Keisuke Onodera

and 32 more

The elastic property of asteroids is one of the paramount parameters for understanding their physical nature. For example, the rigidity enables us to discuss the asteroid’s shape and surface features such as craters and boulders, leading to a better understanding of geomorphological and geological features on small celestial bodies. The sound velocity allows us to construct an equation of state that is the most fundamental step to simulate the formation of small bodies numerically. Moreover, seismic wave velocities and attenuation factors are useful to account for resurfacing caused by impact-induced seismic shaking. The elastic property of asteroids thus plays an important role in elucidating the asteroid’s evolution and current geological processes. The Hayabusa2 spacecraft brought back the rock samples from C-type asteroid (162173) Ryugu in December 2020. As a part of the initial analysis of returned samples, we measured the seismic wave velocity of the Ryugu samples using the pulse transmission method. We found that P- and S-wave velocities of the Ryugu samples were about 2.1 km/s and 1.2 km/s, respectively. We also estimated Young’s modulus of 6.0 – 8.0 GPa. A comparison of the derived parameters with those of carbonaceous chondrites showed that the Ryugu samples have a similar elastic property to the Tagish Lake meteorite, which may have come from a D-type asteroid. Both Ryugu and Tagish Lake show a high degree of aqueous alteration and few high-temperature components such as chondrules, indicating that they formed in the outer region of the solar system.
In the 1970s, two types of seismometers were installed on the nearside of the Moon. One type is called the Long-Period (LP) seismometer, which is sensitive below 1.5 Hz. The other is called the Short-Period (SP) seismometer, whose sensitivity is high around 2 – 10 Hz. So far, more than 13,000 seismic events have been identified through LP data analyses, which allowed us to investigate lunar seismicity and the internal structure. On the other hand, most of the SP data have remained unanalyzed because they include numerous unnatural signals and/or instrumental noises. This fact leads to the hypotheses that (i) we have missed lots of high-frequency seismic events and (ii) lunar seismicity could be underestimated. To verify these ideas, this study conducted an analysis of the SP data. In the analysis, I denoised the original SP data and performed the event detections by comparing the spectral features between the cataloged high-frequency events (such as shallow moonquakes) and the continuous SP data. Eventually, I discovered 22,000 new seismic events, including thermal moonquakes, impact-induced events, and shallow moonquakes. Among these, I focused on analyzing shallow moonquakes — tectonic-related quakes. Consequently, it turned out that there are nearly three times more tectonic events than considered before. Furthermore, additional detections of shallow moonquakes enabled me to see the regionality in seismicity. Comparing three landing sites (Apollo 14, 15, and 16), I found that the Apollo 15 site is more seismically active than others. These findings can change the conventional views of lunar seismicity.