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Introduction. Text S1 contains a detailed derivation of the small-perturbation model

used in the main text. Text S2 contains a description of the nonlinear subglacial lake

model used to produce the synthetic data in Figures 8-9. We also provide captions for

Movies S1-S5 at the end of the document.

Text S1. Derivation of the small-perturbation model.

Governing Equations

Here, we derive the forward model that is used in the main text. We assume that the

domain is an ice slab of finite thickness and infinite horizontal extent. The bed underlying
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the ice layer is assumed to be oriented at an angle α relative to horizontal in the x direction

(see Figure 1 in the main text). To account for this slope, we rotate the gravitational

body force vector by this angle α. Therefore, in (x, y, z) space we assume that the ice

slab is defined by |x| < ∞, |y| < ∞, and s ≤ z ≤ h, where h and s are the upper and

basal surfaces of the ice sheet, respectively. We assume that h and s are uniform in the

background state.

Assuming Newtonian and incompressible Stokes flow, ice deforms according to

−px + η(uxx + uyy + uzz) = −ρg sin(α) (1)

−py + η(vxx + vyy + vzz) = 0 (2)

−pz + η(wxx + wyy + wzz) = ρg cos(α) (3)

ux + vy + wz = 0, (4)

where [u, v, w]T is the velocity, p is the pressure, ρ is the ice density, and g is gravitational

acceleration. We assume a stress-free condition at the upper surface (z = h), which is

equivalent to

2ηwz − p = 0 (5)

η(uz + wx) = 0 (6)

η(vz + wy) = 0. (7)

At the basal surface (z = s), we consider a prescribed vertical velocity

w = wb (8)

for a given function wb, along with a linear sliding law

η(uz + wx) = βu (9)
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η(vz + wy) = βv, (10)

where β is the basal drag coefficient.

The upper and basal surfaces of the ice sheet evolve according to kinematic equations

that are coupled to the Stokes flow equations. The upper surface evolves according to

ht + uhx + vhy = w + a, (11)

where a denotes accumulation or ablation at the ice-sheet surface. Similarly, the basal

surface evolves according to

st + usx + vsy = w +m (12)

where m is the melt rate.

Background states

We consider background states corresponding to flow down an inclined plane with no

variations in the x or y directions. Perturbations will be taken with respect to the back-

ground states below. We let ūs denote the basal sliding velocity, ūh the horizontal surface

velocity, and H the ice thickness (see Figure 1 in the main text). We set the background

upper surface elevation to h̄ = H, the background basal surface elevation to s̄ = 0, the

background basal melting rate to m̄ = 0, the background accumulation rate to ā = 0, the

background horizontal velocity in the y direction to v̄ = 0, and the background vertical

velocity to w̄ = 0. The remainder of the background state variables are determined via

ū = ūs +
ρg sin(α)

2η
(H2 − (H − z)2), p̄ = ρg cos(α)(H − z), β̄ūs = ρg sin(α)H (13)

where β̄ is the background basal drag coefficient.
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Perturbation equations

We introduce perturbations (denoted by “1” superscripts) to the background states via

u = ū+ u1, v = v̄ + v1, β = β̄ + β1

w = w̄ + w1 (wb = w̄b + w1
b ), p = p̄+ p1,

s = s̄+ s1, h = h̄+ h1, m = m̄+m1, a = ā+ a1 (14)

where the perturbations are small (i.e., O(ε) where ε � 1). We obtain equations for

the perturbed fields by inserting the perturbations (14) into (1)-(12) and discarding the

product terms (i.e., f 1g1 = O(ε2)).

In this way, we obtain a homogeneous Stokes system for the perturbed fields

−p1
x + η(u1

xx + u1
yy + u1

zz) = 0 (15)

−p1
y + η(v1

xx + v1
yy + v1

zz) = 0 (16)

−p1
z + η(w1

xx + w1
yy + w1

zz) = 0 (17)

u1
x + v1

y + w1
z = 0, (18)

and the surface kinematic equations become

h1
t + ūhh

1
x = w1 + a1 (19)

s1
t + ūss

1
x = w1 +m1. (20)

To account for changes in ice geometry, we linearize the upper and lower surface bound-

ary conditions at z = H+h1 and z = s1 onto z = H and z = 0, respectively. To do this, we

use a 1st-order Taylor expansion in depth for a function f(z): f(z0+z1) ≈ f(z0)+fz(z
0)z1.

The stress-free condition at z = H + h1 is approximated at z = H by

2ηw1
z − p1 = −ρg cos(α)h1 (21)
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η(u1
z + w1

x) = ρg sin(α)h1 (22)

η(v1
z + w1

y) = 0 (23)

Equation (21) states that the perturbed normal stress is balanced by the perturbed cryo-

static stress from the elevation anomaly. Similarly, boundary conditions at the base

become

w1 = w1
b (24)

η(u1
z + w1

x) = β̄u1 + ūsβ
1 − τ̄ s1 (25)

η(v1
z + w1

y) = β̄v1 (26)

where the stress-gradient parameter

τ̄ = β̄ūz − ηūzz|z=0 (27)

depends on the background state. We drop the “1” superscripts below.

Fourier transform solution

We use the Fourier transform (equation 2 in main text) to solve the system (15)-(26).

The Stokes flow equations (15)-(18) become

−ikxp̂+ η(−k2û+ ûzz) = 0 (28)

−ikyp̂+ η(−k2v̂ + v̂zz) = 0 (29)

−p̂z + η(−k2ŵ + ŵzz) = 0 (30)

ikxû+ ikyv̂ + ŵz = 0 (31)

Equations (28)-(31) can be reduced to a fourth-order equation for the transformed vertical

velocity

ŵzzzz − 2k2ŵzz + k4ŵ = 0. (32)
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The general solution to (32) is

ŵ =
A

k
ekz +

B

k
e−kz + Czekz +Dze−kz, (33)

where the constants A,B,C, and D depend on k. To determine these coefficients, we

will rewrite all of the boundary conditions in terms of ŵ and its z derivatives. The z

derivatives of ŵ are

ŵz = Aekz −Be−kz + Cekz + Ckzekz −Dkze−kz +De−kz (34)

ŵzz = Akekz +Bke−kz + 2Ckekz + Ck2zekz +Dk2ze−kz − 2Dke−kz (35)

ŵzzz = Ak2ekz −Bk2e−kz + 3Ck2ekz + Ck3zekz −Dk3ze−kz + 3Dk2e−kz (36)

For later reference, the surface kinematic equations (19)-(20) transform to

ĥt + ūhikxĥ = ŵ + â, (37)

ŝt + ūsikxŝ = ŵ + m̂. (38)

The sliding law (25)-(26) becomes

η(ûz + ikxŵ) = β̄û+ ūsβ̂ − τ̄ ŝ (39)

η(v̂z + ikyŵ) = β̄v̂. (40)

Multiplying (39)-(40) by −ikx and −iky, respectively, summing the equations, and using

the transformed incompressibility condition (31), we obtain

η(ŵzz + k2ŵ) = β̄ŵz − ikx(ūsβ̂ − τ̄ ŝ). (41)

Similarly, the shear stress condition (22)-(23) at the upper surface becomes

η(ŵzz + k2ŵ) = −ikxρg sin(α)ĥ. (42)
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The normal-stress condition at the upper surface (21) transforms to 2ηŵz − p̂ =

−ρg cos(α)ĥ. The transformed Stokes equations (28)-(31) imply that −k2p̂ = η(k2ŵz −

ŵzzz), which reduces this expression for the normal-stress condition to

η(3k2ŵz − ŵzzz) = −k2ρg cos(α)ĥ. (43)

To simplify notation, we define the aspect ratio

k′ ≡ kH.

Using the formulas (33)-(36) evaluated at z = H, the normal stress condition (43)

reduces to

Aek
′ −Be−k′ + Ck′ek

′ −Dk′e−k′ = −ρg cos(α)

2η
ĥ ≡ b1, (44)

and the upper-surface shear-stress condition (42) becomes

Aek
′
+Be−k

′
+ C(k′ + 1)ek

′
+D(k′ − 1)e−k

′
= −ikxρg sin(α)

2ηk
ĥ ≡ cαb1, (45)

cα ≡
ikx
k

tan(α).

Using the formulas (33)-(36) evaluated at z = 0, the sliding law (41) reduces to

A(1− γ) +B(1 + γ) + C(1− γ)−D(1 + γ) = − ikx
2ηk

(ūsβ̂ + τ̄ ŝ) ≡ b2 (46)

where we have defined

γ = β̄/(2ηk).

The basal velocity anomaly boundary condition becomes

A+B = kŵb ≡ b3. (47)
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Equations (44)-(47) lead to a linear system for the coefficients {A,B,C,D}. The vertical

velocity at the upper surface takes the form

ŵ|z=H =
1

k

(
ek
′
A+ e−k

′
B + k′ek

′
C + k′e−k

′
D
)

= −Rgĥ+ Twŵb + ikxTβ(ūsβ̂ − τ̄ ŝ). (48)

The relaxation frequency Rg is given by

Rg =

(
ρg cos(α)

2ηk

)
(1 + γ)e4k′ − (2 + 4γk′ − 4cαk

′(1 + γk′))e2k′ + 1− γ
(1 + γ)e4k′ + (2γ + 4k′ + 4γk′2)e2k′ − 1 + γ

, (49)

the basal vertical velocity transfer function Tw is given by

Tw =
2(1 + γ)(k′ + 1)e3k′ + 2(1− γ)(k′ − 1)ek

′

(1 + γ)e4k′ + (2γ + 4k′ + 4γk′2)e2k′ − 1 + γ
, (50)

and the basal drag transfer function is given by

Tβ =

(
k′

ηk2

)
e3k′ + ek

′

(1 + γ)e4k′ + (2γ + 4k′ + 4γk′2)e2k′ − 1 + γ
. (51)

In frequency space, equations (37) and (48) lead to the evolution equation

∂ĥ

∂t
+ [ikxūh + Rg] ĥ = Twŵb + ikxTβ(ūsβ̂ − τ̄ ŝ) + â, (52)

which is equation (6) from the main text.

Velocity solutions

Here, we derive the horizontal surface velocity anomaly solutions. We rearrange the

transformed Stokes equations (28)-(29) to

ûzz − k2û =
ikx
η
p̂ (53)

v̂zz − k2v̂ =
iky
η
p̂. (54)
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Equations (53) and (54) have the general solutions

û(z) =
ikx
2ηk

(
ekz

∫ z

0
p̂(z′)e−kz

′
dz′ − e−kz

∫ z

0
p̂(z′)ekz

′
dz′
)

+ Eekz + Fe−kz (55)

v̂(z) =
iky
2ηk

(
ekz

∫ z

0
p̂(z′)e−kz

′
dz′ − e−kz

∫ z

0
p̂(z′)ekz

′
dz′
)

+Gekz + Ie−kz (56)

where {E,F,G, I} depend on the boundary conditions. As noted before, the body equa-

tions (28)-(31) imply that

p̂ = η
(

1

k2
ŵzzz − ŵz

)
. (57)

We substitute (57) into equations (55)-(56) and integrate the ŵzzz term by parts twice.

To this end, we use the identity

∫ z

0

(
1

k2
ŵzzz − ŵz

)
e±kz

′
dz′ =

1

k2

[
e±kz

′
ŵzz

]z
0
− ±k

k2

[
ŵze

±kz′
]z

0
(58)

and find that the pressure integrals reduce to

ekz
∫ z

0
p̂(z′)e−kz

′
dz′ − e−kz

∫ z

0
p̂(z′)ekz

′
dz′

=
2η

k

(
ŵz − ŵz|z=0 cosh(kz)− 1

k
ŵzz|z=0 sinh(kz)

)
. (59)

Therefore, we obtain

û(z) =
ikx
k2
P (z) + Eekz + Fe−kz (60)

v̂(z) =
iky
k2
P (z) +Gekz + Ie−kz (61)

P (z) = ŵz − ŵz|z=0 cosh(kz)− 1

k
ŵzz|z=0 sinh(kz). (62)

We can determine the constants {E,F,G, I} from the sliding law and stress-free upper-

surface condition. First, we note that

ûz(z) =
ikx
k2
Pz(z) + Ekekz − Fke−kz (63)
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v̂z(z) =
iky
k2
Pz(z) +Gkekz − Ike−kz (64)

Pz(z) = ŵzz − ŵz|z=0k sinh(kz)− ŵzz|z=0 cosh(kz) (65)

Pz(0) = 0 = P (0). (66)

The stress-free conditions at z = H (i.e., ûz = −ikxŵ + ρg sin(α)
η

ĥ, etc.) imply

Eek
′ − Fe−k′ = −ikx

k2

(
kŵh +

1

k
Pz(H)− 2κcαb1

)
≡ b4 (67)

Gek
′ − Ie−k′ = −iky

k2

(
kŵh +

1

k
Pz(H)

)
≡ b′4, (68)

where we have defined

κ = k2/k2
x.

For later convenience in deriving the response functions, we note that b′4 is analogous to

b4 but with κ = 0. We rearrange the sliding law as ûz − β̄
η
û = 1

η
(ūsβ̂ + τ̄ ŝ) − ikxŵb to

obtain

E(1− 2γ)− F (1 + 2γ) = −ikx
k2

(kŵb − 2κb2) ≡ b5, (69)

and, similarly,

G(1− 2γ)− I(1 + 2γ) = −iky
k2

(kŵb) ≡ b′5. (70)

As before, we note that b′5 is analogous to b5 but with κ = 0. At this point, we can solve

equations (67)-(70) symbolically for {E,F,G, I}. Then, we can solve for the velocity

solutions via

û|z=H ≡ ûh =
ikx
k2
P (H) + Eek

′
+ Fe−k

′
(71)

v̂|z=H ≡ v̂h =
iky
k2
P (H) +Gek

′
+ Ie−k

′
. (72)
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The velocities can be written in terms of {ĥ, ŝ, ŵ, β̂} as

ûh = −Uβ(ūsβ̂ − τ̄ ŝ)− ikx
(
Uhĥ+ Uwŵb

)
(73)

v̂h = −Vβ(ūsβ̂ − τ̄ ŝ)− iky
(
Vhĥ+ Vwŵb

)
, (74)

which are equations (A1) and (A2) in the main text. The response functions for the u

component are given by

Uh =
ρg cos(α)

2ηk2

(
2k′(γk′ + 1)(2γ + (2γ + 1)e2k′ − 1)ek

′
+ Pα

)
D−1

Uw =
1

k
k′
(

2γ2 − 3γ + 2(2γ2 − 1)e2k′ + (2γ2 + 3γ + 1)e4k′ + 1
)
D−1

Uβ =
k2
x

2ηk3

(
2κ(γ − 1) + k′(2γ − 1) + 2(2γκ+ 4γk′

2
(κ− 1) + k′(4κ− 3))e2k′

+(2κ(γ + 1)− k′(2γ + 1)− 1)e4k′ + 1
)
D−1

D =
(

(2γ2 + 3γ + 1)e6k′ + (6γ2 + 4γk′
2
(2γ + 1) + 4k′(2γ + 1) + 3γ − 1)e4k′

+(6γ2 + 4γk′
2
(2γ − 1) + 4k′(2γ − 1)− 3γ − 1)e2k′ + 2γ2 − 3γ + 1

)
/(2ek

′
)

and those for the v component are given by

Vh = Uh|κ=0 (75)

Vw = Uw (76)

Vβ =
ky
kx

Uβ|κ=0. (77)

The additional terms Pα entering the expression for Uh (74) when α > 0 are given by

Pα = cα

(
− 2γ2 + 3γ + 2κ

(
2γ2 − 3γ + 1

)
+
[
2γ2 + 3γ − 2κ

(
2γ2 + 3γ + 1

)
+ 1

]
e6k′

+
[
− 16γ2k′

2 − 8γ2k′ − 2γ2 + 8γk′
2 − 12γk′ − 3γ + 2κ(8γ2k′

2
+ 2γ2 − 4γk′

2
+ 8γk′

−γ − 4k′ + 1) + 8k′ − 1
]
e2k′ +

[
16γ2k′

2 − 8γ2k′ + 2γ2 + 8γk′
2

+ 12γk′ − 3γ
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−2κ(8γ2k′
2

+ 2γ2 + 4γk′
2

+ 8γk′ + γ + 4k′ + 1) + 8k′ + 1
]
e4k′ − 1

)
. (78)

Text S2. Nonlinear subglacial lake model.

Model description

Here, we outline the nonlinear subglacial lake model that is used to construct the

synthetic data in main text Figures 8-9. The model setup is the same as in Stubblefied,

Spiegelman, & Creyts (2021) and Stubblefied, Creyts, et. al (2021), so we only state the

relevant portions here. The code is openly available (DOI: 10.5281/zenodo.5775182).

First, on the basal boundary we assume a linear sliding law of the form

T σn = −βT u, (79)

where σ is the stress tensor, u is the velocity, β is the basal drag coefficient, and T =

I−nnT is a tangential projection operator with n being an outward-pointing unit normal

to the domain boundary and I the identity tensor. For consistency with the small-

perturbation model parameters in the main text (Table 1), we set β = 5× 109 Pa s/m on

the ice-bed boundary. We note that β = 0 over the ice-water boundary in the nonlinear

model.

Second, the ice viscosity in the nonlinear model follows Glen’s law (Cuffey & Paterson,

2010; Glen, 1955), which is given by

η(D) =
1

2
B(|D|2 + εv)

1−n
2n . (80)

In the flow law (eq. 80), |D| =
√

tr(DTD) denotes the Frobenius norm of the strain-rate

tensor D, n = 3 is the stress exponent, B = 8.6 × 107 Pa s1/n is the ice hardness, and

εv is a regularization parameter that prevents infinite viscosity at zero strain rate. For
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consistency with the small-perturbation model, we assume that the zero-strain-rate (i.e.,

|D| = 0 ) viscosity coincides with the Newtonian viscosity in the main text (1013 Pa s;

Table 1). We accomplish this by setting εv = (2× 1013/B)
2n
1−n ≈ 7.89× 10−17 s−1.

Third, instead of prescribing a basal vertical velocity wb, we prescribe the subglacial

lake water volume change V through the integral constraint

V̇ =
∫

Γ
u · (−n) ds, (81)

where V̇ is the rate of water volume change and Γ is the lower boundary of the ice. The

prescribed volume change is shown in Figure 8. The vertical velocity wb in Figure 8 is

extracted from the nonlinear Stokes solution u.

Finally, we assume a cryostatic stress condition on the side-walls of the domain to

ensure consistency with the (infinite-domain) small-perturbation model. This also limits

the influence of the slippery spot over the lake on the elevation change—i.e., the basal drag

anomaly doesn’t appear at first-order when the background state is cryostatic—making

an inversion for the basal vertical velocity feasible with altimetry data alone. With these

specifications, the elevation solution from the nonlinear model is then used to produce

synthetic data (Figures 8 and 9) as described in Section 4.2 of the main text.

Additional Supporting Information (Files uploaded separately)

Caption for Movie S1

Movie of the computational example in Figure 4 over the entire simulation time. hobs is

the synthetic elevation anomaly data, hfwd = Hwb
(winv

b ) is the modelled elevation associ-

ated with the inversion winv
b , and wtrue

b is the “true” solution used to create the synthetic
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data. The elevations have been normalized by ‖hobs‖∞ ≈ 4 and the vertical velocities

have been normalized by ‖wtrue
b ‖∞ = 5. File name: ms01.mp4.

Caption for Movie S2

Movie of the computational example in Figure 5 over the entire simulation time. hobs is

the synthetic elevation anomaly data, hfwd = Hβ(βinv) is the modelled elevation associated

with the inversion βinv, and βtrue is the “true” solution used to create the synthetic data.

The elevations have been normalized by ‖hobs‖∞ ≈ 2.87 and the basal drag anomalies

have been normalized by ‖wtrue
b ‖∞ = 0.08. File name: ms02.mp4.

Caption for Movie S3

Movie of the computational example in Figure 7 over the entire simulation time. hobs

is the synthetic elevation anomaly data, uobs is the synthetic horizontal surface velocity

anomaly data, hfwd = Hc(w
inv
b , βinv) is the modelled elevation associated with the inver-

sion [winv
b , βinv]T , ufwd = [Uc(winv

b , βinv),Vc(winv
b , βinv)]T is the modelled horizontal surface

velocity associated with the inversion, and [wtrue
b , βtrue]T is the “true” solution used to

create the synthetic data. The elevations have been normalized by ‖hobs‖∞ ≈ 5.6, the

horizontal velocities have been normalized by the maximum flow speed in the observed

anomaly (∼38.9), the vertical velocities have been normalized by ‖wtrue
b ‖∞ = 5, and the

basal drag anomalies have been normalized by ‖wtrue
b ‖∞ = 0.08. File name: ms03.mp4.

Caption for Movie S4

Movie of the nonlinear subglacial lake simulation depicted in Figure 8. For reference,

the maximum elevation anomaly is ∼1.4m and the bed trough is 8m deep in dimensional

terms. See Movie S5 and Figure 9 for a more detailed view of the elevation anomaly h.
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The basal vertical velocity wb is normalized by its maximum absolute value ‖wb‖∞ ≈ 6.58.

File name: ms04.mp4.

Caption for Movie S5

Movie of the inversion shown in Figure 9 over the entire simulation time. hobs is the

synthetic elevation anomaly data, hfwd = Hwb
(winv

b ) is the modelled elevation associated

with the inversion winv
b , and wtrue

b is the “true” solution used to create the synthetic data.

The elevations have been normalized by ‖hobs‖∞ ≈ 1.42 and the vertical velocities have

been normalized by ‖wtrue
b ‖∞ ≈ 6.58. File name: ms05.mp4.
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