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Abstract 

The power-law relationship has been regarded as the fundamental description of the size 

distribution from large-scale-earthquake to small-scale-laboratory rock ruptures. However, 

deviation from the power-law relationship has often been reported, especially when the 

amplitude distribution is used for b-value estimation in rock acoustic emission testing, the effect 

of attenuation should be considered. Here, we perform a detailed analysis on the deviation of the 

size distribution from a power law and prove that the cumulative frequency distribution will 

inevitably result in deviation from the power law. We also discuss modification of the 

attenuation on the doubly truncated size distribution from a more general perspective. We find 

that in a certain interval, the attenuation will not modify the size distribution and the b-value is 

theoretically verified to be unchanged. Based on these discussions, we propose a new b-value 

estimation procedure for rock acoustic emission testing and apply it to a dilation rupturing test, 

the procedure exhibits good performance. 

Plain Language Summary 

The power-law relationship is the intrinsic characteristic of the size distribution from earthquake 

to laboratory rock ruptures, indicating that the number of small-scale ruptures is much greater 

than the number of large-scale ones. Nevertheless, due to many reasons such as the statistical 

methods, inadequate data acquisition and data truncation, deviation from a power-law of the size 

distribution is inevitable in practice. In order to understand the deviation of the size distribution 

in the laboratory rock fracture testing, we perform a detailed analysis of the statistical methods 

and the attenuation effect on the power-law relationship of the size distribution, and propose a 

new procedure for scaling parameter estimation of power-law relationship. This newly proposed 

procedure shows its reliability in a dilation rupturing test and can well ensure the robustness of 

the scaling parameter estimation. 

1 Introduction 

The size distribution of earthquakes commonly follows a power-law relationship given 

by log10(N) = a − bM, where N is the number of earthquakes with a magnitude ≥ M and a and b 

are constants (Gutenberg & Richter, 1944). Here, the parameter b describes the size distribution 

scaling, which is often referred to as the b-value, and the spatial and temporal variation of the b-

value is always regarded as an essential clue for earthquake precursors. 

As b-value is a statistical value, its result is influenced by many factors, and the errors in 

estimation can result in potentially misleading b-value variations. One of the most important 

reason for errors in b-value estimation is the fact that the size distribution is not usually log linear 

in the whole range of magnitudes, and sometimes it follows neither the logarithmic linear nor 

any smoothly nonlogarithmic linear law but is more complex (Lasocki and Papadimitriou, 2006; 

Vorobieva et al., 2016). In fact, it is often observed that changes in the size distribution for larger 

earthquakes can be explained by finite size effects (Casertano, 1982; Clauset, 2007) and those for 

smaller events are caused by incomplete reporting in earthquake catalogs (Wiemer & Wyss, 

2000; Cao & Gao, 2002; Mignan, 2012; Kwiatek et al., 2014; Raub et al., 2017). Meanwhile, 

errors in b-value estimation are also related to the data volume. It is generally considered that a 

size of 50 events can be adopted as the minimum number of events for stable b-value estimation 

(Schorlemmer et al., 2004; Kurz et al., 2006; Amorese et al., 2010). Other factors such as bin 

width, the cumulative or incremental data counting, and the estimation algorithm will all 
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influence the b-value result (Weichert, 1980; Bender, 1983; Amorese et al., 2010, Nava et al., 

2016).  

Acoustic emission (AE) generated by fracturing of rock has been found to obey the same 

form of size distribution, and there have been numerous studies indicating that in many ways the 

mechanism of earthquake foreshock sequences could therefore be reproduced through AE from 

the statistical behavior of micro-fracture activity observed in laboratory fracture experiments 

(Mogi, 1962; Scholz, 1968, 2015; Lockner, 1993; Goebel et al., 2014; Vorobieva et al., 2016). 

Also the variation of b-value obtained in rock AE deformation tests and earthquakes has always 

been compared to establish analogies in the damage process and precursory analysis (Scholz, 

1968; Lockner et al., 1991; Goebel et al., 2013). Because of the acquisition threshold and the 

limitation of the maximum output voltage in some AE equipment, a similar deviation from the 

power-law relationship of the size distribution will also appear in laboratory rock AE tests, and 

the influence of data volume, cumulative or incremental data counting, bin width and estimation 

algorithm on the b-value result is obvious (Cosentino et al., 1977; Lockner, 1993; Liakopoulou et 

al., 1994).  

Furthermore, it is worth noting that unlike the b-value in earthquakes which uses the 

frequency–magnitude distribution for estimation, the apparent frequency–amplitude distribution 

is mostly used for b-value estimation in rock AE tests (Cox & Meredith, 1993; Weiss, 1997; 

Liakopoulou et al., 1994), and this apparent amplitude is directly derived from the sensor-

collected signal that is attenuated from the source. Consequently, the distribution of these 

apparent amplitudes is not the physical size distribution of the sources, so attenuation could also 

modify the AE b-value (Lockner et al., 1991; Unander, 1993; Weiss, 1997; Lavrov, 2005). 

Although some researchers have made provisions when using apparent amplitude to estimate b-

value by adjusting the AE amplitude for 
1

r
 geometric spreading and averaging over transducers to 

give an equivalent event amplitude (Lockner et al., 1991), or by using the root-mean-square 

principle to obtain a relative AE magnitude (Kwiatek et al., 2014), the amplitude distribution 

actually cannot fully represent the crack size distribution. The attenuation effect was firstly 

proposed by Lockner et al. (1991), and then the attenuation effect on b-value has been 

theoretically discussed by Unander (1993) and Weiss (1997). They assumed a constant 

attenuation coefficient and uniformly distributed sources in the medium, and they considered that 

the attenuation is composed of a geometric term and a “dissipative” exponential term. In fact, the 

attenuation coefficient is not constant in the rock material. Not only is it a frequency-dependent 

parameter but it also varies with the direction of elastic wave propagation because of the 

anisotropy of the rock, making it extremely difficult to theoretically describe the attenuation in 

rock.  

Since estimation result of b-value can be influenced by many factors especially the 

deviation of size distribution from power-law relationship. Therefore, a reliable b-value 

estimation procedure is critical in rock AE testing which can well ensure the robustness of 

comparative precursory analysis between laboratory AE tests and earthquakes. Here we perform 

a detailed analysis of the deviation of the size distribution from power-law relationship, and 

intend to examine the influence of statistical method on size distribution. Meanwhile we 

investigate the modification of attenuation on doubly truncated size distribution from a more 

general perspective which considering that the randomly distributed sources are attenuated to a 

certain extent and collected by the sensors independent of the composition of the attenuation 

terms. Based on the deviation discussion, we propose a new b-value estimation procedure named 
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FGS which specify the minimum data volume and statistical method, and employ Fisher optimal 

split and global search algorithm to determine the logarithmic linear segment in the frequency–

amplitude distribution. In order to verify the reliability of FGS method, we design a static 

dilation rock rupturing AE test by injecting nonexplosive cracking agent into three predrilled 

boreholes to form a specific fracture surface in cubic rock specimen (as shown in Figure 1). This 

experimental design is to ensure that the sensor-collected AE signals are all generated by 

expansion rupturing in rock specimen, and does not rely on source location to identify valid 

rupturing data. 

 

Figure 1. Schematic of the expansion rupturing tests. A nonexplosive expansion agent is 

injected into three boreholes of each rock specimen, and a fracture surface along the center of the 

three boreholes is formed. The specimen surfaces labeled by a’ and b’ are the surfaces parallel to 

a and b, respectively. 

2 Deviation from the power-law size distribution 

The power-law relationship of the size distribution is an intrinsic characteristic of 

earthquakes and rock AE events that indicates that the number of small-scale ruptures is much 

greater than the number of large-scale ones. The power-law relationship can be interpreted as a 

manifestation of the self-organized critical behavior of earth dynamics (Bak & Tang, 1989; 

Christensen et al., 2002; Newman, 2005; Clauset, 2007). However, deviation from the power-law 

size distribution has always been observed in earthquake and rock AE experiments (Lockner, 

1993; Cox & Meredith, 1993; Liakopoulou et al., 1994; Weiss, 1997; Main, 2000). One of the 

reasons for this deviation is inadequate data acquisition. At the lower magnitude end, this is 

apparent from the difficulty in determining the magnitude of completeness, Mc (Cao & Gao, 

2002; Mignan, 2012; Godano et al., 2014; Raub et al., 2017; Radziminovich et al., 2019). 

Meanwhile, small-scale ruptures can be masked by larger ones, which is also a very significant 

factor for inadequate data acquisition in rock AE experiments when avalanche destruction occurs 

during the final loading stage or in high-strain-rate loading tests (Meredith & Main, 1990; Cox 

and Meredith, 1993; Liakopoulou et al., 1994).  

Another reason for this deviation is due to the statistical methods used in b-value 

estimation. In fact, because of the accuracy of equipment acquisition and the finite size of 

earthquake and AE amplitudes, the b-value is estimated in a doubly truncated exponential 
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distribution (Page, 1968; Cosentino et al., 1977). Generally, the density function of a doubly 

truncated distribution generated by an underlying exponential one can be expressed as 

f(x) = {αe−βx              a0  ≤ x ≤ ax

other                  otherwise
,                                          (1) 

where α and β are constants, β = bln(10), and “other” is any other distribution that is excluded 

from consideration. Then, the cumulative frequency distribution in the interval [a0, ax] is 

N(x) = Ntotal ∫ α
ax

x
e−βxdx = Ntotal

𝛼

𝛽
(e−βx  −  e−βax), where Ntotal is the total number of events in 

the catalog. If the cumulative frequency distribution is expressed again on a logarithmic scale, 

the probability function becomes 

log10N(x) = log10Ntotal +  log10
𝛼

𝛽
 −  

βx

ln10
 +  log10(1 −  e−β(ax−x)). Accordingly, it is found from 

this equation that, when x is closer to the upper limit of the magnitude ax, 

log10(1 −  e−β(ax−x)) → −∞, x is not linearly related to log10N(x), and the logarithmic 

cumulative frequency distribution behavior can be significantly altered. However, if the 

incremental statistical method is used, the incremental frequency distribution in the interval is 

N(xi−1) = Ntotal ∫ α
xi

xi−1
e−βxdx = Ntotal

𝛼

𝛽
(e−βxi−1 − e−βxi)  =  Ntotal

𝛼

𝛽
e−βxi−1(1 − e−β∆x), and 

again the probability function on a logarithmic scale will be 

log10N(xi−1)  = log10Ntotal +  log10
𝛼

𝛽
 +  log10(1 −  e−β∆x) − 

βxi−1

ln10
, which shows that, for a 

certain bin width, xi-1 is linearly related to log10N(xi−1). The above analysis means that, 

theoretically, the cumulative frequency distribution used for b-value estimation will inevitably 

result in deviation from a power law while the incremental frequency distribution will not.  

In addition, owing to the natural smoothing effect of plotting cumulative frequency data, 

a regression analysis based on the cumulative frequency distribution will systematically increase 

the goodness of fit and affect the computation of the magnitude of completeness, Mc (Main, 

2000; Wiemer & Wyss, 2000; Schorlemmer et al., 2004; Amorese et al., 2010). Moreover, the 

inaccurate magnitude determinations and breaks in power-law slope will possibly be smoothed 

out in cumulative frequency distribution, which cause the estimated b-value to incorrectly 

describe the size distribution scaling in practice. 

3 Effect of attenuation on AE frequency–amplitude distribution 

Since the attenuation of elastic wave in rock material is hard to be theoretically described, 

it is therefore difficult to analyze the modification of attenuation on size distribution. Here we 

perform an analysis from another more general perspective to investigate the effect of 

attenuation on b-value by considering that the randomly distributed sources are attenuated to a 

certain extent and collected by the sensors independent of the composition of the attenuation 

terms.  

3.1 Continuous probability density function of the attenuated source amplitude  

Suppose the AE source Z is randomly distributed in a region Ω. We define the origin (0, 0, 

0) and (x1, y
1
, z1) in Ω as the coordinates of the sensor and source, respectively. Therefore, the 

continuous source amplitude probability density function in exponential distribution which 

truncated at an interval [a0, ax] will be: 
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Z ~ f(z) = {αe−βz              a0  ≤ x ≤ ax

other                   otherwise
,                                          (2) 

where α and β are constants, and “other” is any other distribution that is excluded from 

consideration. In addition, the attenuation amplitude can be summarized by the relation  

A = A0g(x1, y
1
, z1) , where 0 <  g(x1, y

1
, z1)  < 1, A and A0 are the amplitude of the AE source 

after and before attenuation, respectively, and the attenuation relation on a logarithmic scale is 

log
10
(A)  =  log

10
(A0)  + log

10
g (x1,  y

1
,  z1),                                (3) 

Letting X = log
10

A and Z = log
10

A0, we can simplify Equation (3) as 

 X = Z + log
10

g (x1, y
1
, z1). 

The density function of the coordinate of the source is f(x1, y
1
, z1), which is any random 

distribution. Suppose that the source amplitude Z and its location (x1, y
1
, z1) are independent of 

each other, so that f
Z
(z)f(x1, y

1
, z1) is the joint density function. The probability of the attenuated 

amplitude X can be given by 

FX(x) = P(X ≤ x) = P(Z + log
10

g (x1, y
1
, z1) ≤ x) 

                                               = ∬ f
Z
(z)f(x1, y

1
, z1)dzdv 

Z + log10 g(x1, y1, z1) ≤ x
  

= ∭ dv∫ f
Z
(z)f(x1, y

1
, z1)dz

x−log10 g(x1, y1, z1)

a0Ω
+∭ dv∫ f

Z
(z)f(x1, y

1
, z1)dz

a0

−∞Ω
 

= {

𝛼

𝛽
e−βa0 −

𝛼

𝛽
e−βx∭ f(x1, y

1
, z1) (g(x1, y

1
, z1))

β

ln 10
dv

Ω
+∭ dv∫ f

Z
(z)f(x1, y

1
, z1)dz

a0

−∞Ω
     

                                                                                                                       a0 − m ≤ x ≤ ax −M

other                                                                                                                        otherwise

,  (4) 

where M = max
(x1, y1, z1)∈Ω

(− log
10

g (x1, y
1
, z1)) and m = min

(x1, y1, z1)∈Ω
(− log

10
g (x1, y

1
, z1)) are the 

maximum and minimum attenuation values from the source to sensor, respectively. The 

probability of the attenuated amplitude X in interval [a0 − m, ax −M] can be given by 

P(a0 − m ≤ x ≤ ax −M) = F(ax −M) − F(a0 − m) 

=  
𝛼

𝛽
(e−β(a0−m) − e−β(ax−M))∭ f(x1, y

1
, z1) (g(x1, y

1
, z1))

β

ln 10
dv

Ω
,               (5) 

Let X0 = [Z + log
10

g (x1, y
1
, z1)]|[a0 − m, ax −M]. Then, the distribution function of 

probability for the attenuated amplitude X0 can be given by 

FX0
(x) = P(X0 ≤ x) = 

P(X0≤x, a0−m ≤ X ≤ ax−M)

P(a0−m ≤ X ≤ ax−M)
 = {

1                                              x > ax −M

e−β(a0−m) − e−βx

e−β(a0−m) − e−β(ax−M)
   a0 − m ≤ x ≤ ax −M

0                                              x < a0 −m

,   (6) 

and the density function is 

f
X0
(x) = {

βe−βx

e−β(a0−m) − e−β(ax−M)
       a0 − m ≤ x ≤ ax −M

0                                                      otherwise

,                                   (7) 
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3.2 Discrete probability density function of the attenuated source amplitude  

Similarly, suppose there is a randomly distributed AE source Z2 in a region Ω with 

exponentially distributed amplitude. If Y is the attenuation amplitude from source to sensor, then 

its probability can be given as 

P(Y = ai) = pi
, i=1, 2, ... , n, here ∑ p

i
n
i=1 =1,                                      (8) 

where ai is a discrete attenuation value and a1 < a2 < ⋯ < an. Then, the amplitude X after 

attenuation will be  

X = Z2 − Y, Z2 ~ f
Z2
(z) = {αe−βz              a0 ≤ x ≤ax

other                  otherwise
,                                    (9) 

Suppose that the source amplitude Z2 and Y are independent of each other; then, the 

probability of the attenuated amplitude X can be given by 

FX(x) = P(X ≤ x) = P(Z2 − Y ≤ x) = [p
1
FZ2
(x+a1) + p2

FZ2
(x+a2) + ⋯ + pn

FZ2
(x+an)],   (10) 

The density function is 

f
X
(x) = [p

1
f
Z2
(x+a1) +  p2

f
Z2
(x+a2) + ⋯ + pn

f
Z2
(x+an)] 

= {
[p

1
αe−βa1  + p

2
αe−βa2  + ⋯ + p

n
αe−βan]e−βx    a0 − min

1 ≤ i ≤ n
{ai} ≤ x ≤ ax − max

1 ≤ i ≤ n
{ai}

other                                                                                                                    otherwise
,     (11) 

Let X1 = X |a0 − min
1 ≤ i ≤ n

{ai} ≤ X ≤ ax − max
1 ≤ i ≤ n

{ai}. Then the distribution function of 

probability for the attenuated amplitude X1 can be given by 

FX1
(x) = P(X1 ≤ x)=

P(X0 ≤ x, a0− min
1 ≤ i ≤ n

{ai}≤ X ≤ ax− max
1 ≤ i ≤ n

{ai})

P(a0− min
1 ≤ i ≤ n

{ai}≤ X ≤ ax− max
1 ≤ i ≤ n

{ai})
  

= 

{
 
 

 
 

0                                                              x < a0 − min
1 ≤ i ≤ n

{ai}

∫ βe−βxdx
x

a0− min
1 ≤ i ≤ n

{ai}

∫ βe−βxdx
ax− max

1 ≤ i ≤ n
{ai}

a0− min
1 ≤ i ≤ n

{ai}

     a0 − min
1 ≤ i ≤ n

{ai} ≤ x ≤ ax − max
1 ≤ i ≤ n

{ai}

1                                                               x > ax − max
1 ≤ i ≤ n

{ai}

,                      (12) 

and the density function is 

f
X1
(x) = {

0                                                                                                            otherwise
βe−βx

(e
−β(a0− min

1 ≤ i ≤ n
{ai})

−e
−β(ax− max

1 ≤ i ≤ n
{ai})

)

          a0 − min
1 ≤ i ≤ n

{ai} ≤ x ≤ ax − max
1 ≤ i ≤ n

{ai},    (13) 

As shown in Equations (2) and (7) or Equations (9) and (13), when the exponential 

source distribution is doubly truncated at a finite interval, the distribution function of the 

attenuated amplitudes obeys the same exponential distribution at a certain interval, and the β 

value is theoretically verified to be unchanged. This means that, if the AE source obeys an 

exponential distribution, attenuation will not modify the source distribution within a certain 
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interval. That is, if the attenuated amplitude distribution can be found in a power-law relationship 

in a certain interval, its b-value is the same as that of the AE source amplitude distribution.  

4 Proper b-value estimation procedure for rock AE and its application 

Based on the discussion above, we propose a procedure when using apparent amplitude 

for rock AE b-value estimation with the following steps:  

Step 1: Minimum number of events for b-value estimation 

From the statistical point of view, the minimum amount of data for estimation does not 

have a universal set value. It can be selected after the level of significance is specified in 

practical applications. A commonly recognized axiom is that the power of a statistical test 

increases with the increase in sample size (Siegel, 1956). For logarithmic linear fitting of a 

power-law distribution, the average error of the estimated scaling parameter becomes <1% when 

the sample size exceeds 50 (Clauset, 2007), and 50 events was also adopted as the minimum 

number of events for stable b-value estimation in various studies (Schorlemmer et al., 2004; 

Kurz et al., 2006; Amorese et al., 2010), while the stability estimation of b-value needs to 

include the space-time window of 100 earthquakes, as illustrated by Shi and Bolt (1982). 

Amorese et al. (2010) also stated that the computation of b-value includes at least 200 events. 

In comparison to the cumulative frequency distribution, larger data dispersion will occur if the 

incremental frequency distribution is used for b-value estimation. Therefore, it is necessary to 

increase the data volume to ensure estimation robustness, so a minimum of 200 events should be 

utilized in the incremental frequency distribution. 

Step 2: Perform incremental data counting and choose the bin width 

As discussed in Section 2, the cumulative frequency distribution can inevitably deviate 

from a power law compared with the incremental frequency distribution, and the cumulative 

frequency distribution will also smooth the distribution breaks during the statistics process. 

Therefore, to display frequency distribution characteristics of AE data more realistically, the AE 

data should be counted incrementally. 

Another parameter used for AE frequency–amplitude distribution statistics is bin width. 

In seismology, the selection of bin width is critical to grouping magnitudes. Improper choice of 

the bin width may introduce a significant bias in the magnitude of completeness and b-value 

estimation (Wiemer & Wyss, 2000; Marzocchi & Sandri, 2009; Schorlemmer et al., 2004). 

Because earthquake magnitudes are given with one digit after the decimal point, many researches 

have demonstrated that it is reasonable to set the bin width as the magnitude round-off interval of 

0.1 (Bender, 1983; Main, 2000; Lasocki & Papadimitriou, 2006). As AE amplitudes were 

measured in decibels, and the amplitudes are usually divided by 20 to produce a b-value 

comparable to that reported in the seismic literature (Cox & Meredith, 1993; Liakopoulou, 1994, 

Weiss, 1997; Sagar et al., 2012), the divided value will have two digits after the decimal point 

with a 0.05 round-off interval. Therefore, the better bin width for amplitude grouping needs to be 

set to 0.05; this means that the number of amplitudes should be counted in steps of 1 dB. In fact, 

owing to the large amount of AE data collected in rock deformation tests, the coarser bin width 

will smooth the distribution breaks, while the finer bin width can demonstrate the frequency–

amplitude distribution characteristics in more detail. Therefore, no matter what kind of 

equivalent amplitude or AE magnitude is used for b-value estimation in the rock AE test, the bin 

width should be set to the size of the round-off interval at most. 
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Step 3: Determine the logarithmic linear segment in the frequency–amplitude distribution  

As discussed earlier, the deviation of the size distribution from the intrinsic power-law 

relationship will appear at both lower and upper amplitude ends. However, the analysis in 

Section 3 demonstrated that, if the attenuated amplitude distribution can be found in a power-law 

relationship in a certain interval, its b-value is the same as that of the AE source amplitude 

distribution. Therefore, a specific method is needed for determining the logarithmic linear 

segment in the incremental frequency–amplitude distribution. Here, we propose a method based 

on the Fisher optimal split and global search algorithm with the following procedures.  

(1) Suppose that there are n points in the logarithmic frequency–amplitude distribution, 

 Ai−1 and  Ai are the amplitudes of two successive points, and the segment slope for A = Ai is 

defined as  

S(Ai) = 
log (Ni)  − log (Ni−1)

Ai − Ai−1
                                                            (14) 

Then, the n − 1 segment slopes are computed for each amplitude increment and the 

corresponding standard deviation is expressed by std0. Similarly, the standard deviation of all 

S(Ai) < 0 is expressed by std1. 

(2) We define an interval [S(Ai) −  r0std1, S(Ai) + r0std1], where r0 is a scaling 

parameter that is initially set to 0.1. For each segment slope where S(Ai) < 0, if the most number 

of slopes fall within that defined interval at a certain point i, then S(Ai) is replaced by S(Ai0), 

which is defined as the benchmark slope, and the number of segment slopes falling within that 

defined interval at point i is marked as s. A step size h is defined as  

h = 
max{S(Ai0) − min(S(Ai)),  max(S(Ai)) − S(Ai0)}

u×s
std0⁄

, and u is another scaling parameter that is initially set to 

10. 

(3) Then, the interval defined in (2) is adjusted to [S(Ai0) −  kh, S(Ai0) + kh], k=1, 2, 3, 

4, …, m. The number of slopes falling in each interval at various k can form an m-tuple sequence, 

marked as {temp1m}, and the first-order difference of {temp1m} can form an (m−1)-tuple 

sequence, marked as {temp2m-1}. 

(4) The Fisher optimum split method is used to divide {temp2m-1} into two categories, 

each with a minimum sum of squared deviation. If k = ki is the optimal split point, the 

corresponding interval [S(Ai0) − kih, S(Ai0) + kih] will be obtained. Because slopes less than 

zero are the ones to be considered, the interval can be adjusted to [S(Ai0) − kih, 0). 

(5) To further optimize the benchmark slope S(Ai0), a finer interval [S(Ai0) −  std2, 0), 

where std2 is the standard deviation of slopes falling in the interval [S(Ai0) − kih, 0), is used to 

remove the abnormal slopes at both ends. Then, a new benchmark slope for points within 

interval [S(Ai0) −  std2, 0) can be obtained using least squares regression.  

(6) The new benchmark slope obtained in (5) is assigned to S(Ai0), and the calculations in 

(3) and (4) are repeated to get the final optimal split point. Then the smallest amplitude and the 

largest amplitude in the interval [S(Ai0) − kih, 0) are the left and right endpoints, respectively, 

of the logarithmic linear segment.  
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(7) A global search algorithm is used to run 1000 calculations to determine the optimal 

value of the initially set r0 and u by finding the minimum error variance of the linear segment 

regression, and finally, the logarithmic linear segment of the amplitude distribution is screened 

out.  

Here we call this newly proposed b-value estimation procedure as FGS method, to 

investigate the performance of FGS, a rupturing scheme using a nonexplosive expansion agent 

was designed (as shown in Figure 1) to conduct an AE test on granite, limestone, and red 

sandstone, which is intended to ensure that the sensor-collected AE signals are all generated by 

expansion rupturing in rock specimens. The AE activities were recorded by six sensors with a 

resonant frequency of 140 kHz at a 5 MHz sampling frequency. The estimated b-value using 

FGS method and corresponding goodness-of-fit R
2
 and error variance of each rock specimen are 

given in Table 1 and shown in Figure 2(a). The temporal variations of the b-values of granite, 

limestone, and red sandstone are shown in Figure 2(b - d). These were estimated using a running 

window of 4916, 200, and 280 events and a running step of 2458, 100, and 100 events, 

respectively.  

Table 1. Estimated b-value and the Corresponding Goodness-of-Fit, R
2
, Standard Error, 

and Error Variance of Each Rock Specimen Obtained by Using the FGS Method  

 Granite Limestone Red sandstone 

b-value 1.2365±0.0247  1.0819±0.0467  1.6502±0.1151  

R
2
 0.9966  0.9763  0.9625 

Error Variance 0.0011  0.0015  0.0027 
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Figure 2. Estimated b-value obtained by using the FGS method of each rock specimen. 

Linear segment in logarithmic incremental frequency–amplitude distribution of three rock 

specimens (a). Temporal variation of b-value, strain data, amplitude, and energy of the AE signal 

with respect to time (b - d). The vertical bars are the standard error of the b-value. 

Figure 2 (a) shows that the FGS method can well screen out the linear segment in the 

logarithmic incremental frequency–amplitude distribution, and the b-values of the three rock 

specimens as listed in Table 1 are distinct. As these three kinds of rock specimens are bonded by 

mineral grains of different sizes and different types of discontinuities, their rupture scale after 

deformation will also be different. Red sandstone is composed of fine-grained particles and 

seldom has large discontinuities, which accounts for a high proportion of small-scale ruptures. 

Granite has various large mineral grains and defects or voids. Limestone contains numerous of 

joints created during deposition, and these generate more large-scale ruptures. Therefore, the b-

value of red sandstone is the largest, followed by granite, and the b-value of limestone is the 

smallest. Furthermore, Figure 2 (b - d) shows that the temporal variations of the b-value 

correspond well with the energy and amplitude of AE signals. The appearance of a high-energy 

and high-amplitude signal is usually triggered by large-scale ruptures, which in turn leads to a 

decrease in the b-value. The experimental results in this research show that the b-value estimated 

by using the FGS method can well demonstrate the size distribution characteristic in rock AE 

tests. 

5 Conclusions 

 (1) The power-law relationship is the intrinsic characteristic of the size distribution from 

earthquake to laboratory rock ruptures, indicating that the number of small-scale ruptures is 

much greater than the number of large-scale ones. Nevertheless, deviation from a power-law size 

distribution is inevitable in practice. In fact, whether small-scale events cannot be fully recorded 

owing to limited equipment accuracy or small-scale ruptures are masked by larger ones that 

mainly occur in the avalanche destruction stage, the cause of the deviation of the size distribution 

from a power law can be ultimately attributed to inadequate data acquisition. Furthermore, from 

our discussion of the attenuation effect on the amplitude distribution, if the infinite distribution 

interval is selected, attenuation will not modify the amplitude distribution; however, once the 

size distribution is truncated at a certain interval, modification will occur at both ends. This 

indicates that data truncation actually is the fundamental cause of attenuation modification of the 

size distribution. Inadequate data acquisition and data truncation will both cause deviation at 

both ends of the size distribution; therefore, the data catalog is critical, and the b-value should be 

estimated at a proper interval. The proposed b-value estimation procedure (FGS) in this study is 

designed to search that proper interval, and the application also shows its reliability. 
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(2) Because the b-value is a statistical value, its estimation result is significantly 

influenced by the data volume. Generally, a sufficiently large number of events can improve the 

robustness of the b-value. However, when spatial or temporal variations in b-value are 

investigated, the pursuit of high resolution of the variations in b-values will reduce the number of 

events, which correspondingly leads to a decrease in reliability and robustness of the estimation. 

In other words, the more we want to increase the resolution of the variations in b-values, the less 

precisely we are able to simultaneously estimate the b-value because fewer events are used. 

Nevertheless, a reliable estimation is crucial in b-value analysis. Therefore, the robustness of b-

value estimation should be guaranteed in priority even at the sacrifice of resolution of the spatial 

or temporal variation. 
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