time141

series of analysis increments fields to estimate the predictable component of model error142

is not new in the meteorological literature. For example, one of the algorithms proposed143

in (Dee, 2005) for the correction of model bias in a cycled data assimilation framework144

explicitly involves using an online model error estimate based on a running mean145

over past analysis increments. The increments have global, homogeneous coverage146

and are already available in the space of the dynamical model variables which makes147

the method easy to implement. However, this approach also has some limitations,148

as increments can contain signals that are not induced by model biases but by other149

error sources that have not been properly accounted for in the DA system. A well-150

known illustration is the positive temperature increment in the ERA-Interim reanalysis151

coming from aircraft temperature biases that have not been corrected properly by152

VarBC (Dee & Uppala, 2009).153

This paper will focus on the estimation and correction of temperature system-154

atic errors (bias) in the stratosphere using satellite temperature retrievals as ground155

truth. But how important are these biases for NWP? In a global NWP model, the156

troposphere may be viewed as a turbulent boundary layer for the atmosphere, and157

the stratosphere as being comparatively isolated from the surface of the Earth. To158

a first approximation, the global-mean stratosphere is in radiative equilibrium, with159

long-wave cooling balancing solar heating through ozone absorption (Fomichev et al.,160

2002). The latitudinal temperature structure is affected by the meridional circulation161

which is driven by breaking and dissipating planetary and gravity waves in the strato-162

sphere. To quantify how stratospheric biases influence the troposphere, we ran a denial163

experiment and blacklisted observations that are important for stratospheric variables.164

This includes stratospheric observations from radiosondes, aircraft, RO bending an-165

gles above 100hPa, as well as the microwave and infrared stratospheric channels (see166

details in Table1). It is not possible to remove all observations that are sensitive to the167

stratospheric conditions, as microwave instruments measure radiances that reflect con-168
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Type Pressure/Altitude/Channels

Radiosonde above 100hPa
Aircraft above 100hPa
RO above 17km
AMSU-A 9,10,11,12,13,14
ATMS 10,11,12,13,14,15
AIRS 7, 15, 20, 21, 22, 27, 28, 40, 52, 69, 72, 92, 93, 98, 99, 104, 105, 110,

111, 116, 117, 123, 128, 129
IASI 16, 38, 49, 51, 55, 57, 59, 61, 63, 66, 70, 72, 74, 79, 81, 83, 85, 87, 89,

101, 104, 106, 109, 111, 113, 116, 119, 122, 125, 128, 131, 133,138, 135,
141, 144, 146, 148, 151, 154, 157, 159, 161, 163, 165, 167, 170, 176,
178, 183, 189, 191, 195, 197, 201, 203, 301, 303

CrIS 20, 23, 26, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60, 61, 62, 63, 64, 65, 66,
68, 69, 70, 71, 73, 74, 113, 114

Table 1. List of all the observations considered as sensitive to stratospheric conditions and

withheld in the denial experiments

ditions in a deep layer of the atmosphere. This means that some tropospheric-peaking169

channels could still have a slight impact on the stratosphere.170

The data-denial experiment runs over two months, between the 25th of January171

2020 and the 25th of March 2020. The top panel of Figure1 shows the impact on the172

analysis mean error when stratospheric observations are withheld. The large biases173

developed in the stratosphere over these two months are transferred to the troposphere,174

especially over the Southern pole. The bottom panel of Figure1 shows how these175

biases present in the analysis evolution during forecasts. The impact of the missing176

stratospheric observations can still be observed after 48 hours. The impact shrinks177

with the forecast lead time as the model drifts towards its climatology and forgets178

about the information present in the initial conditions. This experiment shows the179

importance of tackling residual stratospheric temperature biases as they can descend180

into the troposphere.181

It is important to note, that the model bias changes when the IFS model is182

upgraded, on a regular basis. The most recent improvements to the stratospheric183

physics are the implementation of a new radiation scheme and ozone climatology in184

cycle 46r1 (Hogan et al., 2017; Shepherd et al., 2018). Furthermore, a quintic vertical185

interpolation has been implemented in the semi-Lagrangian advection in cycle 47r1186

(Polichtchouk et al., 2019) to resolve a larger fraction of gravity waves in the vertical187

direction. These changes reduced the temperature bias in the stratosphere, but the188

residual bias is still significant. It consists of a global-mean cold bias in the lower/mid189

stratosphere of -0.5C and a global-mean warm bias in the upper stratosphere of 0.5C190

that accumulate over a 12-hour data assimilation window.191

This article develops a deep learning solution for estimating the three-dimensional192

stratospheric temperature bias in the IFS. State-of-the-art NNs are trained to learn193

the mapping from three-dimensional fields of stratospheric temperature to the three-194

dimensional bias diagnosed via Radio Occultation (RO) temperature retrievals. As a195

first step, we use information from ERA5 reanalysis to show that deep learning can196

indeed learn to predict the three-dimensional temperature bias of short-term forecasts197

when using a large training data set spanning several years. In a second step, we198

study the use of transfer learning to adjust the trained model when only one year of199

training data is available for a new model cycle. Finally, we perform tests that apply200
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Figure 1. Difference in the forecast mean error across zonal bands at lead time +0h (top) and

+48h (bottom) when all the stratospheric observations valid above 100hPa are withheld. Scores

have been computed against the operational analysis between January 25th, 2020 and March

25th, 2020. Different colorbars are used for the stratosphere and for the troposphere.

the NN bias correction within 4D-Var DA experiments and compare results against201

weak-constraint 4D-Var which serves as a benchmark.202

A description and assessment of the RO temperature retrieval dataset are pre-203

sented in Section 2. The design and the training of various NN solutions are sum-204

marised in Section 3. Section 4 describes results obtained when the NN temperature205

correction is applied to the model in an assimilation experiment. This NN approach is206

then compared with the weak-constraint formulation used in operations at ECMWF in207

Section 5. We finally discuss various aspects of weak-constraint 4D-Var that are also208

essential for ML such as learning rate and NN retraining, in Section 6. We summarize209

the paper in Section 7 and provide a perspective for future developments.210

2 Temperature retrieval datasets211

It is very challenging to produce a ground-truth database for Numerical Weather212

Prediction (NWP) as all weather measurements and weather simulations contain errors213

that cannot be ignored. However, some types of observations are more accurate than214

others and can therefore serve as a reasonable proxy for the true atmospheric state.215

This is the case for the GNSS Radio Occultation (RO) measurements in the strato-216

sphere, which offer a spatially homogeneous observing system. These measurements217

consist of high-quality bending-angle profiles that are sensitive to the stratospheric218

temperature. It has been shown that RO profiles reduce NWP analysis and forecast219

temperature biases in the lower and middle stratosphere for most NWP centres (Healy220

& Thépaut, 2006; Poli et al., 2009; Rennie, 2010; Cucurull et al., 2013).221

The RO measurement technique is described in Kursinski et al. (1997). The222

GPS signals propagating between the GPS transmitter and a receiver on a low earth223

orbiting (LEO) satellite are bent by gradients of the refractive index in the ionosphere224

and neutral atmosphere, as they pass through the limb of the Earth. The ionospheric225
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Figure 2. Timeseries of collocated radiosondes (left), RO temperature retrievals (middle) and

the difference between the two (right). Observations are collocated on a 5-degree grid every hour

within a 1hPa pressure difference between 2018 and 2020

bending can be removed with a simple correction (Vorobev & Krasilnikova, 1994). The226

ray bending as function of “impact parameter” can be determined, as a result of the227

motion of the LEO satellite. The impact parameter defines the height of the tangent228

point of the ray path above the surface. The ray-bending angle values as a function of229

impact parameter can be inverted to provide information about the atmospheric state,230

such as temperature. RO measurements are distributed globally, have good vertical231

resolution, and RO bending angles can be assimilated without bias correction into the232

NWP model (Healy & Thépaut, 2006). However, in the context of this work, profiles of233

mean bending angle departures can be difficult to interpret since a given bending angle234

can have both positive and negative sensitivity to temperature biases in the vertical235

profile (see section 5.3 Eyre, 1994). We have therefore mapped the bending angle236

profiles to temperature using a simple implementation of the widely used temperature237

retrieval algorithm described by Kursinski et al. (1997). Refractive index profiles238

are derived from bending angles with an Abel transform. There is no measurement239

information to enable the separation of the effects of temperature and water vapor,240

and therefore these quantities can be retrieved only using prior information (ERA5241

reanalysis in our case). Although this retrieval method provides temperature values242

up to the top of the atmosphere, the retrieval noise increases with height and most of243

the information comes from the prior above 3hPa. Therefore, we only use the retrieved244

temperature values between model level 20 (3hPa) and model level 65 (125hPa) out245

of a total of 137 vertical levels in the IFS.246

It is important to evaluate the quality and accuracy of the temperature retrievals,247

as they are used as ground truth in our study. RO temperature retrievals can be collo-248

cated with conventional temperature observations from radiosondes (RA) to quantify249

the error characteristics of the observing system (Sun et al., 2010). RO and RA profiles250

are not available at exactly the same vertical and horizontal location. For comparison,251

profiles have been collocated on a 5-degree grid, every hour, and within a 1hPa pressure252

difference. Figure 2 shows a timeseries of the collocated observations from RA (left)253

from RO (middle) and the difference RA-RO (right). This has been averaged over254

pressure levels and for every month between 2018 and 2020 to reduce the collocation255

errors introduced through spatial and temporal mismatch between RA and RO that256

could influence the accuracy of the obtained statistics. The RA and RO observations257

present a very similar seasonal signal when the stratosphere is warming up during the258

Northern hemisphere summer, or cooling down during the Northern hemisphere win-259

ter. This pattern arises from the inhomogeneous distribution of radiosondes, mainly260

sampling the Northern hemisphere. The difference between RA and RO (right panel of261

Figure 2) shows that the average discrepancies between the two types of observations262

in the mid/lower stratosphere are smaller than 0.2C and confirms what has been found263

in other collocation studies (Sun et al., 2010, 2019). In the upper stratosphere (above264
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Figure 3. Vertical profile of the ERA5 first-guess departure from a collocated radiosonde

(blue) and RO temperature retrieval (orange). Both profiles are measured over the USA (36N,

93W) on 16/10/2020.

30hPa), there is a systematic difference where RO observations are warmer than RA265

by approximately 0.3C, especially in summer. This shows the intrinsic challenge of266

finding the ground truth in NWP as each observing system will be sensitive to different267

sources of error (e.g. solar elevation angle, dry temperature adjustement, ...).268

During the collocation study, a small fraction (less than 1%) of profiles showed269

very large discrepancies. One example is illustrated in Figure 3 for a collocated profile270

over the USA (36N, 93W) on 16/10/2020. The RA profile agrees roughly with the271

ERA5 first-guess trajectory, presenting a small first-guess departure. However, the272

RO profile shows very large differences with respect to the trajectory of ERA5 (over273

5 degrees in the upper stratosphere). Future work could include an improved quality274

control procedure to detect and automatically remove outlier RO profiles with lower275

quality. The current QC is based on the parameters used in the bending angle assim-276

ilation, but the bending angle assimilation is more robust to measurement noise than277

the RO temperature retrievals used here.278

The purpose of the NN is to learn a function representing the model bias that279

develops in the data assimilation system over the 12-hour assimilation window. A280

natural choice for the input of the NN is the temperature first-guess trajectory, as it281

contains the state of the model. The output of the NN is the model bias estimated as282

the difference between the temperature first-guess trajectory and the RO retrievals.283

The spatial and temporal structure of the stratospheric temperature bias has been284

studied in Laloyaux, Bonavita, Dahoui, et al. (2020) and presents large scale patterns285

that evolve slowly over time. For this reason, the first-guess trajectory and first-guess286

departure are averaged over a 10-degree regular grid for all the model levels between287

130hPa (level 65) and 3hPa (level 20). This means that we have 31,635 inputs and the288

same number of outputs (19 latitude grid points x 37 longitude grid points x 45 vertical289

levels). Unfortunately, the observations are not available at every point in space and290

time. To reduce the number of missing data points, we average the input/output291

samples over 10 days. The averaging also helps capture slowly varying signals. Linear292

interpolation is used to fill the remaining observational gaps (representing 5% missing293

values when using the 10-day average).294

Machine Learning requires a large number of samples to properly capture the295

relationship between input and output variables. To run a dedicated assimilation296

system with the current IFS model for a long time period is computationally expensive297

and serial in time, and therefore very slow. It is thus prohibitive to train the networks298

within the assimilation framework. Therefore, to obtain training data for a long time299
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Figure 4. Timeseries of ERA5 temperature first-guess (top left) and departure with RO tem-

perature retrievals (top right) for the different stratospheric model levels (level 20 is 3hPa and

level 65 is 130hPa) averaged between 5N and 5S available between 2008 and 2020. The bottom

panels show a similar timeseries from the operational dataset that is available only between June

2019 and June 2020.

period, we use data from the ERA5 reanalysis as the first-guess trajectories, and300

departures have been archived over the entire period for which good RO coverage is301

available (from 1st of January 2008 until 1st of June 2020). ERA5 is based on an302

IFS model version (cycle 41r2) implemented in 2015. As we also want to study how303

a trained bias correction tool can be adjusted to a new model cycle, we also estimate304

the bias of the model used in operations between June 2019 and June 2020. We will305

refer to this dataset as the ”operational dataset”. It consists of one year of first-guess306

trajectories from cycle 46r1, which improves several aspects of the dynamics and the307

physics of the model, compared with the ERA5 dataset. The spatial resolution of the308

two datasets is identical and equal to 18km (the control member of the Ensemble Data309

Assimilation system is used for the operational dataset, instead of the high-resolution310

system). Figure 4 shows a timeseries of inputs and outputs produced from the ERA5311

(top) and the operational (bottom) dataset, averaged over the Tropics between 5S312

and 5N. The ERA5 model exhibits a cold bias in the mid/lower stratosphere and a313

warm bias in the upper stratosphere that propagates down during QBO events. The314

operational dataset has a similar vertical structure, although the amplitude is much315

larger.316

ML studies generally divide the available data into three different datasets to317

train, develop, and evaluate an ML model. The training set is the largest and is318

used to learn the relationship between input and output vairables. The second set,319

referred to as the validation set, is used exclusively for tuning model hyper-parameters320

set manually by the model developer (e.g. activation function, learning rate). A321

key goal of the hyper-parameter tuning process is the optimization of the network’s322

generalization capabilities, in order to avoid overfitting and ensure that the network323

will function well on previously unseen data. The third dataset is the test set, a324

collection of previously unseen data, which is used to evaluate the network. The three325

datasets should be independent of each other, but at the same time they should reflect326

the same statistical distribution. Several strategies are discussed by Schultz et al.327

(2021) to achieve this with meteorological time series that are usually auto-correlated.328

A block sampling strategy is used for our application in order to mitigate this issue.329

For the ERA5 datasets, we assign the first 10 days of every month and the days after330

the 20th of each month in 2019 to the validation set and the remaining samples to the331
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Dataset training validation test

ERA5 2008-2019 (412) 2019 (26) 2020-2021 (42)
operational 2019 (15) 2019 (5) 2020 (18)

Table 2. Partition details for ERA5 and operational data sets. Shown are only the years and

total number of samples, in parenthesis. For overlapping years, the data is split into date ranges

for each month, as described in the text, in order to create disjoint sets.

training set. The test set is comprised of the entire year 2020 and the first half of 2021.332

For the operational dataset, we use a similar strategy for splitting it into training and333

validation sets. Since only data for half of 2019 is available, we assign June 21 to July334

1st, July 21st to 31 and August 10 to the validation set, and the rest of the 2019 data335

to the training set. We assign the full set of 2020 operational data to the test set.336

Table 2 summarizes the various splits for the two datasets.337

3 Design and training of neural networks338

3.1 Data representation339

The machine learning problem at hand is a multi-dimensional regression problem:340

the state of the IFS model is used as the input for our network, and the bias computed341

from the departures between the temperature retrievals and the IFS model is our342

prediction target. This means, that we are aiming to learn the departure values and343

not the RO ground-truth data itself, which typically produces a more stable learning344

process.345

The raw data is available as tuples in the form (longitude, latitude, level,T),346

where T represents the temperature at these coordinates. In this paper, we make347

use of data regression on structured grids using convolutional neural networks, after348

converting the data into multi-channel images using suitable projections and inter-349

polations, with the vertical model level mapped to the feature/channel dimension.350

We examine two possible interpretations of this data: they can be treated as three-351

dimensional fields, consisting of (projected longitude, latitude and level) with a single352

feature (temperature)1, or as two-dimensional fields of (projected longitude, latitude)353

with a vector of features (temperatures at different altitudes). We will discuss the354

implication of these two different views below.355

In order to stabilize training, we rescale the data using mean-variance normaliza-356

tion. For the 2D case we perform a seperate normalization per altitude/level, whereas357

for the 3D case we perform a single normalization across all levels. This is important358

in order to preserve vertical gradients in the data. In each case, we normalize the input359

and target datasets separately.360

3.2 Network architecture361

Image regression is similar to image segmentation, and NNs which are designed362

for segmentation can be adjusted to work for regression simply by dropping the final363

per-pixel softmax function. Therefore, we can choose a suitable network architec-364

ture from a plethora of available image segmentation networks, such as the UNet365

1 Note that model levels can be transformed into physical altitudes by applying an exponential map-

ping. However, in the 3D approach we treat them as equidistant and rely on the network to learn a rea-

sonable set of filters.
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(Ronneberger et al. (2015)) or DeepLab (Chen et al. (2018)) architectures. Both of366

these architectures employ an encoder, which is responsible for extracting features at367

multiple length scales. The encoder typically consists of convolutional blocks, with368

skip connections added to improve training stability. The output of the encoder is369

passed to a decoder which combines the extracted features to generate a prediction.370

DeepLab architectures employ an additional step between the encoder and decoder,371

the so-called atrous spatial pyramid pooling (ASPP) (Chen et al. (2018)) designed to372

improve feature combination at different scales. The DeepCAM (Kurth et al. (2018))373

NN architecture has been successfully applied to the identification of extreme weather374

phenomena in climate simulations. Therefore, we use a modified variant of the origi-375

nal architecture in which the ResNet-50 (He et al. (2016)) backbone is replaced by an376

XCeption (Chollet (2017)) backbone. Also, instead of relying on interpolated upsam-377

pling, we employ a fully convolutional decoder. These two improvements lead to the378

network architecture which forms the basis of the MLPerf HPC DeepCAM benchmark379

(see MLPerf HPC DeepCAM website (2021)). In order to reduce checkerboard arti-380

facts produced by convolutional upsampling, we furthermore insert average pooling381

layers after the convolutions with a pooling kernel size equal to the convolutional up-382

sampling stride. It has been shown by Kinoshita & Kiya (2020) that this is an effective383

technique for reducing such artifacts in the generated images.384

For the 2D representations of the data, we simply adjust the number of input385

channels in the previously described architecture. For the 3D representation, we con-386

vert all 2D operations (convolutions, batch-normalizations, pooling) into their respec-387

tive 3D counterparts. A significant difference between these two approaches is that in388

the 2D case, all altitude levels are combined in an all-to-all fashion through the matrix389

multiplication along the feature dimension in the 2D convolutional kernel. In contrast,390

the 3D convolutions only correlate neighbouring levels. Therefore, they have are bet-391

ter suited to capturing temperature gradients between levels, whereas 2D convolutions392

might be better at capturing long distance correlations spanning multiple levels. Both393

architectures are reasonable choices for solving the bias prediction problem at hand,394

and thus we pursued both approaches.395

3.3 Training process, R2-score and hyper parameter optimization396

We employ the AdamW optimizer (Loshchilov & Hutter (2019)) and apply weight397

decay regularization in order to reduce overfitting, which is particularly important398

when training on the smaller, operational dataset. For the loss function, we use either399

the L2 distance or a smooth version of the L1 distance between network output and400

prediction target.401

The R2 score is used as a validation metric for hyper parameter tuning. It is
defined as

R2 = 1−
∑m

i=1(y(i) − f (i))2∑m
i=1(y(i) − ȳ)2

, where ȳ =
1

m

m∑
i=1

y(i) (1)

Here, y(i) is the NN prediction for sample i and f (i) is the corresponding ground truth,402

i.e. in our case the model bias. The R2 score compares the prediction accuracy with403

the intrinsic variance of the data: if prediction accuracy is high, then the numerator404

in equation (1) is small, which leads to R2 ≈ 1. If the prediction accuracy does not405

outperform the intrinsic noise, then the numerator and denominator in equation (1)406

will be of similar magnitude and we find that R2 ≈ 0. For predictions of even lower407

accuracy we have R2 < 0 which signals a failure of the model. In order to obtain408

a scalar score, we perform a summation over all the pixels and levels in the output409

image. However, a more detailed qualitative analysis is possible by computing the R2410

score per level and/or per longitude/latitude coordinate.411
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We tune hyper parameters (HPO) using the ray.tune package (Ray Tune website412

(2021)) with HyperOpt (Hyperopt website (2021)), running 128 instances for both the413

2d and 3d models. Tuneable hyper parameters in our model include learning rate,414

weight decay, learning rate schedules (selection of multi-step with different milestones,415

cosine annealing with different choices for decay frequency), loss definition (smooth L1416

vs. L2) and batch size. Our hyperparameter optimization target is the maximisation417

of the R2 value, as described above. Each model is trained for about 150 epochs.418

3.4 Computational Performance419

We use a single NVIDIA DGX-2 system for training and run a single instance on420

each GPU concurrently. This means, we can train 16 instances in parallel. Training421

a single instance on an NVIDIA V100 GPU takes takes about 30 minutes for the422

3D model. Therefore, training 128 instances does not take longer than 4 hours in423

total. It is unlikely that training more instances would lead to the discovery of better424

hyperparameters, because many good hyperparameter choices2 perform equally well425

and it is hard to define a quantitative criterion which configuration to prefer over the426

others.427

3.5 Training, using a small operational dataset428

In order to produce the most accurate weather forecast possible, we would like to429

construct a NN bias-correction model based on data from the latest IFS model cycle.430

While there is plenty of ERA5 data available (based on the 2015 cycle), the dataset431

for the current cycle is much smaller. In our case, we had only 15 training samples432

and 5 validation samples available. We examined several approaches in an attempt to433

build the most useful tool for this scenario.434

1. Finetuning: in this approach, the model does not begin using random initial435

weights. Rather, it begins with weights that have been pre-trained on a related436

dataset. Specfically, we pre-trained the model using the ERA5 dataset and then437

fine-tuned the entire model using only the operational dataset, but with a much438

smaller learning rate. Using this approach, we found that the NN quickly overfit439

to the operational data. Therefore, we did not pursue this approach further.440

2. Training from scratch: In this case we trained the model using only data from441

the latest IFS cycle. While it appeared more promising than finetuning for the442

first few epochs, this approach broke down rapidly as well, heavily overfitting443

the training dataset for all hyper parameter configurations tried. Hence we444

abandoned this approach as well.445

3. No retraining: in this, simplest approach. we used only the existing model,446

trained exclusively on the ERA5 dataset, with no fine-tuning. This model447

was then applied directly to the shorter, operational dataset. This approach448

is promising if the underlying intrinsic features of both datasets are similar. It449

turns out that this approach yields reasonable results, producing R2 values only450

about ∼ 20% lower than the original ERA5 test dataset.451

4. Training on both datasets simultaneously: for this transfer learning strategy,452

we implemented a data loader which can feed the NNs samples from either453

dataset. The two datasets have a relative sample imbalance of about 27:1454

(ERA5:operational). In order to help the NN learn the features of the oper-455

ational dataset, the dataloader selects samples from the both datasets, but with456

inverted frequencies. This means that the NN is presented samples from both457

datasets with almost equal probability. In practice, we chose a final ratio of458

2 good means that they deliver a high R2 score on the validation set
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Figure 5. Timeseries of R2 values averaged over all levels for 2D + features (blue) and 3D

NN (red) architectures on the 41r2 test dataset.

27:29 (ERA5 : opertional data) in order to provide a small emphasis on the im-459

portance of the operational data. (This is a tunable hyperparameter). For the460

validation dataset, we use only samples from the operational set, as we are inter-461

ested only in the operational model performance. We also use only operational462

data to compute the R2 score when performing hyper-parameter optimisation.463

It turns out that training the network with this approach is very stable.464

4 Results for bias correction with deep learning465

In this section, we present results for temperature bias correction based on deep466

learning. The first and second subsections present results for offline bias correction,467

for the ERA5 and operational datasets respectively. The third subsection discusses468

the use of bias correction within data assimilation experiments.469

4.1 Performance comparison of 2D and 3D models470

We trained the 2D and 3D models with their respective best known hyperpa-471

rameters on the ERA5 training dataset and compared their performance on the ERA5472

test dataset. Figure 5 displays the R2 value, averaged over all levels, for the test set473

. The plot demonstrates that the 3D model outperforms the 2D model consistently.474

This is likely due to the importance of gradients and other local co-variances in the475

vertical direction, and the inherent advantage convolutions provide for learning such476

relationships in a data-efficient fashion. Therefore, we decided to conduct subsequent477

studies exclusively using 3D network architectures. The variability of the first-guess478

trajectory and of the model bias is larger between March and May, as the Northern479

hemisphere warms up and the Southern hemisphere cools down. There is a drop in480

the R2 value for both models as they struggle to accurately capture the model bias481

over that period.482

Figure 6 shows the target bias (left) and the prediction of the 3D model (right)483

for two different vertical levels on February 6 2020, from the ERA5 test set. The NN484

clearly learns to reproduce important features, such as the negative bias correction485

around the equator for level 40. It also learns to reproduce the region of stronger486
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Figure 6. Target bias (left) and bias prediction from the NN model (right) for two levels on

February 6 2020.

negative bias near (60◦ lat, 275◦ lon) as well as in the latitude band between 20◦ and487

40◦.488

4.2 Performance of 3D models on ERA5 and operational datasets489

In this section, we compare three test cases, each using the 3d convolutional490

architecture: (i) the original ERA5 model evaluated on the ERA5 test set, (ii) the491

original ERA5 model evaluated on the operational test set, and (iii) the model retrained492

on both ERA5 and operational training data, and evaluated on the operational test493

set. Note that test cases (ii) and (iii) correspond to training scenarios 3 and 4 from494

section 3.5.495

Figure 7 shows a vertical profile of the globally-averaged R2 scores for each of496

the three test cases. We observe a steep drop in prediction quality when testing on497

the operational dataset. The retrained model produces a better prediction than the498

original ERA5-only model on the operational dataset, except for the top-most levels.499

Comparing the model biases from the ERA5 and operational datasets (panel b and d500

in Figure4), we see that the retrained model struggles to capture the larger warm bias501

in the top levels of the operational dataset.502

Figure 8 shows the target and predicted biases for the original ERA5 model on503

the ERA5 targets and the retrained model on the operation targets. Before April 2020,504

both the original and retrained predictions correctly capture the patterns observed in505

the ERA5 targets, although the predictions have a somewhat larger amplitude than506

the target values. After April 2020, we see that the operational target values differ507

significantly, where the Northern hemisphere is nearly bias free and the Southern hemi-508
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Figure 7. Vertical profile of globally averaged R2 values for the original model on the ERA5

target (blue), for the same model on the operational target (red) and for a retrained model using

the sample balancing technique described above, on the operational target (green).

sphere exhibits a cold bias that was not present for the ERA5 target set. This feature509

is not capture by the NN prediction and may explain the much of the performance510

drop for these models in this time window.511

4.3 NN bias correction in 4D-Var data assimilation512

The bias predicted by our NNs can, in principle, be used to correct the model513

tendencies of the IFS within data assimilation experiments, in order to produce a better514

analysis. Unfortunately, it is technically challengng to introduce the bias correction515

tools into the workflow of the 4D-Var data assimilation experiments. Not only is it516

difficult to couple the machine learning tools with the IFS workflow, using our NN bias517

correction models to correct the IFS tendencies also requires one to re-gridding the518

model fields from the reduced-gaussian model grid of the IFS to the regular gaussian519

grid at the coarse resolution used to predict the bias. It is therefore beyond the scope520

of this paper to perform ”online” simulations that calculate and correct the bias within521

4D-Var experiments.522

However, we are able to predict the model bias ”offline” using the retrained523

NN on the first-guess trajectories contained in the operational test dataset. We can524

run a 4D-Var experiment where the model is corrected with the respective offline525

correction valid for the same date. The correction is applied as an integrated term526

between each model timestep. Using this framework, the machine learning approach is527

evaluated in 4D-Var over the test period between 1st January 2020 and 1st March 2020.528

Figure 9 shows the first-guess mean error with respect to RO temperature retrievals529

for different 4D-Var experiments. The red line is the control experiment, where the530

dynamical model is not corrected. The dotted blue line shows the first-guess mean531

error, where the dynamical model is corrected using the actual target from the RO532

datasets. This provides a estimate of how much the bias could actually be reduced if533
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Figure 8. Zonal timeseries of the ERA5 targets (a) and the bias predictions from the original

NN for model level 25 (6hPa). The bottom panels show similar timeseries for the operational

targets (c) and the bias predictions from the retrained NN (d)

Figure 9. First-guess mean error with respect to RO temperature retrievals for the control

(red), for weak-constraint 4D-Var (green), for the model corrected with the target (dotted blue),

with the scaled target (dash-dot blue) and with the scaled prediction of the NN (solid blue).

Statistics are averaged over the globe between 01/01/2020 and 01/03/2020.
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the NNs provided a perfect fit to the training data. One can see that the model bias is534

over-corrected, for example, the original 0.4C cold bias at 60hPa became a -0.6C warm535

bias. This over-correction is due to the intrinsic cycling principle of data assimilation536

where the analysis valid at the beginning of the assimilation window is integrated537

forward in time to produce the background at the beginning of the next assimilation538

window. The first-guess departures used to diagnose the model bias contain not only539

the bias that develops over a single assimilation window but also includes the bias540

accumulated over the previous assimilation cycles contained in the background. A541

study of the background and analysis departures shows that only one quarter of the542

total bias comes from the current assimilation cycle while the other three quarters543

are carried forward in time from the previous cycle (e.g. at 50hPa, the global-mean544

analysis departure is equal to 0.38 and the global-mean background departure is equal545

to 0.5). Following these findings, another 4D-Var experiment was run where the model546

is corrected by a scaled target where all the values are reduced by a factor of 4. This547

approach, plotted in dash-dot blue, is able to efficiently correct the model bias for the548

entire stratosphere. The last experiment plotted in solid blue shows the results when549

the model is corrected by the offline NN predictions with the same 1/4 scaling. The550

NN is able to capture and correct a large fraction of the actual model bias. The first-551

guess mean error is reduced by almost 0.2C in the mid/lower stratosphere. The poor552

performance around 5hPa where the model is over-corrected is likely due to the small553

size of the operational dataset. The ERA5 warm bias at 5hPa is well captured by the554

initial NN (comparing left and right top plots in Figure 8). However, the operational555

model presents a smaller bias that is not well represented in the NN, which retains too556

much of the structure learned from ERA5. This means that the NN will cool the top557

of the atmosphere too aggressively, over-correcting the model warm bias.558

5 Comparison with weak-constraint 4D-Var559

Weak-constraint 4D-Var has been introduced by several authors to denote a fam-
ily of algorithms which relax the perfect model assumption (Wergen, 1992; Zupanski,
1993; Bennett et al., 1996; Vidard et al., 2004; Dee, 2005; Trémolet, 2006). In the
forcing formulation of weak-constraint 4D-Var (Trémolet, 2006) a forcing is estimated
and then applied in the model’s equations to represent the error which gradually en-
ters into the model trajectory. The model is then treated in the same manner as
other sources of information, taking into account that there is a degree of uncertainty
about the information it can provide on the evolution of the atmospheric state over the
analysis cycle. Mathematically, the weak-constraint 4D-Var formulation that has been
implemented at ECMWF introduces a forcing η to represent the error which gradually
enters into the model trajectory

xk =Mk,k−1(xk−1) + η for k = 1, ..., N. (2)

The model error forcing is assumed to be additive and constant within the 12-hour
assimilation window (Laloyaux, Bonavita, Dahoui, et al., 2020; Laloyaux, Bonavita,
Chrust, & Gürol, 2020). It contains temperature, vorticity and divergence. We also
assume that the model error η follows a Gaussian distribution with no cross-correlation
with the background error. This is justified if we assume that the model error that
we want to estimate and the background errors act on different spatial and temporal
scales. This set of assumptions allows one to write the weak-constraint 4D-Var cost
function as

JWC(x0, η) =
1

2

(
x0 − xb

0

)T
B−1

(
x0 − xb

0

)
+

1

2

(
η − ηb

)T
Q−1

(
η − ηb

)
+

1

2

N∑
k=0

(Hk(xk)− yk)
T
R−1

k (Hk(xk)− yk) (3)
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Figure 10. Same as Figure 9 but respect to radiosondes (left) and AMSU-A (right).

where ηb is the prior estimate of the model forcing estimated from the previous as-560

similation cycle. This forcing formulation of weak-constraint 4D-Var simultaneously561

estimates the initial state x0 and model forcing η that best fit the observations and562

the background information with respect to their error covariance matrices.563

A weak-constraint 4D-Var experiment was run from the 1st of January 2020 and564

is presented in green in Figure 9. In this experiment, the model error estimate is set to565

zero initially as no a priori knowledge of the model error is assumed. After processing566

only one month of data, weak-constraint 4D-Var is able to correct for a significant567

fraction of the model bias without requiring the computation of a large dataset for568

offline training.569

Weak-constraint 4D-Var can be seen as a specific machine learning algorithms570

that learns the model error by estimating the parameters in the forcing vector (Farchi,571

Bocquet, et al., 2021). However, there are several conceptual differences with the572

machine learning approach described in Section 4. Weak-constraint 4D-Var is an online573

learning algorithm which simultaneously estimates the model state and the model574

error while the NN approach is estimating the model error offline before estimating575

the model state. An online NN is feasible but it would require a stronger interaction576

between NN tools and the IFS model to exchange data at each assimilation cycle.577

This work would require a substantial effort, given the current software infrastructure.578

Another difference is the amount of information used to estimate the model bias.579

Weak-constraint 4D-Var uses the information from all observations (conventional and580

satellites) as all of these are actively assimilated thanks to the radiative transfer scheme581

included in the 4D-Var cost function. The NN has learned the model bias using only582

the RO temperature retrievals which represents a small subset of the whole observing583

system. It is therefore interesting to study how the two approaches will fit other584

conventional and satellite instruments. Figure 10 shows the first-guess mean error585

with respect to radiosondes (left) and AMSU-A (right). In the weak-constraint 4D-Var586

experiment, these observations have been actively used in the observation term of the587

cost function (see Equation 3). This means that the data assimilation algorithm finds588

the optimal state that fits all of the observations with respect to their uncertainties.589

In the NN approach, only RO retrievals have been used to estimate the model bias as590

radiosondes and AMSU-A observations have not been introduced during the training.591

The scaled NN shows a similar improvement than weak-constraint 4D-Var in the lower592

and mid stratosphere (i.e. radiosondes below 30hPa and AMSU-A channel numbers593

below 11). This is an excellent news that can possibly be explained by the fact that594

RO, radiosonde and AMSU-A observing systems are consistent between each others,595

highlighting a similar model bias. We chose to illustrate this point using AMSU-A596

observations, but a similar conclusion can be drawn for other microwave instruments597

(e.g. ATMS) or infrared instruments (e.g. AIRS or Cris). The performance of the NN598

approach is not as good in the upper stratosphere (i.e. radiosondes above 30hPa and599
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Figure 11. Meridional cross-section temperature error correction from the from the NN pre-

diction (a) and from weak-constraint 4D-Var (b) averaged over the tropics (10N-10S) between 1st

January 2020 and 1st March 2020.

AMSU-A channel numbers above 11) which confirms what has been noticed in Figure 8600

against RO retrievals. We have run 10-day forecasts initialised with weak-constraint601

4D-Var and NN analyses to study the impact on medium-range weather forecasting.602

We found that signals in the analysis are retained throughout the forecast and are still603

present after five days which confirms the results presented in Laloyaux, Bonavita,604

Dahoui, et al. (2020). In the lower and mid stratosphere, weak-constraint 4D-Var and605

NN forecasts show similar improvements at day five. The only difference happens in606

the upper stratosphere where the NN forecasts are degraded due to the poorer quality607

of the NN analysis above 20hPa (see Figure 9 and Figure 10).608

Developing methods that estimate model biases should eventually help modellers609

improve their models by providing more complete knowledge of the bias structure. This610

will fulfil the synergies between better observations, sophisticated DA algorithms and611

improved physical models. It is therefore informative to study the model biases high-612

lighted by both approaches. Figure 11 shows a meridional cross-section temperature613

error correction from the NN prediction (left) and from weak-constraint 4D-Var (right)614

averaged over the tropics (10N-10S) between 1st January 2020 and 1st March 2020.615

Both approaches warm up the atmosphere over areas of strong convection (e.g. In-616

donesia and Southern America). The weak-constraint 4D-Var model error estimate is617

smoother, due to the specification of the model error covariance matrix Q which retains618

only large-scale patterns. This could be linked to an insufficient representation of the619

effects of sub-gridscale gravity wave activity, which leads to missing momentum from620

the troposphere to the stratosphere (Polichtchouk et al., 2019). The NN prediction is621

also larger for the top of the stratosphere compared the the weak-constraint 4D-Var622

correction. This larger NN correction is the reason for the degradation observed in623

Figure 9 and 10 for the top of the stratosphere.624
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Figure 12. Vertical profile of first-guess departure with respect to radiosondes for 47r1 strong-

constraint (dashed red), for 48r1 strong-constraint (dashed blue), for 47r1 weak-constraint (solid

red) and for 48r1 strong-constraint (solid blue). Statistics are averaged over the globe between

20/01/2020 and 20/02/2020.

6 Weak-constraint 4D-Var learning rate625

We already discussed the question of retraining the NN in Section 4 as new IFS626

models are made available on a regular basis with improved dynamical and physical627

processes of the atmosphere. We have shown that this is a challenge for the NN as the628

training dataset with the new model is usually relatively small (less than a year) as it629

is expensive to run the assimilation system for a longer period. We illustrate here how630

weak-constraint 4D-Var handles model upgrades using, as an example, the package of631

changes that is currently being tested as a possibility for the implementation of the next632

cycle (tentative 48r1). It contains the hybrid linear ozone, the semi-lagrangian vertical633

filter and a new solar spectrum. The impact of these model changes is assessed in the634

strong-constraint 4D-Var formulation where no model bias correction is computed.635

This allows one to accurately quantify how much the model upgrade reduces the model636

bias. Figure 12 shows the vertical profile of first-guess departure with respect to637

radiosondes for strong-constraint experiments with 47r1 (in dashed red) and tentative638

48r1 model (in dashed blue). The improvements proposed for 48r1 significantly reduce639

the stratospheric model biases. At 50hPa, the original bias of 0.45 is brought down to640

0.2. Weak-constraint 4D-Var aims to correct the residual model bias. The dashed red641

and blue lines in Figure 12 show the results of weak-constraint 4D-Var with the 47r1642

and 48r1 model respectively. Although the structure of the bias is different for the two643

models, weak-constraint 4D-Var reduces the first-guess mean error in both situations.644

The weak-constraint 4D-Var cost function depends on a number of parameters that645

are estimated offline (e.g. standard deviation and correlation in Q). It is important to646

note that these parameters have not been retuned in the experiments. This shows the647

robustness of weak-constraint 4D-Var and its fast learning rate.648

The initialisation of the model error correction at the beginning of an experiment649

can be compared to the challenge of initialising the weights of a NN. The middle panel650

in Figure 13 shows a timeseries of the model bias correction with the tentative 48r1651

model when weak-constraint 4D-Var has been cold started (i.e. setting the model652

error correction to zero at the beginning of the experiment). It takes a couple of weeks653

for the model errors estimate to be properly spun-up. This is mainly because weak-654

constraint 4D-Var aims to correct model biases that are evolving slowly over time. To655
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Figure 13. Timeseries of model error corrections estimated by weak-constraint 4D-Var for

the 47r1 model (top), for the 48r1 model initialised from zero (middle) and for the 48r1 model

initialised from the 47r1 bias estimate (bottom). Statistics are averaged between 70S and 30S.

study the sensitivity of the initialisation, a weak-constraint 4D-Var experiment was656

run where the model error correction is initialised from the previous 47r1 model error657

estimate. This timeseries is presented at the bottom panel in Figure 13 and shows that658

weak-constraint 4D-Var converges towards the same solution although the behaviour659

is different during the spin-up period. This is a reassuring result demonstrating that660

weak-constraint 4D-Var is not very sensitive to the way it has been initialised. This661

can be explained by having a number of observations assimilated in weak-constraint662

4D-Var and the model error covariance Q, which are sufficient to constrain the model663

error correction.664

Finally, it is important to understand how efficiently the model bias can be665

estimated during extreme events. The stratospheric sudden warming (SSW) is the666

most dramatic meteorological phenomenon to take place in the stratosphere, usually667

occuring over the north pole. As the temperature drops during winter, low-pressure668

(cyclonic) circulation begins to develop across the polar stratosphere. A strong polar669

vortex usually means strong polar circulation even at the lower levels. It can lock the670

cold air into the Polar regions, resulting in milder winters for most of the United States671

and Europe. If this vortex is disturbed, the winds can reverse and the temperature672

can rapidly increase by up to 50 degrees Celsius over a few days, in the vertical region673

between 1hPa and 10hPa. This can create a chain reaction, which can disrupt the674

jet stream, creating a high-pressure area over the Arctic circle. This, in turn, can675

release the cold arctic air into Europe and the United States (Polichtchouk et al., 2018;676

Mariotti et al., 2020). SSWs happen every-other year or so, with the most recently677

event recorded in January 2021. The top panel of Figure 14 shows a timeseries of678

first-guess departure with respect to RO temperature retrievals, averaged over the679

Northern pole (70N 90N) between September 24, 2020 and February 24, 2021. At the680

beginning of the SSW event (1st of January 2021), the structure of the model bias681
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Figure 14. Timeseries of first-guess departure with respect to RO temperature retrievals

(top) and timeseries of model error correction estimated by weak-constraint 4D-Var (bottom).

Statistics are averaged over the Northern pole (70N 90N) between 24th September 2020 and 24th

February 2021.

changes significantly as stratospheric dynamics are disrupted. There is a model cold682

bias above 3 hPa and a model warm bias between 50 hPa and 3 hPa. The bottom panel683

of Figure 14 shows the model error correction estimated by weak-constraint 4D-Var.684

The model bias change is captured quickly as weak-constraint 4D-Var warms up the685

stratosphere above 3hPa and cools down between 50hPa and 3hPa. This illustrates686

the efficient learning rate of weak-constraint 4D-Var when an extreme event occurs.687

A similar study could not be done for the NN approach as the test dataset (June688

2019 to June 2020) does not contain such an event. This is however a critical aspect689

that will be studied in the future, as extreme events occur infrequently in the training690

dataset and it might be challenging for the NN to correctly represent the model error691

structure.692

7 Summary and perspectives693

Artificial intelligence and machine learning are entering the domain of Earth694

system predictions in parallel with the development of more heterogeneous High-695

Performance Computing (HPC) architectures. This changing context presents new696

development opportunities that ECMWF is considering, with the ambition of retain-697

ing leadership in global medium- and extended range weather forecasting. 4D-Var698

data assimilation and machine learning share a common theoretical foundation and699

use similar computational tools. This has driven the work presented in this paper,700

which compares how each method is able to estimate and correct systematic errors in701

the IFS atmospheric model developed at ECMWF model.702

The results of this paper show that convolutional NNs are adequate to learn to703

estimate three-dimensional model bias from RO temperature retrievals. While large704

datasets containing several years of data are required for the training to achieve optimal705

results, transfer learning can help to mitigate data limitations if only a small quantity706
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of training data is available. Still, when used to perform bias correction in data707

assimilation experiments for a recent IFS model cycle and with a single year of training708

data for re-training, the deep learning tools of this paper were not able to outperform709

the current weak-constraint 4D-Var formulation that is in operational use at ECMWF.710

However, direct comparison between the two methods has one main limitation.711

Weak-constraint 4D-Var can be seen as an ”online” machine learning method, where712

observations over the last 12 hours are used to update the previous weather forecasts.713

The machine learning tool of this paper is based on an ”offline” training. Further-714

more, the deep learning bias correction was computed ”offline” before the assimilation715

experiment was started. It is difficult to estimate how much results would change if716

an update of the bias correction was calculated during the assimilation experiment717

which is – for technical reasons – beyond the scope of this paper. Another difference718

between the two approaches lies in the physical variables that are corrected. Weak-719

constraint 4D-Var estimates a forcing field for temperature, vorticity and divergence.720

Although very few stratospheric wind observations are available, these variables are721

linked through the model’s equation in the 4D-Var cost function. This means that722

wind corrections are made in conjunction with temperature adjustements. The NN723

approach corrected only temperature biases. The weak-constraint 4D-Var also in-724

cludes a model error covariance matrix Q that represents separately the statistics of725

the model error for temperature, vorticity and divergence. Cross-correlation between726

variables are not taken into account at the moment. Diagnostics in the IFS model727

show that the stratospheric temperature model biases evolve on larger spatial scales728

and longer timescales than background errors (Laloyaux, Bonavita, Chrust, & Gürol,729

2020). This information is contained in the Q matrix and helps weak-constraint 4D-730

Var to correctly attribute the different sources of errors. A similar approach could be731

investigated in the NN approach introducing a similar regularization term in the loss732

function. Finally, the jump from the model cycle used in ERA5 and in operations as733

performed in this paper represents a significant change in the temperature bias as it734

represents a transition over several years of model development.735

The deep learning approach has room for improvement, for example by extending736

the dataset to encompass more observation types. However, this is challenging as most737

observations do not measure model prognostic variables on a given grid point but a738

radiance that is sensitive to a broad vertical level. The development of machine learned739

observation operators to project observations onto model fields would be mandatory.740

The use of deep learning methods could also be extended further to include estimates of741

background and observation error covariance matrices, and to represent uncertainties742

explicitly, for example via Generative Adversarial Networks (Leinonen et al. (2021)).743

The treatment for sparsity observations could also be improved further, for example744

via the use of graph-NNs, which could evaluate observations at the points in space and745

time when they are available, and even respect spherical symmetry of the globe (cf. e.g.746

Defferrard et al. (2020)). Graph-NNs would also allow for the use of unstructured grids747

potentially including the native grid of the IFS and could better exploit the sparsity of748

the data by replacing the interpolation step with a NN based extrapolation. An online749

NN could be implemented in the future to study the full potential of a ML solution750

in the 4D-Var framework. However, this is work in progress and will require further751

developments regarding software infrastructure and more research to find the best way752

to update NN weights in a 4D-Var cycling environment. One of the key aspects of753

ECMWF business is the Research-to-Operations (R2O) process, which is followed to754

upgrade the software used in forecast production (Buizza et al., 2017). R2O includes755

a series of actions that could be summarized in 6 activities: planning, development,756

testing, evaluation, communication and implementation. The IFS model is upgraded757

at every cycle to better represent physical processes or introduce new ones that were758

missing. This paper illustrated the strength of weak-constraint 4D-Var that is able to759

estimate the bias of a new model with no need to construct a new training dataset760
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or to retune parameters. Specific solutions are required to achieve a similar flexibility761

with a NN.762
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