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Abstract10

Machine learning approaches, such as random forests, have been used to effectively11

emulate various aspects of climate and weather models in recent years. The limitations12

to these approaches are not yet known, particularly with regards to varying complex-13

ity of the physical parameterization schemes being emulated within the climate model.14

Utilizing a hierarchy of model configurations, we explore the limitations of random for-15

est emulator skill using simplified model frameworks within NCAR’s Community Atmo-16

sphere Model, version 6 (CAM6). These include a dry model configuration, a moist ex-17

tension of the dry model, and an extension of the moist case that includes an additional18

convection scheme. With unique random forests being optimized for each tendency or19

precipitation rate across the hierarchy, we create a variety of emulators. Each model con-20

figuration is run with identical resolution and over the same time period. The models21

are then evaluated against the CAM6 output. All models show significant skill across22

each random forest emulator, often in-line with or exceeding similar approaches within23

the literature. In addition, as the CAM6 complexity is increased, the random forest skill24

noticeably decreases, regardless of the extensive tuning and training process each ran-25

dom forest goes through. This indicates a limit on the feasibility of random forests to26

act as physics emulators in climate models and encourages further exploration in order27

to identify that limit in the context of state-of-the-art climate model configurations.28

Plain Language Summary29

Machine learning has become an intriguing technique for replacing complicated as-30

pects of climate and weather models known as parameterizations, which account for pro-31

cesses like cloud interactions and rain. However, the limitations of machine learning tech-32

niques are not yet fully understood. We explore these limits using a specific machine learn-33

ing method and simplified climate model frameworks. The machine learning models are34

then carefully analyzed against the original climate model results. All of our machine35

learning models show impressive skill at recreating the original results. However, that36

skill is shown to noticeably decrease as the complexity of the climate model framework37

is increased. While this may be expected, it still indicates a limit on the feasibility of38

machine learning techniques to substitute for the complicated parameterizations within39

state-of-the-art climate models. Further investigation is needed to understand the via-40

bility of these methods being adopted into the simulation of the Earth system.41

1 Introduction42

In recent decades machine learning (ML) has become an intriguing tool for atmo-43

spheric scientists. It provides the unique ability to bridge data science with the phys-44

ical sciences in order to improve our understanding of the Earth system (Reichstein et45

al., 2019; Boukabara et al., 2021). While ML is still a relatively novel approach to ap-46

plications in climate science, there is already an abundance of research utilizing these47

techniques. Some examples include identifying mixed layer depths in the ocean via ob-48

servations (Foster et al., 2021), attributing model biases from physics-dynamics coupling49

in climate models (Yorgun & Rood, 2016), improving severe hail predictions over the US50

high plains (Gagne et al., 2017), post-processing bias corrections of weather forecasts (Chapman51

et al., 2019), and implementing corrective schemes like ’nudging’ physics tendencies via52

coarse-graining or hindcasting (Bretherton et al., 2022; Watt-Meyer et al., 2021).53

General Circulation Models (GCMs) are made up of a dynamical core, responsi-54

ble for the geophysical fluid flow calculations, and physical parameterization schemes,55

which estimate subgrid-scale processes that the dynamical core does not resolve. The56

latter are a source of significant bias and model uncertainty due to the heuristic nature57

of their development (Held, 2005; Stevens & Bony, 2013; Hourdin et al., 2017). Begin-58
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ning with the work of Krasnopolsky and Fox-Rabinovitz (2006) applying neural networks59

to climate and weather prediction model development, ML became an attractive can-60

didate for augmenting the subgrid-scale physics schemes within weather and climate mod-61

els. In recent years, ML techniques have already been shown to be capable of replicat-62

ing parameterizations schemes to various degrees of effectiveness (Beucler et al., 2019;63

Yuval et al., 2020). Specifically, Ukkonen (2022) were able to develop ML emulators for64

radiative transfer processes, O’Gorman and Dwyer (2018) and Gentine et al. (2018) used65

ML to emulate moist convection processes, Gettelman et al. (2021) utilized neural net-66

works to emulate a component in the micro-physics scheme within a GCM, Chantry et67

al. (2021) developed a nonorographic gravity wave drag emulator, and Rasp et al. (2018)68

and Brenowitz and Bretherton (2018) tackled a full physics emulator of cloud-resolving69

and near-global aquaplanet simulations, respectively, via neural networks. These are just70

a few examples showing both the promise of ML emulation and some limitations, par-71

ticularly in regards to model stability and physical realism (Beucler et al., 2019; Yuval72

et al., 2021).73

Our work is inspired by many of these recent studies into ML emulation for param-74

eterization schemes, with a focus on multiple simplified physics configurations within ver-75

sion 6 of the Community Atmosphere Model (CAM6). CAM6 is the atmospheric GCM76

within the Community Earth System Model (CESM) (Danabasoglu et al., 2020) frame-77

work, developed by the National Center for Atmospheric Research (NCAR). In partic-78

ular, we utilize a hierarchy of three physical forcing complexities, each with a well-defined79

increase in non-linearity associated with its mathematical expressions. The parameter-80

ization schemes begin with a dry model setup, referred to as HS hereon and described81

in Held and Suarez (1994). This is followed by a moist version of the HS scheme devel-82

oped by Thatcher and Jablonowski (2016), referred to as TJ. Lastly, a modified version83

of the TJ scheme is used in which we couple a simple Betts-Miller (BM) convection scheme84

to the physics processes (Betts & Miller, 1986; Frierson, 2007). These three parameter-85

ization packages may be referred to throughout the papers as dry, moist, and convec-86

tion, respectively. None of these physics schemes include topography or seasonal and di-87

urnal cycles. We also keep our ML technique consistent, using random forests (Breiman,88

1996). This allows for an investigation into the fundamental relationship between the89

degree of non-linearity within the parameterization scheme and the corresponding com-90

plexity of the random forest to effectively emulate the forcing.91

In this work, we show that various physical forcing tendencies and the precipita-92

tion rate can be emulated by random forest models in an offline mode. We investigate93

how their skill depends on model complexity, as well as whether we can identify indica-94

tions of limits on the feasibility of random forests for use in more complex model setups.95

In many cases, our ML models are shown to be highly skilled, both from a statistical per-96

spective and from direct comparisons. We begin with an explanation of the three model97

configurations, our model run setup and data processing steps, and a background dis-98

cussion on ML and the random forest techniques in section 2. This is followed by our99

results and discussion in section 3 before culminating with concluding thoughts in sec-100

tion 4.101

2 Methods102

2.1 CAM6 Configurations103

2.1.1 Dry Scheme104

The dry scheme is based on two forcing mechanisms as described in HS. The dis-105

sipation of the horizontal wind is represented by Rayleigh friction at the lower levels of106

the model (below 700 hPa),107

∂v⃗h
∂t

= − 1

kv(p)
v⃗h (1)
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and radiation is mimicked by a Newtonian temperature relaxation described by108 (∂T
∂t

)
HS

= − 1

kT (ϕ, p)
[T − Teq(ϕ, p)] (2)

Here, ∂/∂t represents a sub-grid physics tendency (forcing) of a variable over a physics109

time step, v⃗h is the horizontal velocity vector, T is the temperature, kv and kT are the110

dissipation coefficient and the relaxation coefficient, respectively, Teq is a pre-defined equi-111

librium temperature profile, p is the pressure, and ϕ is the latitude. These forcings are112

coupled to the dry dynamical core and produce stable atmospheric fluid flow, trigger-113

ing quasi-realistic processes such as Rossby waves in the mid-latitudes. This model con-114

figuration comes implemented within CAM6’s Simpler Models framework and is set with115

the ‘FHS94’ compset choice.116

2.1.2 Moist Scheme117

The moist physics scheme is similarly forced by Rayleigh friction and Newtonian118

temperature relaxation, this time with a modified equilibrium temperature profile and119

additional forcing mechanisms. These include heating and cooling due to large-scale con-120

densation, surface fluxes of latent and sensible heat, and a planetary boundary layer (PBL)121

mixing scheme via second order diffusion (Thatcher & Jablonowski, 2016), abbreviated122

as TJ16 later. The temperature forcing then takes the form123 (∂T
∂t

)
TJ

= − 1

kT (ϕ, p)
[T − T̃ eq(ϕ, p)] +

L

cp
C +

CH |v⃗a|(Ts − Ta)

za
+ PBL Diffusion (3)

where T̃ eq is a modified equilibrium profile, L is the latent heat of vaporization, C is the124

large-scale condensation rate, cp is the specific heat at constant pressure, CH is the trans-125

fer coefficient for sensible heat, |v⃗a| is the horizontal wind speed at the lowest model level,126

Ts is the surface temperature, Ta is the temperature of the lowest model level, and za127

is the height of the lowest model level; the latter five are needed for the computation of128

the sensible heat flux at the surface. The mathematical details of the PBL diffusion of129

T are left out here and can be found in TJ16 and Reed and Jablonowski (2012). This130

model setup is similarly implemented within the Simpler Model options in CAM6 via131

the ‘FTJ16’ compset, which assumes an ocean-covered lower boundary with a prescribed132

sea surface temperature.133

The inclusion of moisture brings an additional forcing tendency for specific humid-134

ity, which is similarly impacted by the large-scale condensation rate, the latent heat flux135

at the surface, and PBL diffusion136 (∂q
∂t

)
TJ

= −C +
CE |v⃗a|(qsat,s − qa)

za
+ PBL diffusion (4)

Here, q refers to the specific humidity in the atmosphere, CE is the bulk transfer coef-137

ficient for water vapor, qsat,s is the saturation specific humidity at the surface, and qa138

is the specific humidity at the lowest model level. Again, mathematical details of the PBL139

diffusion of q are provided in TJ16. Additionally we chose to emulate the large-scale pre-140

cipitation rate given by141

Pls =
1

ρwaterg

∫ ps

0

Cdp (5)

where ρwater is the density of water, g is gravity and ps is the surface pressure.142

2.1.3 Convection Scheme143

The final step in our hierarchy couples the BM convection scheme to the TJ setup144

(Betts, 1986; Betts & Miller, 1986; Frierson, 2007). This configuration is not built into145

the CAM6 Simpler Model framework and required some minor modifications to the TJ146
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setup. The simplified BM technique follows the description by Frierson (2007) and we147

recommend their paper for a more complete description. To summarize, the resulting148

tendencies with the addition of the BM convection scheme can be written as149 (∂T
∂t

)
BM

= −
T − Tref

τ
+

(∂T
∂t

)
TJ

(6)

150 (∂q
∂t

)
BM

= −
q − qref

τ
+

(∂q
∂t

)
TJ

(7)

where τ is the convective relaxation time and Tref and qref are reference temperature151

and specific humidity profiles. Within our implementation, the BM scheme is calculated152

first, before the rest of the TJ scheme.153

The convection scheme utilizes regimes of precipitation due to warming, PT , and154

precipitation due to drying, Pq. When we are in the regime of PT > 0 and Pq > 0,155

‘convection’ is triggered. Frierson (2007) described in detail how extra steps are taken156

with regards to the reference profiles in order for the convection scheme to ensure a con-157

servation of enthalpy in the deep convection regime. The author also describes three tech-158

niques to handling shallow convection; in our work we use the “shallower” scheme, in which159

the reference temperature is further modified in order to lower the depth at which shal-160

low convection occurs, for the shallow convection calculations. This is considered the sim-161

plest technique within the BM scheme that still allows for shallow convection to occur.162

The BM convection scheme has a dependency on two coefficients: the relative hu-163

midity threshold for the reference temperature profile (RHBM) and τ , the convective re-164

laxation time. In order to choose these values, we examined various profiles of a vari-165

ety of fields and compared them to fields from the CAM6 aquaplanet model (Williamson166

et al., 2012; Medeiros et al., 2016). Details on the aquaplanet and how it was used to167

identify our choices of RHBM and τ can be found in Supporting Information Text S1.168

The aquaplanet configuration acts as a loose reference for these choices as it is a widely169

used model configuration in which the planet’s surface is covered by an ocean. This al-170

lows for surface-to-ocean interactions to become an integral component of the underly-171

ing physics. It is useful for exploring many aspects of geophysical fluid flow in a controlled172

model setting. The chosen values were τ = 4 hr and RHBM = 0.7.173

2.2 Machine Learning174

Broadly speaking, there are two categories of ML applications: supervised and un-175

supervised learning. Unsupervised learning encompasses tasks that attempt to identify176

general patterns in data, for example, clustering algorithms. Supervised learning strives177

to identify correlations or functional relationships between a labeled input and output.178

There are two primary tasks that can be done with supervised learning: classification179

and regression; the latter is applicable to emulating physical parameterizations. Regres-180

sion is the process of estimating a functional relationship between a dependent variable,181

referred to as the label or what we are predicting, and one or more independent variables,182

referred to as features or input variables. With this framework in mind, we can think183

of regression as the process of identifying the function ĝ(X⃗) such that184

ĝ(X⃗) ≈ f(X⃗) (8)

where f(X⃗) is the function we seek to identify and X⃗ is the vector of input variables (fea-185

tures).186

What separates modern machine learning techniques like neural networks, support187

vector machines, and random forests are their applications to nonlinear systems, pro-188

viding methods for nonlinear regression tasks. In its simplest form, a physical param-189

eterization is a nonlinear function that describes a tendency or precipitation rate (de-190

pendent variable) given the (independent) state variables. In the analogy to equation191
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8, the tendency would be f while the state variables makes up the vector X⃗ and our trained192

ML model will be ĝ(X⃗).193

We utilize random forests to emulate the parameterization schemes. A random for-194

est is an ensemble of decision trees, which can themselves be considered an ML technique.195

Decision trees identify thresholds among a branch network, forming a structure of con-196

ditional operations that produce a prediction (Breiman, 1996). Random forests are com-197

monly used in classification applications of ML, but have been shown to be effective for198

nonlinear regression tasks in atmospheric science as well (O’Gorman & Dwyer, 2018).199

Various trees in the forest are initialized at random and are then trained along side each200

other. The final result is an ensemble average of the results from all trees in the forest.201

A random forest approach was chosen due to both its relative simplicity as an ap-202

plication of non-linear regression, along with its ability to inherently preserve underly-203

ing physical properties of the predicted fields. Since each individual tree produces an out-204

put that is within the scope of the training data, their average is also inherently within205

the scope of the data. This means that random forests cannot extrapolate a prediction206

outside of the range established by their training data. In the context of using ML tech-207

niques for physical science applications, this is a welcome restriction because it can avoid208

potential artifacts that could be inconsistent with the physics at play. For example, a209

random forest will inherently adhere to the non-negative property of precipitation, as210

it will have never encountered negative precipitation in its training data. This is in con-211

trast to techniques such as neural networks, which historically have trouble with extrap-212

olation and adhering to underlying physical constraints (Beucler et al., 2019). We de-213

veloped a streamlined workflow from data generation to training, testing, and analysis214

by utilizing CAM6’s built-in Simpler Models physics framework along with the Python215

libraries Xarray and scikitlearn (Pedregosa et al., 2011; Hoyer & Hamman, 2017). Xar-216

ray allows for easily manipulating data in the netCDF format, while scikitLearn is a well-217

maintained ML library that includes user-friendly random forest implementations for Python.218

2.3 Model Setup and Data Preparation219

The simple model configurations allow us to generate large quantities of model out-220

put to train our machine learning models. Working with CAM6, we utilize a finite vol-221

ume dynamical core with 30 pressure-based vertical levels and a model top at roughly222

2.2 hPa. The exact placement of the model levels is specified in Reed and Jablonowski223

(2012) (see their Appendix B). The model is run for 60-years with a latitude-longitude224

grid of resolution 1.9◦×2.5◦ - simply referred to as 2-degree resolution and corresponds225

to roughly 200 km grid spacing. We output data for state variables, including temper-226

ature, surface pressure, specific humidity, and the diagnostic quantity relative humid-227

ity, once every week of the simulation just before the prognostic states are updated by228

the physics package. Additionally, we output the tendencies due to the physical param-229

eterization package after they are updated with the same output frequency. This is an230

important modification since by default both the state variables and physical tenden-231

cies are output after the physics update. We chose to output once per week in order to232

avoid the close correlations between the time snapshots. Strong correlations are present233

in data snapshots that are only separated by short time intervals, such as a day. This234

allows for our data to include a larger range of the functional space, while avoiding re-235

dundancies within the scope of the training data. It should be reiterated that our con-236

figurations do not include a diurnal or seasonal cycle, which allows us to be able to take237

weekly output without risking an incomplete representation of the functional space. For238

more complicated systems, care would need to be taken in choosing output intervals that239

effectively sample the functional space.240

Here, we define the input fields for our ML models to be the state variables used241

by the underlying schemes, such as temperature and pressure. Similarly, the output fields242
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are the resulting tendency or precipitation rate being predicted. For preprocessing, we243

focus primarily on the shape of the data, input choices, and the distribution of the data244

between training and testing. The state variables and tendencies, using temperature (T )245

as an example, are generally output from the model in the shape246

T (Ntime, Nlev, Nlat, Nlon)

where Ntime, Nlev Nlat, and Nlon correspond to the number of temporal snapshots,247

vertical levels, latitudes, and longitudes, respectively. Some variables are surface fields,248

such as the precipitation rates, and correspond to Nlev = 1. Due to the nature of the249

physical parameterizations being column-wise implementations in the atmospheric model,250

we carry this over as our feature/label dimension. This means our number of samples251

becomes252

Nsamples = Ntime ×Nlat ×Nlon

The number of features becomes253

Nfeatures = Nlev ×Ninput fields

again, where input fields include temperature, specific humidity, relative humidity, and254

pressure, among others. The number of labels becomes255

Nlabels = Nlev ×Noutput fields = Nlev

where Noutput fields = 1 for all cases in this work since we train a unique random for-256

est for each predicted tendency or precipitation rate. This was a conscious decision that257

allows for a robust investigation into the effectiveness of random forests for these em-258

ulation tasks as the functional form slowly increases in complexity within our hierarchy.259

This is in contrast to other similar efforts, such as Rasp et al. (2018) and Yuval et al.260

(2020), wherein a single ML model is trained to predict all fields of interest.261

Finally, we partition the data into training and testing subsets. The training data262

comes from the first 50 years of the 60-year model run. We choose a selection of roughly263

15-20 million samples, which represents the majority of the available data from the 50264

years for training. This number depends primarily on the complexity of the random for-265

est parameters and the size and shape of the variable. For example, the moisture ten-266

dency is zero above roughly 250 hPa, which means we have six levels between 250 hPa267

and the model top that can be omitted from the process, resulting in significantly less268

data to be processed. Likewise, the precipitation rate is a surface field, which leads to269

significantly reduced computational cost for training since Nlabels = Nlev = 1. This270

allows us to use closer to Nsamples ≈ 20 million for these emulators, which is just be-271

low the upper limit of our generated data. In contrast, the moist and convective tem-272

perature tendencies use 15 and 12 million samples, respectively. This was the largest we273

could use for these cases while remaining within our computational resource limits. The274

discrepancy between these two cases is a result of the size and complexity of each individually-275

optimized random forest. The number of samples used in training for each case is included276

in tables S1 to S8 in the Supporting Information.277

The testing data are used to quantify our model’s ability to emulate the param-278

eterization. The testing data were not available during training and come from the fi-279

nal six years of the 60-year model run. It is important to evaluate model performance280

on data that the random forest has not seen while training in order to ensure our em-281

ulators do not show signs of overfitting. Overfitting in ML occurs when the ML model282

has been trained well on the subset of data that is has seen, but is unable to general-283

ize to a new set of data from the same source. Lastly, the ML algorithms need to have284

their hyperparameters tuned in order to obtain an optimized random forest architecture285

for the problem. This is an important part of the ML workflow and we currently utilize286

the SHERPA hyperparameterization library to accomplish it (Hertel et al., 2020). Fur-287

ther details about the process of hyperparameter tuning and the final choices of hyper-288

parameters can be found in tables S1 to S8 in the Supporting Information.289
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3 Results & Discussion290

3.1 Snapshots & Mean Fields291

Figures (1) and (2) show horizontal snapshots of the CAM6 (left column) output,292

our random forest ML predictions (middle column) and their differences (right column)293

for temperature and moisture tendencies, respectively. From top to bottom, the figures294

show each of the various physics schemes used: dry (Fig. (1) only), moist, and convec-295

tion. We chose a snapshot from a randomly chosen time step at the model level closest296

to 850 hPa. The differences calculated in all plots are truth (CAM) subtracted from the297

random forest prediction. This means that positive and negative values correspond to298

over- and underestimations by the random forest. The snapshots in Figs. (1) and (2) im-299

mediately show how effective ML methods can be at emulating simple parameterization300

schemes in climate models for any given time step. These temporal snapshots allow us301

to appreciate the agreement between the CAM output and the random forest predictions,302

while still being able to identify areas of discrepancy. These snapshots also show how303

at a given time step, the ML prediction can reproduce the flow properties associated with304

baroclinic waves in the mid-latitudes. This is apparent in the heating tendency (1e, 1h)305

along the frontal zones, as well as decreasing moisture levels (2b, 2e) in these areas, cor-306

responding to precipitation bands.307

Figures (3) and (4) are zonally and temporally averaged temperature and specific308

humidity tendencies over the testing period of the final six years. The CAM6 physics and309

the random forest results are visually indistinguishable. The order of magnitude of the310

difference plots (right columns) is quite small in both figures. Additionally, Fig. (5) shows311

the same averaged field for the precipitation rates. The CAM6 output (blue) and the312

random forest ML predictions (dashed orange) overlay each other almost perfectly. The313

top row shows the large-scale precipitation rate and the bottom row the convective pre-314

cipitation rate, while the left column corresponds to the moist case and the right to the315

convection case. We can also identify some of the same physical behaviors that were ob-316

vious in the snapshots from Figs. (1) and (2), such as the heating bands in the mid-latitudes317

corresponding to the peaks around 40N & 40S in Figs. (3e) and (3h). In addition, the318

intense precipitation regions in the tropics are emulated well by the random forests as319

displayed in Figs. (5a, c). This precipitation is correlated with the intense tropical heat-320

ing peaks in Figs. (3e, h).321

The minor differences between ML predictions and the CAM6 output in Figs. (1322

- 5) somewhat mirror minor artifacts that could arise through other common numeri-323

cal changes to a GCM, such as dynamical core grid choices. Further, when we incorpo-324

rate the zonal-mean time-means in Figs. (3), (4), and (5) these subtle discrepancies are325

averaged out and we obtain plots that become virtually indistinguishable for most cases.326

We also begin to see a hint that as we increase the complexity of the schemes, the ran-327

dom forest’s skill begins to decrease. Figure (3) shows the difference plots between the328

predicted result and the original CAM6 output in the right column for all three cases329

of the temperature tendencies. The regions of larger magnitude differences for the con-330

vection case in plots (3f) and (3i) appear throughout a majority of the domain, while331

the dominant regions in the dry case in plot (3c) are more-so bound to the poles and equa-332

torial regions. There is also an increase in magnitude throughout the difference plots be-333

tween Figs. (3f) and (3i), as well as (4c) and (4f). This is another indication of a notice-334

able decrease in skill as complexity increases.335

In Fig. (5), the emulated precipitation rates are even less distinguishable in the mean336

fields. The various peaks in the zonal-mean time-mean plots in Fig. (5) align closely with337

the areas of ‘drying’ in Fig. (4). This is in particular true for the equatorial region in both338

cases, dominant in the moist case, as well as in the mid-latitudes in the convection case.339

We also notice that there is a negligible difference in performance between the moist and340

convection cases’ large-scale precipitation emulator. This is due to the fact that by adding341
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the BM convection scheme to the moist physics, we do not impact the calculation of the342

large-scale precipitation. Instead, the resulting large-scale precipitation rate in the con-343

vection case is impacted only by the fact that the convection scheme, which is called first,344

has already removed a significant amount of moisture from the atmosphere. Therefore345

the overall amount of precipitation that accumulates from the large-scale scheme is less346

and more concentrated in the regions that did not meet the criteria for convection as de-347

scribed in the BM scheme. Mathematically, the large-scale precipitation scheme has not348

changed and we can see that the random forest maintains virtually identical skill in this349

case across the two schemes.350

3.2 Point-wise Comparison351

Next, we show one-to-one scatter plots of the results from CAM and the random352

forests in Figs. (6) and (7) for the temperature and specific humidity tendencies at a level353

near 850 hPa and precipitation rates, respectively. This is a metric that allows for an354

effective visualization of the spread of our predictions. If the emulator were to produce355

the exact results as the original scheme, the points on these plots would follow the one-356

to-one line y = x, shown in orange. One-to-one scatter plots have been shown in re-357

lated papers, such as O’Gorman and Dwyer (2018), Rasp et al. (2018), and Han et al.358

(2020) for various metrics and fields. Figure (6) contains the temperature tendencies in359

the top row and the moisture in the bottom row for both the moist case (left column)360

and convection case (right column). Figure (7) shows the scatter plots for each precip-361

itation rate, oriented in the same configuration as Fig. (5) above. Each plot in Figs. (6)362

and (7) contains the y = x (one-to-one) line in orange along with a least squares lin-363

ear fit in blue. The least squares is calculated via the Python library NumPy and is used364

here to illustrate how closely the predictions align with, or deviate from, the y = x line.365

We also include a panel of histograms in Figs. (8) and (9) corresponding to Figs. (6)366

and (7), respectively’ where N denotes the total number of test data points of the model367

level closest to 850 hPa or the surface (precipitation rates). These are plotted on a log368

scale in order to better visualize the histograms, since the data is saturated around the369

central bin, corresponding to the y = x lines in the scatter plots. The histograms were370

inspired by the findings in Han et al. (2020) and help to illustrate how our scatter plots371

are dominated by points that fall along the y = x line. Taking into account the differ-372

ence between shown metrics and model configurations, our results with the one-to-one373

scatter plots show exceedingly skillful ML emulators, in line with, if not superior to, what374

we find in the literature for similar work. This is something to keep in mind while we375

discuss potential limitations arising from increasing complexity.376

For both of the large-scale precipitation rate emulators in Figs. (7a, b), the y =377

x and least-squares fit lines overlap almost completely, and correspondingly, we have min-378

imal spread in the underlying scatter plot. The convective precipitation (7c) plot shows379

the most visual spread among the precipitation rate scatter plots. Along these same lines,380

both tendencies in Figs. (6) and (8) show significantly more spread in the convection case381

over the moist case. However, we note that the all of the histograms in Figs. (8) and (9)382

show the overwhelming majority of point-wise differences fall within the first few bins383

and that while outliers occur, they are exceedingly rare. The black dashed lines convey384

the percentage of instances contained within them. Each case indicates at least 95% of385

the data within the black dashed lines, and in some cases over 97%, as indicated in the386

legends. All plots appear to have a slight bias to underestimate the extreme precipita-387

tion, as indicated by the direction of the deviation of the regression fit from the one-to-388

one line along with the consistent under estimated tails in the upper right region of all389

panels in Fig. 7). This is likely due to the inability for a random forest to predict a value390

that is not within the range of its training data set, as discussed in Section 2.2.391
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3.3 R2 Investigation392

Another performance metric is the coefficient of determination, or, R2. We calcu-393

late R2 contours over the time and zonal dimensions, given by the formula394

R2(:, :) = 1−
∑

t

∑
λ[CAM(t, :, :, λ)−ML(t, :, :, λ)]2∑

t

∑
λ[CAM(t, :, :, λ)− CAM(:, :)]2

(9)

where λ is the longitudinal dimension, the numerator is referred to as the residual sum395

of squares and the denominator is the variance of the CAM6 output. The average in the396

calculation, indicated by CAM, is a zonal-mean time-mean over the testing data set. R2
397

can simply be understood as a measurement of how well a regression model has learned398

the functional relationship between the input and the predicted output based on the true399

output. The closer to one, the better the R2. It should be noted here that the R2 can400

take negative values whenever the errors in the predictions are larger than the variance401

in the original data. In general, this may be interpreted as a model that cannot iden-402

tify, or has not ‘learned’, the functional relationships at play. This approach was inspired403

by Figs. (1) and (7) in O’Gorman and Dwyer (2018), where in the author shows a panel404

of R2 contours for temperature tendencies for various training scenarios also using ran-405

dom forests to emulate the tendencies.406

We display a panel of R2 plots for all of our tendencies in Fig. (10) and precipi-407

tation rates in Fig. (11). The plots show areas of significant skill, ranging from 0.8 to408

0.99, for all cases. All fields also show regions of low R2 values, around 0.4 and under,409

however, the overwhelming majority of the plots show at least R2 > 0.7. The work in410

this paper is not meant to be a direct comparison to the work in O’Gorman and Dwyer411

(2018), as we use different model configurations and an entirely different GCM. It is still412

worth noting how this works as an effective reference due to the many similarities in both413

ML approach and aspects being emulated. We note again that all of our trained emu-414

lators show skill in line with various other examples of similar work within the litera-415

ture, such as O’Gorman and Dwyer (2018), as well as Yuval et al. (2020).416

The R2 panels in Figs. (10) and (11) reveal a wide variety of aspects. For exam-417

ple, as we increase the complexity of our system, the random forest’s global effectiveness418

decreases with regards to the R2 skill. Excluding (10a), from left-to-right we increase419

in complexity from the moist case to the convection case, and in doing so we notice the420

impact on the R2 skill globally. In (10c) there are more regions of R2 ≤ 0 in the up-421

per atmosphere, which was not seen in (10b). Along the same line, two pockets of R2 ≈422

0.3 form around the tropics in (10e), while (10d) shows R2 > 0.7. These all support423

the expected conclusion that the effectiveness of random forests for emulating complex424

functions in climate models are impacted by the increasing complexity of those schemes.425

We also note that the R2 calculation can be an unreliable metric in regimes where426

there is minimal activity, which does occur in the white regime of Figs. (10a), (10d), and427

(10e). This is because when the values in the variance and the sum of squares are both428

functionally zero, they are still seen as floating point numbers of extremely small order429

and the equation above can lead to the result430

R2(:, :) ≈ 1− 10−6

10−13
≈ 1− 107 << 0 (10)

For the dry case in plot (10a), this occurs around the equator in the mid-atmosphere.431

Similarly, this occurs in the upper atmosphere for the moisture tendencies in (10d) and432

(10e). For the dry case, there is very little heating or cooling occurring on average in this433

area of the atmosphere and for the moist case there is in fact no forcing occurring at up-434

per levels. However, due to the nature of floating point numbers the R2 calculation iden-435

tifies these regimes as areas of poor skill. This is an example of a weakness in R2 as a436

metric of regression skill, rather than a reflection of a weakness in the ML model for these437

particular cases.438
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There is virtually no noticeable drop-off in skill between the moist and the convec-439

tion cases for the large-scale precipitations rates (Fig. 11a,b). This is again because their440

functional relationships are identical in each case. However, we see that the convective441

precipitation scheme suffers a minor loss in skill when compared to the large-scale pre-442

cipitation emulators. The emulator is still among the highest skill model, with R2 > 0.78443

globally. However, this is in-line with what we observe with the tendencies in Fig. (10)444

and the expected result: that as we increase complexity, the effectiveness of the random445

forest decreases, even if only marginally for some cases inspected in this work.446

3.4 Skill Variation447

Various aspects of the ML training process impact the skill of our emulators. A com-448

mon example of this is the idea of feature importance. Feature importance is the inves-449

tigation into the relative importance of various input parameters for the skillfulness of450

an ML model. It is important that we do not use every possible quantity as inputs as451

this increases the computational demand of training these emulators. We know what in-452

put fields are used to calculate the functions that we emulate, as discussed in section 2.1.453

These tend to include the temperature, pressure, specific heat, and heat fluxes for ex-454

ample. One input field that we investigated more closely was relative humidity (RH).455

Since RH is not an explicit variable used in calculating the physics tendencies and pre-456

cipitation rates, would including it improve performance? Figure (12) shows the R2 com-457

parison of explicitly including the RH (left) and not including it (right), using identical458

random forest setups, trained independently, for the moist specific humidity tendency.459

The random forest shows skill without the inclusion of the RH field, however it is sig-460

nificantly improved upon with the inclusion of the RH.461

From a pure data science perspective, it may not be apparent that the RH field will462

improve the performance since it is not an explicit variable used in the functional form463

of the parameterization. From the atmospheric science perspective, this is to be expected464

since relative humidity is an important indicator of changing moisture levels in the at-465

mosphere. It is also an indicator of supersaturation (RH>100%) in the large-scale pre-466

cipitation algorithm. In turn, this impacts the make up of moisture in the atmosphere467

which indirectly influences all predicted fields. This is an example of how important it468

is to approach ML problems in the physical sciences with our physical intuition in mind.469

We also assessed how the model is dependent on the amount of training data points470

provided. Figure (13) shows the impact that training data can have on the moisture ten-471

dency, as we decrease the amount of training data used for otherwise identical random472

forest emulators. Our current models all used around 12 to 20 million samples in which473

to train on, as outlined in Supporting Information tables S1 to S8. In this specific test,474

20 million samples led to the most skillful R2 field as well as the highest overall R2 at475

0.876. When decreasing the number of samples we see a decrease in skill in Fig. (13),476

as expected. It does appear with a minimum of 500,000 samples, we are able to effec-477

tively emulate the moisture tendency with R2 > 0.8 globally. However, once we decrease478

that number by another order of magnitude we lose much of our skill, including a gen-479

uinely poor emulator for only 5,000 training samples. We also find that as we increase480

above five million samples, the R2 begins to level out close to 0.9, indicating that roughly481

five or 10 million samples is a sufficient minimum for our work. Investigations like these482

can help to guide us as we attempt to find the balance between skillful ML models and483

computationally feasible approaches.484

4 Concluding Thoughts & Applications to Future Work485

Individual random forests are developed and trained for emulating temperature ten-486

dencies, specific humidity tendencies, large-scale precipitation rates, and convective pre-487

cipitation rates from physical parameterization schemes within three simple physics model488
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configurations within the CAM6 model framework. The configurations built upon one489

another in a hierarchy of complexity, beginning with the dry case, before moving to the490

moist and culminating with the moist case coupled with a convection scheme. We uti-491

lized a broad scope of training data over a 60-year model run for each configuration and492

allowed the SHERPA hyperparameter optimization tool to freely optimize each individ-493

ual random forest. This allowed us to create robust emulators in order to probe the lim-494

its of skill achievable via random forest emulators of sub-grid physics schemes in an of-495

fline mode.496

All of our emulators showed significant skill when tested on the test data over the497

final six years of model output. With the given metrics, our emulators showed results498

at least as skillful as other similar examples within the literature, while in many cases499

outperforming similar work. This statement bares reminding that in a majority of cases500

our model configurations were less-complex than we find in the current literature, so di-501

rect comparisons are not possible. We also note the benefits of using random forests rather502

than other methods, such as deep learning, since random forests inherently preserve many503

physical laws. An example being the non-negativity of precipitation due to the inabil-504

ity for random forests to make a prediction outside of the range of the data it was trained505

on.506

Further, we identify indications of limitations in using random forests for emulat-507

ing physical parameterization schemes, even within our highly simplified hierarchy of con-508

figurations. In many cases, there were noticeable decreases in skill as the complexity of509

the physics scheme was increased. This raises interesting questions about where random510

forests fit within the overall approach to the community’s interest in using ML to em-511

ulate these sub-grid processes and otherwise augment aspects of climate and weather mod-512

els. Balancing the trade-offs between physical realism, computational efficiency, and model513

complexity should inform the choice of ML technique, especially when looking forward514

towards state-of-the-art model complexity. Random forests are unlikely to remain as skill-515

ful, particularly in full-tendency emulators like ours, in cases with such a substantial in-516

crease in overall complexity. In regards to this work, our next intriguing step will be to517

couple the random forests to the CAM6 implementation and analyze how they perform518

in an online mode. Investigating whether the rare, yet present, outliers impact the sta-519

bility of the coupled model will provide further insight into where random forests may520

fit into the future of data science-augmented climate and weather models. Based solely521

on this work, we expect it to likely fall within the emulation of individual components522

that can take advantage of the inherent conservation of physical laws, such as convec-523

tion schemes or the radiation parameterization.524
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Figures654

Figure 1: Time step snapshot plots of CAM6 and ML predicted temperature tendencies
and their differences near 850 hPa. Top row corresponds to the dry case, middle row to
the moist case, and bottom to the convective case. Left column corresponds to CAM6
output, middle the random forest ML predictions, and right depicts their respective differ-
ences.
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Figure 2: Time step snapshot plots of CAM6 and ML predicted specific humidity ten-
dencies and their differences near 850 hPa. Top row corresponds to the moist case and
bottom to the convective case. Left column corresponds to CAM6 output, middle the
random forest ML predictions, and right depicts their respective differences.

Figure 3: Zonal-mean time-mean plots of original and predicted temperature tenden-
cies and their differences over the full testing data set. Top row corresponds to the dry
case, middle row to the moist case, and bottom to the convective case. Left column cor-
responds to CAM6 output, middle the random forest ML predictions, and right depicts
their respective differences.
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Figure 4: Zonal-mean time-mean plots of original and predicted moisture tendencies and
their differences over the full testing data set. Top row corresponds to the moist case,
and bottom to the convective case. Left column corresponds to CAM6 output, middle the
random forest ML predictions, and right depicts their respective differences.

Figure 5: Zonal-Mean Time-Mean plots of CAM6 (blue) and ML predicted (orange)
precipitation totals over the full testing data set. Top row corresponds to the large-scale
precipitation (eq. 5) and bottom to the convective precipitation. Left column corresponds
to moist case, while the right is the convective case.
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Figure 6: Direct comparison scatter plots for ML predicted values (y-axis) against origi-
nal CAM6 output (x-axis) for all horizontal grid points near 850 hPa over the testing data
for (a) moist-case temperature tendency, (b) convection-case temperature tendency, (c)
moist-case moisture tendency, and (d) convection-case moisture tendency.
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Figure 7: Direct comparison scatter plots for ML predicted values (y-axis) against origi-
nal CAM6 output (x-axis) for all horizontal grid points near 850 hPa over the testing data
for (a) moist-case large-scale precipitation, (b) convection-case large-scale precipitation,
and (c) convection-case convective precipitation.
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Figure 8: Histograms of the point-wise difference (ML - CAM6) for the temperature
(top) and specific humidity (bottom) tendencies, corresponding to the scatter plots in
Fig. (6) on a log scale using 100 bins. Percentage of data contained within the black
dashed lines are indicated in individual legends and conveys the significance of the log-
scale and the overwhelming majority of instances occurring near the peak of the distribu-
tion.

–20–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Figure 9: Histograms of the point-wise difference (ML - CAM6) for the precipitation
rates corresponding to the scatter plots in Fig. (7) on a log scale using 100 bins. Percent-
age of data contained within the black dashed lines are indicated in individual legends
and conveys the significance of the log-scale and the overwhelming majority of instances
occurring near the peak of the distribution.
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Figure 10: R2 calculations over the zonal & temporal dimensions via eq. 10. (a) Dry
temperature tendency, (b) moist temperature tendency, (c) convection temperature ten-
dency, (d) moist moisture tendency, and (e) convection moisture tendency.
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Figure 11: R2 calculations over the zonal & temporal dimensions via eq. 10. (a) moist
large-scale precipitation, (b) convection large-scale precipitation, and (c) convection con-
vective precipitation.

Figure 12: Comparison of R2 plot - as defined in Fig. (10) - with (a) and without (b)
relative humidity as a feature for ML prediction of the moisture tendency for the moist
case. Figure (12a) reproduces Fig. (10d).
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Figure 13: Globally-averaged R2 value (y-axis) for ML prediction of the moisture ten-
dency for the moist case using varying number (N) of training samples (x-axis) on a log
scale.
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