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Abstract12

Glacier surface elevation responds to a variety of localized processes occurring beneath13

the ice. Subglacial-lake volume change in particular is inherently time-dependent, pro-14

ducing time-varying perturbations in ice-surface elevation. Here, we introduce inverse15

methods for quantifying time-varying subglacial perturbations from altimetry data and,16

when available, horizontal surface velocity data. The forward model is based on a small-17

perturbation approximation of the Stokes equations that is solved efficiently with Fourier18

transform methods. The inverse methods are derived from variational least-squares op-19

timization problems and the associated normal equations are solved with the conjugate20

gradient method. We conduct synthetic tests for reconstructing time-varying basal ver-21

tical velocity and drag perturbations that are motivated by subglacial-lake activity and22

slippery spots beneath Antarctic ice streams. We show that incorporation of horizon-23

tal surface velocity data as additional constraints can refine altimetry-based inversions24

or facilitate reconstruction of multiple fields, depending on whether the data are spatially25

discrete or continuous. We further validate the method by showing that it can recon-26

struct basal perturbations from synthetic elevation data that are produced by a nonlin-27

ear subglacial lake model. With the advent of high spatial and temporal resolution al-28

timetry data from NASA’s ICESat-2 mission, these inverse methods will facilitate fur-29

ther assessment of the relation between ice-sheet flow and subglacial processes.30

Plain Language Summary31

The topography of glaciers and ice sheets changes over time due to a variety of pro-32

cesses that operate over a range of spatial and temporal scales. While large-scale ice flow33

is influenced by climate change on decadal to centennial timescales, uncertainty remains34

in how these changes relate to small-scale or “local” processes that often occur on shorter35

timescales. Local changes in glacier topography are often associated with phenomena36

occurring beneath the ice such as the presence of subglacial lakes, flow over anomalous37

bedrock topography, or melting of the ice. Here, we develop computational methods that38

use elevation data to quantify a variety of phenomena occurring beneath glaciers and ice39

sheets. With the advent of high-resolution elevation data from NASA’s ICESat-2 satel-40

lite altimetry mission, these methods will facilitate assessment of the relation between41

a variety of dynamic subglacial processes and the flow of Earth’s ice sheets.42

1 Introduction43

Ice-sheet surface elevation responds to a variety of time-varying subglacial phenom-44

ena, including subglacial-lake volume change, basal-drag variations, and melting of the45

basal ice. Subglacial lakes in particular have received much attention due to the local-46

ized perturbations they produce in ice-sheet surface elevation during volume-change events47

(Gray et al., 2005; Fricker et al., 2007; Wingham et al., 2006). The ICESat (NASA) and48

CryoSat-2 (ESA) satellite altimetry missions facilitated the detection of hundreds of sub-49

glacial lakes beneath the Antarctic Ice Sheet (Fricker et al., 2016; Smith et al., 2009; Wright50

& Siegert, 2012), raising investigations into their possible relation to fast ice flow (Scambos51

et al., 2011; Siegfried et al., 2016; Stearns et al., 2008) and ability to host microbial ecosys-52

tems (e.g., Achberger et al., 2016; Christner et al., 2014). Few subglacial lakes have been53

discovered beneath the Greenland Ice Sheet based on ice-surface changes, suggesting that54

there may be fundamental differences in subglacial conditions there relative to the Antarc-55

tic Ice Sheet (Bowling et al., 2019; Livingstone et al., 2019).56

High-resolution satellite altimetry data from NASA’s ICESat-2 mission presents57

an invaluable opportunity to continue investigating dynamic conditions beneath ice sheets58

(Abdalati et al., 2010; Markus et al., 2017; Neckel et al., 2021; Siegfried & Fricker, 2021).59

While ice-surface elevation changes provide clues about subglacial hydrological activity,60

modelling has shown that accurately estimating subglacial-lake volume change, areal ex-61
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tent, and highstand or lowstand timing from altimetry alone is often infeasible due to62

the effects of viscous ice flow (Stubblefield, Creyts, et al., 2021). Inverse methods that63

quantify subglacial-lake activity from altimetry while accounting for ice-flow effects have64

not yet been developed.65

Subglacial lakes or anomalous bed topography can be associated with basal drag66

anomalies that produce adjacent areas of thickening and thinning (Bell et al., 2007; Fricker67

et al., 2010; O. V. Sergienko et al., 2007; O. V. Sergienko & Hulbe, 2011; Shapero et al.,68

2016; Winberry et al., 2014). These anomalies are often called ‘sticky’ or ‘slippery’ spots,69

depending on whether they are a local enhancement or reduction in drag, respectively.70

Many previous basal drag coefficient inversions rely on velocity data without incorpo-71

rating altimetry data as constraints in the optimization problem (Arthern & Gudmunds-72

son, 2010; D. N. Goldberg & Sergienko, 2011; Joughin et al., 2004; MacAyeal, 1993; MacAyeal73

et al., 1995; Morlighem et al., 2010, 2013; Petra et al., 2012; Ranganathan et al., 2021;74

Vieli & Payne, 2003). However, satellite altimetry data is increasingly being used in basal75

drag inversions that rely on depth-integrated approximations of the Stokes equations (Arthern76

et al., 2015; D. Goldberg & Heimbach, 2013; D. Goldberg et al., 2015; Larour et al., 2014;77

Mosbeux et al., 2016).78

Inversion of time-varying altimetry or velocity data benefits from dimensionality79

reduction to alleviate the computational cost associated with repeatedly solving the for-80

ward problem. Dimensionality reduction is often achieved through utilization of depth-81

integrated ice-flow models (Greve & Blatter, 2009, ch. 5). Applying perturbation meth-82

ods to the Stokes equations is an alternative way to achieve computational efficiency when83

the full stresses in the ice must be resolved (e.g., Balise & Raymond, 1985; Bassis & Ma,84

2015; Budd, 1970; Gudmundsson et al., 1998; Gudmundsson, 2003; Hutter et al., 1981;85

Reeh, 1987; O. Sergienko, 2012; Stubblefield, Creyts, et al., 2021). The primary limita-86

tions of (first-order) perturbation methods are that the resulting forward models are in-87

herently linear, posed on geometrically simple domains, and cannot deviate significantly88

from the specified background state. Previous inversions relying on perturbation meth-89

ods have not included time-varying data (Gudmundsson & Raymond, 2008; Thorsteins-90

son et al., 2003). Likewise, a general framework for inversion of time-varying elevation91

or velocity data with perturbation-based models has not been developed.92

Here, we derive and test altimetry-based inverse methods for quantifying basal ver-93

tical velocity or drag coefficient perturbations that arise from subglacial lakes or anoma-94

lous bed topography. First, we outline the forward model for the perturbation in ice-surface95

elevation that is produced by basal forcing (Section 2). We then derive methods for altimetry-96

based inversions (Section 3.1) and joint inversions that incorporate horizontal surface97

velocity data as additional constraints (Section 3.2). To illustrate the methods and their98

applicability, we conduct synthetic tests that are motivated by subglacial lake activity99

and slippery spots by inverting synthetic data produced with the small-perturbation model100

(Section 4.1) and a nonlinear subglacial lake model (Section 4.2). We conclude by dis-101

cussing applications, limitations, and extensions of the methods (Section 5).102

2 Forward Model103

Here, we outline the forward model for the perturbation in ice-surface elevation given104

different types of basal perturbations as input (Figure 1). The model is based on a small-105

perturbation approximation of the Stokes equations that closely follows previous work106

(e.g., Balise & Raymond, 1985; Gudmundsson et al., 1998; Gudmundsson, 2003). We pro-107

vide a detailed derivation of the model in the Supporting Information (Text S1). In this108

section, we describe the background states (Section 2.1), primary mathematical oper-109

ations (Section 2.2), model equations (Section 2.3), a scaling of the problem (Section 2.5),110

and the ice-surface elevation anomaly solutions (Section 2.6).111
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Figure 1. Sketch of model setup depicting the basal anomalies (wb, β), ice-surface elevation

anomaly (h), basal-surface elevation anomaly (s), and background ice thickness (H). Background

flow profiles are shown in red, with ūh and ūs denoting the surface and basal background flow

speeds, respectively. There is no background flow in the direction of the y axis, which is oriented

perpendicular to the page. The coordinate system is rotated to coincide with the background bed

slope (α).

2.1 Background States and Perturbations112

We assume that all fields are small, localized perturbations from a background state113

that satisfies the incompressible Stokes equations with Newtonian viscosity, η (Text S1).114

The spatial domain is a strip of finite vertical thickness, H, and infinite horizontal ex-115

tent in three-dimensional (x, y, z) space. The coordinate system is rotated to coincide116

with the background bed slope α ≥ 0 (Figure 1). At the basal surface, the vertical ve-117

locity is prescribed along with a linear sliding law that relates the horizontal velocity and118

shear stress. We assume a stress-free condition at the upper surface. Finally, the Stokes119

problem is coupled to kinematic equations that describe the evolution of the upper and120

basal surfaces (Text S1).121

We set the background ice-surface elevation to be h̄ = H, the background basal122

surface elevation to be s̄ = 0, the background accumulation rate to be ā = 0, the back-123

ground basal melting rate to be m̄ = 0, the background horizontal velocity in the y-124

direction to be v̄ = 0, and the background vertical velocity to be w̄ = 0. We let ūs125

denote the background basal sliding velocity and ūh the background horizontal surface126

velocity in the x direction, respectively (Figure 1). We consider the parabolic velocity127

solutions128

ū = ūs +
ρg sin(α)

2η
(H2 − (H − z)2), p̄ = ρg cos(α)(H − z), β̄ūs = ρg sin(α)H, (1)

where ū is the background horizontal velocity in the x-direction, p̄ is the background ice129

pressure, β̄ is the background basal drag coefficient, g is gravitational acceleration, and130

ρ is the ice density. In the limit α → 0, equation (1) reduces to a uniform flow in the131

x-direction with either free slip (β̄ = 0) or no sliding (ūs = 0). We define the model132

parameters related to these background states in Table 1.133

We consider perturbations in the basal vertical velocity, wb, and basal drag coef-134

ficient, β, relative to the above background state (eq. 1). For example, the basal verti-135

cal velocity anomaly wb may be produced from either bed topography or subglacial lake136

activity. Likewise, the basal drag perturbation may be related to a “slippery spot” (β <137

0) associated with the presence of subglacial water or “sticky spot” (β > 0) associated138

with bed roughness. These basal perturbations cause perturbations in the ice-surface el-139

evation, h, and the basal surface elevation, s. We also consider perturbations in basal140
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melting rate, m, and accumulation (or ablation) rate, a, although these are not included141

in the inversion examples for simplicity. We illustrate the background states and per-142

turbations in Figure 1.143

2.2 Main Operations144

The solution method relies on the map-plane Fourier transform, which for a func-145

tion f(x, y) is given by146

f̂(kx, ky) =

∫ +∞

−∞

∫ +∞

−∞
f(x, y)e−i(kxx+kyy) dx dy, (2)

where kx and ky are wavenumbers corresponding to the x and y directions, respectively.147

We denote the length of the wavevector by148

k =
√
k2x + k2y. (3)

A function f may be recovered with the inverse Fourier transform via149

f(x, y) =
1

4π2

∫ +∞

−∞

∫ +∞

−∞
f̂(kx, ky)ei(kxx+kyy) dkx dky. (4)

We will also rely on the convolution of two functions f1(t) and f2(t) over time t, which150

is given by151

f1 ∗ f2 =

∫ t

0

f1(t̃)f2(t− t̃) dt̃, (5)

provided that these functions vanish for t < 0.152

2.3 Model Equations153

Under the assumption of small, localized perturbations, the ice-surface elevation154

anomaly h evolves in frequency space via155

∂ĥ

∂t
+ [ikxūh + Rg] ĥ = â+ Twŵb + ikxTβ(ūsβ̂ − τ̄ ŝ) (6)

in response to anomalies in the basal vertical velocity wb, basal drag coefficient β, sur-156

face accumulation (or ablation) a, and basal surface elevation s (Text S1). Likewise, the157

basal surface s evolves according to158

∂ŝ

∂t
+ ikxūsŝ = ŵb + m̂, (7)

where m is the basal melting rate. The terms ikxūhĥ and ikxūsŝ in (6) and (7), respec-159

tively, represent surface advection from the background flow.160

The function Rg in equation (6) describes relaxation of the ice-sheet surface, and161

is given by162

Rg =

(
ρg cos(α)

2ηk

)
(1 + γ)e4k

′ − (2 + 4γk′ − 4cαk
′(1 + γk′))e2k

′
+ 1− γ

(1 + γ)e4k′ + (2γ + 4k′ + 4γk′2)e2k′ − 1 + γ
, (8)

where we have defined the nondimensional quantities163

k′ = kH, cα = (ikx/k) tan(α), γ = β̃/k′, β̃ =
β̄H

2η
. (9)

In the limit of a horizontal bed (α → 0) and infinite ice thickness (k′ → ∞), Rg (eq.164

8) reduces to the classical topographic relaxation frequency, ρg/(2ηk) (Turcotte & Schu-165

bert, 2002). This infinite-thickness relaxation frequency is an upper bound on Rg.166
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The function Tw in equation (6) describes transfer of the basal vertical velocity anomaly167

wb to its surface expression, and is given by168

Tw =
2(1 + γ)(k′ + 1)e3k

′
+ 2(1− γ)(k′ − 1)ek

′

(1 + γ)e4k′ + (2γ + 4k′ + 4γk′2)e2k′ − 1 + γ
. (10)

The velocity transfer function produces a diminished surface expression of the basal anomaly169

because Tw ≤ 1 for all k′ ≥ 0 (Figure 2). In the limit of no basal sliding (γ → ∞),170

equation (10) reduces to the vertical velocity transfer function derived by Balise and Ray-171

mond (1985, eq. 21b therein).172

Finally, the function Tβ in equation (6) describes the influence of basal drag anoma-173

lies on elevation change, and is given by174

Tβ =

(
k′

ηk2

)
e3k
′
+ ek

′

(1 + γ)e4k′ + (2γ + 4k′ + 4γk′2)e2k′ − 1 + γ
. (11)

While basal drag anomalies can result directly from the anomaly β, equation (6) shows175

that they can also arise indirectly from basal surface perturbations s. Drag perturba-176

tions result from basal surface perturbations when there are vertical gradients in the back-177

ground sliding speed or shear stress, which are encoded in the stress-gradient parame-178

ter179

τ̄ = β̄ūz − ηūzz|z=0. (12)

The background basal stress gradient τ̄ (eq. 12) is computed from the background state180

parameters (Table 1).181

2.4 Scaling182

Now, we introduce scalings for the forward model equations (6) and (7). We let h0183

be a measure of the elevation anomaly magnitude and t0 a measure of the observational184

timescale (Table 1). We scale the variables according to185

h = h0h
′, s = h0s

′, wb =
h0
t0
w′b, β =

2η

H
β′, m =

h0
t0
m′, a =

h0
t0
a′

x = Hx′, y = Hy′, t = t0t
′, k = H−1k′, kx = H−1k′x, ky = H−1k′y, (13)

where primes denote dimensionless quantities. We provide representative values for these186

scales in Table 1.187

In equation (6), we scale the relaxation function Rg (eq. 8) according to188

Rg = t−1r R′g, R′g =
1

k′
(1 + γ)e4k

′ − (2 + 4γk′ − 4cαk
′(1 + γk′))e2k

′
+ 1− γ

(1 + γ)e4k′ + (2γ + 4k′ + 4γk′2)e2k′ − 1 + γ
(14)

where189

tr =
2η

ρig cos(α)H
(15)

is the characteristic timescale for viscous relaxation of surface topography perturbations190

with H−1 wavenumber (c.f. Turcotte & Schubert, 2002). Similarly, we define the scaled191

basal-drag transfer function to be192

T′β(k′) =
2

k′
e3k
′
+ ek

′

(1 + γ)e4k′ + (2γ + 4k′ + 4γk′2)e2k′ − 1 + γ
. (16)

The velocity transfer function Tw (eq. 10) is already nondimensional, depending only193

on k′. We show the scaled relaxation and transfer functions over a range of wavenum-194

bers in Figure 2.195
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Omitting primes on the variables, we scale the elevation anomaly equation (6) to196

obtain197

∂ĥ

∂t
+ [ikxũh + λRg] ĥ = â+ Twŵb + ikxTβ(νβ̂ − τ̃ ŝ), (17)

where198

λ =
t0
tr

(18)

is the observational timescale relative to the characteristic surface relaxation timescale.199

The parameter200

ν =
ūst0
h0

(19)

is the background sliding velocity relative to the vertical velocity anomaly scale, while201

ũh =
ūht0
H

(20)

is the background surface flow speed relative to the characteristic horizontal velocity scale202

H/t0, and203

τ̃ =
τ̄Ht0

2η
(21)

is the basal stress-gradient parameter relative the characteristic drag 2η/H produced over204

the timescale t0.205

Similarly, the basal surface evolution equation (7) scales to206

∂ŝ

∂t
+ ikxũsŝ = ŵb + m̂, (22)

where207

ũs ≡
ūst0
H

(23)

is the background sliding speed relative to the characteristic horizontal velocity scale.208

We provide values for the nondimensional parameters in Table 1.209

2.5 General Solutions210

The solution to (17) for the Fourier-transformed elevation anomaly is211

ĥ = (â+ Twŵb + ikxTβ(νβ̂ − τ̃ ŝ)) ∗ Kh, (24)

where the kernel212

Kh = exp (−[ikxũh + λRg]t) (25)

describes advection and surface relaxation. In deriving (24), we have assumed a spatially213

uniform initial condition of h = 0 for simplicity. The solution (24) also depends on the214

lower surface elevation s. Integrating equation (22), we obtain215

ŝ = (ŵb + m̂) ∗ Ks, (26)

Ks = exp (−ikxũst) . (27)

The kernel Ks (eq. 27) describes advection of the lower surface elevation due to sliding216

at the background flow speed. Substituting the expression for ŝ (eq. 26) into equation217

(24), we obtain the solution formula218

ĥ =
(
â+ Twŵb + ikxTβ

(
νβ̂ − τ̃ [(ŵb + m̂) ∗ Ks]

))
∗ Kh. (28)

Given perturbations (wb, β,m, a) as input, we compute the physical-space solution h by219

applying the inverse Fourier transform (eq. 4) to equation (28).220
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Figure 2. Scaled relaxation and transfer functions over a range of k. (a) Relaxation function

(eq. 14) with cα = 0, (b) basal-velocity transfer function (eq. 10), and (c) basal-drag transfer

function (eq. 16) for different values of the background drag parameter β̃. Panel (c) shows that

Tβ is bounded above by β̃−1.
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Table 1. Model parameters and default values. The default values are the same for the exam-

ples in Section 4.1 and Section 4.2 except where noted.

Symbol Definition Default values

Dimensional Section 4.1 Section 4.2
η ice viscosity 1013 Pa s
g gravitational acceleration 9.81 m/s2

ρ ice density 917 kg/m3

α background basal slope 0.2◦ 0◦

H background ice thickness 1000 m
β̄ background basal drag coefficient 5× 109 Pa s/m
ūh background surface speed ∼250 m/yr 0 m/yr
ūs background sliding speed 200 m/yr 0 m/yr
τ̄ basal shear stress gradient (eq. 12) ∼47 Pa/m 0 Pa/m
h0 elevation anomaly scale 1 m
t0 observational timescale 1 yr
w0 vertical velocity scale 1 m/yr
tr surface relaxation timescale (eq. 15) ∼7× 10−2 yr

Nondimensional
λ t0/tr ∼14
ν ūs/w0 200 0
τ̃ τ̄Ht0/(2η) ∼7.4× 10−2 0

β̃ β̄H/(2η) 0.25
ũs ūst0/H 0.2 0
ũh ūht0/H ∼0.25 0
T final time 10
tp oscillation period 10 5
L domain length and width 80
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3 Inverse Problems221

First, we derive inverse methods for inferring a single type of basal perturbation222

(i.e., either wb or β) from altimetry data (Section 3.1). We then extend these methods223

to include horizontal surface velocity data to facilitate inversion for multiple fields (i.e.,224

both wb and β) or improve altimetry-based inversion results (Section 3.2). For simplic-225

ity, we neglect basal melting and surface accumulation perturbations in the inversion ex-226

amples below by setting m = 0 and a = 0 in the forward model (eq. 28).227

In the following sections, we use variational calculus to derive normal equations that228

are associated with least-squares optimization problems (Vogel, 2002, ch. 2). To this end,229

we define the inner products of functions f1(x, y, t) and f2(x, y, t) to be230

〈f1, f2〉 =

∫ T

0

∫ +∞

−∞

∫ +∞

−∞
f1f2 dxdy dt, (29)

where T is the length of the observational time frame. We will also use the norm ‖f‖ =231 √
〈f, f〉 associated with this inner product. The adjoint operators defined below involve232

cross-correlation over time, which we denote by233

f1 ? f2 =

∫ T

t

f∗1 (−(t− t̃))f2(t̃) dt̃, (30)

with f∗ being the complex conjugate of f . Finally, we will denote the Fourier transform234

operator and its inverse by F (eq. 2) and F−1 (eq. 4), respectively.235

3.1 Altimetry Inversions236

First, we consider the problem of inverting for either wb or β, given elevation data237

hobs. Taking the inverse Fourier transform of equation (28), the solution operator Hf238

that maps the parameter f (either wb or β) to the modelled state h takes the form239

Hf (f) = F−1 (Kf ∗ F(f)) , (31)

where the kernel for each parameter is240

Kf =

{
TwKh − ikxTβ τ̃(Ks ∗ Kh) f = wb
ikxνTβKh f = β

. (32)

The least-squares solution is found by minimizing the regularized objective functional241

J (f) =
1

2
‖Hf (f)− hobs‖2 +R(f) (33)

where R is a regularization functional. Supposing that the first variation of (33) van-242

ishes, we obtain the (infinite-dimensional) normal equations243

H†f (Hf (f)) + δR(f) = H†f (hobs), (34)

where δR denotes the variational derivative of R and244

H†f (f) = F−1 (Kf ? F(f)) (35)

is the adjoint of Hf with respect to the inner product (29).245

Provided that δR is linear in f , we can solve (34) with the conjugate gradient method,246

which generalizes to infinite-dimensional operator equations (Atkinson & Han, 2009, ch.247

5). Here, we consider a Tikhonov-type smoothness regularization of the form248

R(f) =
ε

2

(∥∥∥∥∂f∂x
∥∥∥∥2 +

∥∥∥∥∂f∂y
∥∥∥∥2
)
, (36)

which has the variational derivative249

δR(f) = −ε
(
∂2f

∂x2
+
∂2f

∂y2

)
(37)

where ε is a regularization parameter.250
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3.2 Incorporating Velocity Data251

We briefly describe two motivations for incorporating horizontal surface velocity252

anomaly data, [uobs, vobs]T , into the inversions. First, equation (28) shows that both ver-253

tical velocity and basal drag perturbations can influence the surface elevation anomaly.254

Simultaneous inversion for both types of perturbations is only feasible if horizontal sur-255

face velocity data is available. Second, velocity constraints can improve altimetry-based256

inversion results even if these are only available at a few Global Positioning System (GPS)257

stations. We consider both continuously-distributed and discretely-distributed (e.g., from258

GPS stations) surface velocity data in the formulation below. To cover both cases suc-259

cintly, we let [uobs, vobs]T denote an interpolation of the data in the case that observa-260

tions are only available at a discrete set of spatial points.261

Expressions for the horizontal surface velocity are derived in the Supporting In-262

formation (Text S1) and provided in Appendix A. From equations (A1) and (A2), the263

(coupled) horizontal surface velocity solution operators take the form264

Uc(wb, β) = F−1 (−Uβ [νF(β)− τ̃F(wb) ∗ Ks]− ikx [λUhF(Hc(wb, β)) + UwF(wb)]) (38)

Vc(wb, β) = F−1(−Vβ [νF(β)− τ̃F(wb) ∗ Ks]− iky [λVhF(Hc(wb, β)) + VwF(wb)]) (39)

where265

Hc(wb, β) = Hwb
(wb) +Hβ(β) (40)

is the (coupled) elevation solution operator. In equations (38) and (39), Uf and Vf are266

functions describing the velocity anomaly response to perturbations f (h, wb, and β).267

Likewise, we define the decoupled velocity solution operators via268

Uwb
(wb) = Uc(wb, 0), Uβ(β) = Uc(0, β) (41)

Vwb
(wb) = Vc(wb, 0), Vβ(β) = Vc(0, β), (42)

which have adjoints given by269

U†wb
(f) = H†wb

(F−1(ikxλU
∗
hF(f))) + F−1(ikxUwF(f) + τ̃F(f) ? Ks) (43)

V†wb
(f) = H†wb

(F−1(ikyλV
∗
hF(f))) + F−1(ikyVwF(f) + τ̃F(f) ? Ks) (44)

U†β(f) = H†β(F−1(ikxλU
∗
hF(f)))−F−1(νUβF(f)) (45)

V†β(f) = H†β(F−1(ikyλV
∗
hF(f)))−F−1(νVβF(f)). (46)

The adjoints of the coupled solution operators (38)-(40) are the vector-valued operators270

U†c (f) =

[
U†wb

(f)

U†β(f)

]
, V†c (f) =

[
V†wb

(f)

V†β(f)

]
, H†c(f) =

[
H†wb

(f)

H†β(f)

]
. (47)

To incorporate the velocity data [uobs, vobs]T into the inversions, we consider a weighted271

multi-objective functional272

Jc(wb, β) =
1

2
‖Hc(wb, β)− hobs‖2 +

1

2
〈χ, |Uc(wb, β)− uobs|2〉

+
1

2
〈χ, |Vc(wb, β)− vobs|2〉+Rwb

(wb) +Rβ(β) (48)

where χ is a weighted state-to-observation map. In the case of N discrete spatial points273

(xj , yj) where velocity data is collected continuously over time, the map χ takes the form274

χ(x, y) = χ0

N∑
j=1

δ(x− xj , y − yj), (49)
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where δ is the Dirac delta distribution and χ0 is a scalar weight that determines the strength275

of the velocity misfit terms relative to the elevation misfit term in the objective functional276

(48). Restriction of the data misfit to a collection of discrete time steps can be accom-277

plished in a similar way. We also consider the case of velocity data that is distributed278

continuously in space, in which case χ ≡ χ0. In the objective functional (48), we let279

Rwb
and Rβ denote regularizations on wb and β, respectively.280

Supposing that the first variations of (48) with respect to wb and β vanish, we ob-281

tain the system282 

H†wb
(Hc(wb, β)) + χ

[
U†wb

(Uc(wb, β)) + V†wb
(Vc(wb, β))

]
+ δRwb

(wb)
= H†wb

(hobs) + χ
[
U†wb

(uobs) + V†wb
(vobs)

]
H†β(Hc(wb, β)) + χ

[
U†β(Uc(wb, β)) + V†β(Vc(wb, β))

]
+ δRβ(β)

= H†β(hobs) + χ
[
U†β(uobs) + V†β(vobs)

] . (50)

Utilizing the definitions of the adjoint operators (47), we rewrite the system (50) in vec-283

torized form as284

H†c(Hc(wb, β)) + χ
[
U†c (Uc(wb, β)) + V†c (Vc(wb, β))

]
+ δRc(wb, β)

= H†c(hobs) + χ
[
U†c (uobs),+V†c (vobs)

]
(51)

where δRc(wb, β) = [δRwb
(wb), δRβ(β)]T . The solution to (51) is obtained with the285

conjugate gradient method (Atkinson & Han, 2009, ch. 5).286

3.3 Discretization and Implementation287

We discretize the problem by defining the grid spacings ∆x = L/100, ∆y = L/100,288

and ∆t = tp/100, where L is the domain length in the x and y directions, and tp is the289

oscillation period defined below (Section 4). For all experiments herein, we set the do-290

main length to L = 80. All Fourier transforms, convolutions, and cross-correlations are291

computed with fast Fourier transform methods in SciPy (Cooley & Tukey, 1965; Vir-292

tanen et al., 2020). We compute inner products (eq. 29) with the trapezoidal rule in our293

implementation of the conjugate gradient method (Atkinson & Han, 2009, ch. 5). The294

nondimensional parameters used in the synthetic experiments are provided in Table 1.295

The code for reproducing the inversion results in Section 4 is openly available (DOI: 10.5281/zen-296

odo.5775178).297

4 Results298

First, we provide synthetic test problems for altimetry-based inversions (Section299

4.1.1) and joint velocity-altimetry inversions (Section 4.1.2) with synthetic data produced300

by the small-perturbation model. Then, we attempt to invert synthetic data from a non-301

linear subglacial lake model to assess the validity of the method when applied to more302

complex data (Section 4.2). Throughout, we use the notation ‖f‖∞ to denote the max-303

imum absolute value of a function f over space and time.304

4.1 Synthetic Data from the Linearized Model305

4.1.1 Altimetry-based Inversions306

We first consider two synthetic test problems to illustrate the altimetry-based in-307

verse methods derived in Section 3.1. Motivated by subglacial lake filling-draining cy-308

cles, we first consider a smooth (Gaussian-shaped) basal vertical velocity anomaly that309

oscillates in time. The synthetic data hobs for this problem is produced by providing the310

–12–
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Figure 3. Discrepancy diagram showing estimation of optimal regularization parameters ε

(stars) for each synthetic test problem, where hε denotes the modelled elevation anomaly for

a particular value of ε. The noise level is shown by a dashed line. The optimal parameters are

ε ≈ 1.3 for the wb inversion and ε ≈ 5.5× 103 for the β inversion.

true solution311

wtrue
b (x, y, t) = 5 exp

(
−x

2 + y2

2σ2

)
sin(2πt/tp) (52)

with tp = T as input to the forward model (eq. 28) and then adding a small amount312

of Gaussian white noise to the modelled elevation (Figure 3). We set the standard de-313

viation of the Gaussian anomaly in the true solution (eq. 52) to σ = 20/3. For this in-314

put (eq. 52), the synthetic elevation data hobs is also roughly Gaussian-shaped and os-315

cillates in time (Figure 4a-4c).316

The arrival of subglacial water can also produce a basal drag anomaly. Therefore,317

for the second synthetic test we consider a slippery spot that emerges at time t = T/4318

and disappears after t = 3T/4, given by319

βtrue(x, y, t) = −(8× 10−2) exp

(
−x

2 + y2

2σ2

)
B(t), (53)

where B is a continuous box-type function,320

B(t) =

 sin(2π t sgn(T2 − t)/T ) |t− T
2 | ≥

T
4

1 |t− T
2 | <

T
4

, (54)

that controls the appearance and disappearance of the anomaly. As before, we set the321

standard deviation in the true solution (53) to σ = 20/3 and add a small amount of322

noise to the modelled elevation to produce the synthetic data hobs. The synthetic data323

hobs (Figure 5a-5c) associated with this input (eq. 53) is a dipole where thinning and324

thickening occur at the upstream and downstream ends of the anomaly, respectively (cf.325

O. V. Sergienko et al., 2007; O. V. Sergienko & Hulbe, 2011).326

For both problems, we apply the discrepancy principle to estimate the optimal reg-327

ularization parameter ε that minimizes the difference between the modelled and observed328

elevations without overfitting the data (Figure 3). We provide inversion results for both329

problems using these optimal regularization parameters. We also show the horizontal sur-330

face velocity anomalies for reference, although these data are not used in the inversions331

(Figures 4 and 5). The inverse method accurately recovers the basal vertical velocity anomaly332

–13–
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Figure 4. Synthetic test problem of inverting altimetry data for an oscillating basal vertical

velocity anomaly (wb). (a)-(c) Synthetic elevation anomaly data (hobs) contours at three time

steps, normalized by its maximum absolute value ‖hobs‖∞ ≈ 4. The horizontal surface veloc-

ity anomalies are shown as gray arrows that have been normalized by the maximum flow speed

(∼13.6). (d)-(f) Basal vertical velocity inversion (winv
b ) at the same time steps, normalized by

the maximum absolute value of the true solution (wtrue
b ). (g)-(i) Normalized true solution where

‖wtrue
b ‖∞ = 5. The regularization parameter used here is the optimal value shown in Figure 3.

Movie S1 shows the inversion at each time step.

over the entire observational time frame up to a small-amplitude component from the333

noise in the data (Figure 4 and Movie S1). While the basal drag inversion predicts the334

correct shape and order of magnitude of the anomaly, the amplitude and areal extent335

are both underestimated (Figure 5 and Movie S2). This underestimation is not sensi-336

tive to the discretization details, noise level, or stopping tolerance of the conjugate gra-337

dient solver. Instead, this discrepancy reflects a lack of continuous dependence that is338

common in inverse problems (Vogel, 2002; Hanke, 2017). In other words, the basal drag339

inversion produces an elevation anomaly that closely matches the data even though it340

deviates from the “true” basal drag (cf. Habermann et al., 2012). Below, we show that341

incorporation of horizontal surface velocity data as additional constraints can remedy342

this problem.343

4.1.2 Joint Velocity-Altimetry Inversions344

First, we seek to refine the basal drag coefficient inversion by incorporating veloc-345

ity data at a discrete collection of spatial points that represent synthetic GPS stations.346

In this case, the state-to-observation map is given by equation (49) where we set χ0 =347

10−3 to avoid giving undue weight to the pointwise velocity measurements. We assume348

–14–
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Figure 5. Synthetic test problem of inverting altimetry data for a slippery spot (β). (a)-(c)

Synthetic elevation anomaly data (hobs) contours at three time steps, normalized by its maximum

absolute value ‖hobs‖∞ ≈ 2.87. The horizontal surface velocity anomalies are shown as gray

arrows that have been normalized by the maximum flow speed (∼33.3). (d)-(f) Basal drag coef-

ficient inversion (βinv) at the same time steps, normalized by the maximum absolute value of the

true solution (βtrue). (g)-(i) Normalized true solution where ‖βtrue‖∞ = 0.08. The regularization

parameter used here is the optimal value shown in Figure 3. Movie S2 shows the inversion at

each time step.
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Figure 6. Same synthetic test problem as in Figure 5, except for the incorporation of velcity

data from synthetic GPS stations (black triangles). The velocity field is shown in Figure 5a-5c.

Inversion results are shown for (a)-(c) no stations, (d)-(f) one station, and (g)-(i) an array of

nine stations. The inversions have been normalized by the maximum absolute value of the true

solution (‖βtrue‖∞ = 0.08, Figure 5g-5i). The regularization parameter used here is the optimal

value shown in Figure 3.

the same true solution βtrue and synthetic elevation data as in Section 4.1 (Figure 5).349

The synthetic horizontal surface velocity data is shown in Figure 5a-5c. Relative to an350

inversion with no GPS stations (Figure 6a-6c), we find that placing a single GPS sta-351

tion over the anomaly results in a slight improvement in the amplitude and areal extent352

of the inversion (Figure 6d-6f) while placing an array of nine stations results in a mod-353

est improvement (Figure 6g-6i).354

Accurate reconstruction of overlapping vertical velocity and basal drag anomalies355

is feasible if horizontal surface velocity and altimetry data are both available at high spa-356

tial and temporal resolution. To illustrate this, we suppose that the elevation and sur-357

face velocity perturbations are produced by an oscillating subglacial lake (eq. 52) that358

coincides with a slippery spot (eq. 53). In this case, we set the state-to-observation map359

to χ ≡ χ0 with χ0 = 10−1 so that the elevation and velocity misfit terms in (48) are360

approximately balanced for these data. We obtain accurate reconstructions of both the361

basal drag and vertical velocity anomalies over the observational time frame (Figure 7362

and Movie S3).363

4.2 Synthetic Data from a Nonlinear Model364

To assess the applicability of the inverse method to more complex data, we attempt365

to invert synthetic data produced by a nonlinear model for subglacial lake oscillations366

(Supporting Information Text S2). In contrast to the linearized model, the nonlinear model367
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Figure 7. Synthetic test problem of inverting altimetry and horizontal surface velociy data

for an oscillating vertical velocity anomaly (wb) that coincides with a slippery spot (β). (a)-(c)

Synthetic elevation anomaly data (hobs) contours at three time steps, normalized by its maximum

absolute value ‖hobs‖∞ ≈ 5.6. The horizontal surface velocity anomalies [uobs, vobs]T are shown

as black arrows that are normalized by the maximum flow speed (∼38.9). (d)-(f) Basal vertical

velocity inversion (winv
b ), normalized by the maximum absolute value of the true solution (wtrue

b ,

Figure 4g-4i). (g)-(i) Basal drag coefficient inversion (βinv), normalized by the maximum absolute

value of the true solution (βtrue, Figure 5g-5i). The regularization parameters used here are the

optimal values shown in Figure 3. Movie S3 shows the inversion at each time step.
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Figure 8. Synthetic data and basal vertical velocity from a nonlinear subglacial lake model in

one horizontal dimension. (a) Subglacial lake water volume V time series normalized by the ini-

tial water volume V0. The times t1, t2, and t3 are the time steps shown in (b)-(g). (b)-(d) Cross-

sections depicting the free surfaces (h and s) at time steps t1 to t3. The atmosphere, ice, water,

and bed are noted in (b). For reference, the maximum elevation anomaly is ∼1.4m and the bed

trough is 8m deep in dimensional terms. (e)-(g) Basal vertical velocity (wb) from the nonlinear

model at time steps t1 to t3 normalized by its maximum absolute value (‖wb‖∞ ≈ 6.58). Movie

S4 shows the simulation at each time step.

–18–



manuscript submitted to JGR: Earth Surface

assumes a viscosity following Glen’s law (Cuffey & Paterson, 2010; Glen, 1955), a water-368

volume change constraint at the lower boundary rather than a prescribed vertical veloc-369

ity anomaly, and fully nonlinear surface kinematic equations (Stubblefield, Creyts, et al.,370

2021; Stubblefield, Spiegelman, & Creyts, 2021). Motivated by oscillation patterns ob-371

served on the Whillans and Mercer ice streams in West Antarctica (Fricker & Scambos,372

2009; Siegfried et al., 2016; Siegfried & Fricker, 2018, 2021), we assume a sawtooth water-373

volume time series with a period of tp = 5 (Figure 8a). Figure 8 and Movie S4 show374

the elevation from the nonlinear model and the associated basal vertical velocity field375

over time. As the nonlinear model results are in one horizontal dimension (i.e., the x di-376

rection), we extend the synthetic data to two horizontal dimensions by assuming no vari-377

ation in the y direction. The code for reproducing this synthetic data is openly avail-378

able (DOI: 10.5281/zenodo.5775182).379

To facilitate a straightforward comparison, we assume that the background state380

parameters between the nonlinear and linearized model are the same with the caveats381

that (i) the basal drag vanishes over the lake in the nonlinear model and (ii) the zero strain-382

rate viscosity in the nonlinear model coincides with the linearized model viscosity (Sup-383

porting Information Text S2). We assume a purely cryostatic background state with α =384

0 and ū ≡ 0 to limit the influence of this basal drag transition on the elevation change,385

allowing inversion for the basal vertical velocity with altimetry data alone (Table 1).386

The inverse method is able to recover the basal vertical velocity from the nonlin-387

ear model despite the simplifying assumptions in the small-perturbation approach (Fig-388

ure 9 and Movie S5). The main discrepancies are that the inversion can overestimate the389

areal extent and underestimate the magnitude of the nonlinear model anomaly. How-390

ever, these discrepancies appear to be relatively small for this example. While the to-391

tal subglacial lake water volume V cannot be estimated unless the initial volume V0 is392

known, the volume change time series ∆V = V −V0 can be estimated from the inver-393

sion via394

∆V (t) =

∫ t

0

∫ +L
2

−L
2

wb(x, t̃ ) dxdt̃. (55)

Equation (55) follows from the basal surface evolution equation (22) when the background395

sliding speed ũs and basal melt rate anomaly m are zero. The timing and magnitude of396

the inverted volume change agrees quite well with the true volume change (Figure 9a).397

5 Discussion398

The altimetry-based inverse methods developed herein can quantify a variety of sub-399

glacial phenomena, including subglacial lake activity, slippery or sticky spots, and anoma-400

lous bed topography. Inversion for a single parameter field is feasible with altimetry data401

alone (Figures 4, 5, and 9). However, overlapping basal vertical velocity and drag anoma-402

lies are likely to be common because active subglacial lakes or bed topography can po-403

tentially produce both types of perturbations (e.g., Gudmundsson & Raymond, 2008;404

O. V. Sergienko et al., 2007). We have shown that incorporating surface velocity data405

with high spatial and temporal resolution into the inversions facilitates simultaneous es-406

timation of basal drag and vertical velocity perturbations (Figure 7). Therefore, joint407

velocity-altimetry inversions are a promising approach for determining the relative in-408

fluence of each perturbation type in regions where hydrologic or topographic anomalies409

are associated with basal sliding variations.410

The altimetry-based inverse methods developed herein complement existing velocity-411

based inverse methods. For example, our altimetry-based inversions rely on knowledge412

of the background flow state (i.e., basal drag and viscosity), which can be estimated with413

existing velocity-based methods (e.g., Arthern et al., 2015; Morlighem et al., 2010, 2013;414

Petra et al., 2012). Furthermore, the methods developed herein are intended for targeted415

study of localized elevation anomalies like those produced by subglacial lakes rather than416
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Figure 9. Inversion of synthetic data from the nonlinear subglacial lake model shown in

Figure 8. (a) Time series of the true volume change ∆V true compared to the volume change

estimated from the inversion ∆V inv (eq. 55). The times t1, t2, and t3 are the time steps shown

in (b)-(g). (b)-(d) Synthetic data (hobs) and modelled elevation (hfwd = Hwb(winv
b )) associated

with the inversion. The elevations are normalized by the maximum absolute value of the data

(‖hobs‖∞ ≈ 1.42). (e)-(g) Basal vertical velocity from the nonlinear model (wtrue
b ) and the inver-

sion (winv
b ) normalized by the maximum absolute value of the true solution (‖wtrue

b ‖∞ ≈ 6.58).

The optimal regularization parameter for this example is ε ≈ 5 × 10−2. Movie S5 shows the

inversion at each time step.
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ice-sheet-scale inversions. In the absence of surface velocity data with high spatial res-417

olution, these altimetry-based inverse methods are a simple way to quantify the source418

of elevation anomalies that are predominantly caused by a single type of basal pertur-419

bation (Figures 4 and 5). Moreover, we have shown that incorporation of GPS data from420

a handful of stations can improve the inversion results (Figure 6). Developing a frame-421

work for optimizing the placement of GPS stations over ice-sheet elevation anomalies would422

be valuable for future campaigns targeting subglacial phenomena.423

In this study, we have only used a Tikhonov-type smoothness regularization that424

leads to a linear inverse problem. Alternative regularizations, such as total variation (e.g.,425

Strong & Chan, 2003) or L1 sparsity-promoting (e.g., Stadler, 2009) regularizations, can426

be used to more accurately reconstruct sharp boundaries like those in the nonlinear syn-427

thetic data (Figure 8e-8g). While we have shown that there is good agreement between428

the small-perturbation model and the nonlinear subglacial lake model for the example429

herein, the inversion is smooth and can overshoot the areal extent of the true basal anomaly430

when there are sharp boundaries (Figure 9g). This overshooting could potentially also431

cause discrepancies between the true and estimated water-volume change (Figure 9a).432

Implementing nonlinear regularizations and solving the associated optimization prob-433

lem with Newton’s method could be valuable for refining the detection of subglacial lake434

boundaries and the estimation of water-volume changes.435

The primary limitations of these perturbation-based inverse methods are the re-436

striction of the forward model to a linear rheology, linear sliding law, and geometrically437

simple spatial domain. While these limitations are inherent to the solution method used438

herein, the synthetic test with data from the nonlinear subglacial lake model (Section439

4.2) suggests that a Newtonian viscosity and simplified domain are valid approximations440

for inverting elevation anomalies produced by similar lake oscillations. Incorporating al-441

timetry data into time-dependent full-Stokes inversions that rely on alternative solution442

methods such as finite elements would be valuable for overcoming these limitations, per-443

haps relying on neural networks for computational efficiency (e.g., Brinkerhoff et al., 2021;444

Riel et al., 2021). Moreover, extending these inverse problems to a Bayesian formulation445

could help to quantify uncertainty in the inversions and background state parameters446

(Bui-Thanh et al., 2013; Petra et al., 2014; Sullivan, 2015). Finally, these inverse meth-447

ods could also be extended to estimate melting or freezing rates beneath floating ice shelves.448

We leave this extension for future work because the ice-shelf problem must be regular-449

ized to remove singularities in the long-wavelength limit, which requires a rigorous anal-450

ysis of the forward model (Bassis & Ma, 2015).451

6 Conclusions452

Here, we have derived and tested inverse methods for reconstructing time-varying453

subglacial perturbations from altimetry data. The method accurately reconstructs basal454

vertical velocity perturbations that can result from subglacial lake activity. While the455

altimetry-based basal drag inversion is less accurate in terms of matching the true so-456

lution, it still characterizes the order of magnitude and shape of the perturbation. More-457

over, incorporation of GPS data as additional constraints can remedy this discrepancy.458

Accurate, simultaneous reconstruction of both basal perturbation types is feasible when459

horizontal surface velocity data is available at high spatial and temporal resolution. Fi-460

nally, we have validated the small-perturbation approach by inverting synthetic data from461

a nonlinear subglacial lake model to obtain a basal vertical velocity field and water vol-462

ume change time series that agree well with the nonlinear model. These methods hold463

promise for uncovering the causes of time-varying ice-surface elevation perturbations and464

elucidating the links between subglacial hydrology, bed properties, and fast ice flow.465
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Data Availability Statement466

No new data was used in this study. The code for reproducing the inversion results467

(Figures 3-7, 9) is openly available (DOI: 10.5281/zenodo.5775178). The code for run-468

ning the nonlinear model and producing Figure 8 is also openly available (DOI: 10.5281/zen-469

odo.5775182).470
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Appendix A Velocity Response Functions677

The nondimensional horizontal surface velocity perturbations u and v are given by678

û = −Uβ(νβ̂ − τ̃ ŝ)− ikx
(
λUhĥ+ Uwŵb

)
(A1)

v̂ = −Vβ(νβ̂ − τ̃ ŝ)− iky
(
λVhĥ+ Vwŵb

)
(A2)

where Uf and Vf (f being wb, β, or h) are response functions (Supporting Information679

Text S1). The nondimensional velocities (A1) and (A2) have been scaled by the verti-680

cal velocity anomaly scale w0. The response functions for the u component (eq. A1) are681

given by682

Uh =
1

k2

(
2k(γk + 1)(2γ + (2γ + 1)e2k − 1)ek + Pα

)
D−1 (A3)

Uw =

(
2γ2 − 3γ + 2(2γ2 − 1)e2k + (2γ2 + 3γ + 1)e4k + 1

)
D−1 (A4)

Uβ =
k2x
k3

(
2κ(γ − 1) + k(2γ − 1) + 2(2γκ+ 4γk2(κ− 1) + k(4κ− 3))e2k (A5)

+ (2κ(γ + 1)− k(2γ + 1)− 1)e4k + 1

)
D−1 (A6)

D =

(
(2γ2 + 3γ + 1)e6k + (6γ2 + 4γk2(2γ + 1) + 4k(2γ + 1) + 3γ − 1)e4k (A7)

+ (6γ2 + 4γk2(2γ − 1) + 4k(2γ − 1)− 3γ − 1)e2k + 2γ2 − 3γ + 1

)
/(2ek),(A8)

where κ = (k/kx)2 here. The response functions for the v component (eq. A2) are given683

by684

Vh = Uh|κ=0 (A9)

Vw = Uw (A10)

Vβ =
ky
kx

Uβ |κ=0, (A11)

setting κ = 0 here instead. The additional terms Pα entering the expression for Uh (A3)685

and Vh (A9) when α > 0 are given by686

Pα = cα

(
3γ − 2γ2 − 1 + 2κ

(
2γ2 − 3γ + 1

)
+

[
2γ2 + 3γ − 2κ

(
2γ2 + 3γ + 1

)
+ 1

]
e6k

+

[
− 16γ2k2 − 8γ2k − 2γ2 + 8γk2 − 12γk − 3γ + 2κ

(
8γ2k2 + 2γ2 − 4γk2 + 8γk

−γ − 4k + 1
)

+ 8k − 1

]
e2k +

[
16γ2k2 − 8γ2k + 2γ2 + 8γk2 + 12γk − 3γ

−2κ
(
8γ2k2 + 2γ2 + 4γk2 + 8γk + γ + 4k + 1

)
+ 8k + 1

]
e4k
)
. (A12)
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