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Abstract17

Machine learning has been widely applied in numerical weather prediction, but the in-18

corporation of new observational sites into models trained on stations with long histor-19

ical records remains a challenge. Here we propose a post-processing framework consist-20

ing of three machine learning methods: station clustering with K-means, temperature21

prediction based on decision trees, and transfer learning for newly-built stations. We ap-22

ply this framework to post-processing forecasts of surface air temperature at 301 weather23

stations in China. The results show significant reductions (as much as 39.4%∼20.0%)24

in the root-mean-square error of operational forecasts at lead times as long as 7 days.25

Moreover, the use of transfer learning to incorporate new stations improves forecasts at26

the new site by 36.4% after only one year of data collection. These results demonstrate27

the potential for clustering and transfer learning to boost existing applications of ma-28

chine learning techniques in weather forecasting.29

Plain Language Summary30

Statistical approaches have been used for decades to enhance and interpret numer-31

ical weather forecasts. Artificial intelligence models have greatly advanced this field but32

the extension of these models to newly-built sites remains a challenge. To address this,33

we design a framework that combines three machine learning methods: clustering to group34

similar stations, decision trees to classify the forecasts, and transfer learning to adapt35

the model to new stations. We apply this framework to real forecasts and evaluate it against36

measurements from hundreds of weather stations in China. Station clustering and trans-37

fer learning both substantially improve predictions for recently-built sites, demonstrat-38

ing how these tools can supplement existing artificial intelligence techniques in weather39

forecasting.40

1 Introduction41

The skill of numerical weather prediction (NWP) has improved significantly in re-42

cent decades due to advances in numerical models, data assimilation, and observation43

systems (Bauer et al., 2015). Nevertheless, the accuracy of NWP is still limited by im-44

perfect model physics, numerical schemes, and initial/boundary conditions (Bauer et al.,45

2015; Lynch, 2008). Following the pioneering work of Glahn and Lowry (1972), Model46

Output Statistics (MOS) have been used operationally for over forty years. Raw model47

forecasts are post-processed using statistical relationships between observations and NWP48

results. However, the volume and variety of observational and model output data are in-49

creasingly overwhelming conventional implementations of these methods (e.g., Agapiou,50

2017; Overpeck et al., 2011).51

The emergence of machine learning (ML) techniques has provided new perspectives52

in this field (e.g., Reichstein et al., 2019). The climate community has increasingly turned53

to such techniques for applications such as improving subgrid-scale parameterizations54

in numerical models (e.g., Gentine et al., 2018; Rasp et al., 2018; Schneider et al., 2017;55

Jiang et al., 2018), improving forecasts at very short or very long lead times (e.g., Shi56

et al., 2015; Ham et al., 2019; B. Pan et al., 2019), detecting extreme weather (Hwang57

et al., 2019), and identifying complex teleconnection patterns (e.g., Runge et al., 2019;58

Boers et al., 2019). ML techniques could also substantially improve the accuracy of NWP59

results (McGovern et al., 2017; Rasp & Lerch, 2018; Scher, 2018).60

The success of ML relies heavily on the quality and quantity of training data. Un-61

fortunately, observations are usually sparse, especially for newly-built weather stations.62

Essential questions therefore arise regarding whether and by what means models trained63

on data-rich stations can be reliably extended to newly-built stations with limited data64

records.65
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Clustering techniques are widely used to extract information hidden in complex spatio-66

temporal data (Bador et al., 2015). Stations classified within the same cluster often share67

similar meteorological features. This type of feature-based classification provides a nat-68

ural foundation for transfer learning, a technique by which knowledge gained in complet-69

ing one task is repurposed for a different but related task (S. J. Pan & Yang, 2010). These70

methods may permit models trained for data-rich stations to be rapidly fine-tuned for71

application to data-poor stations. To take full advantage of these techniques, we pro-72

pose a new framework that combines three different ML methods: Clustering, Decision73

trees, and Transfer learning, or CDT for short. We apply CDT to surface air temper-74

ature forecasts as an illustrative validation of this framework and its applicability.75

2 Data76

NWP data are provided by The International Grand Global Ensemble (TIGGE)77

project of the European Centre for Medium-Range Weather Forecasts (ECMWF) (e.g.,78

Bougeault et al., 2010; Swinbank et al., 2016). The numerical forecasts are initialized79

twice per day at 00 and 12 UTC with lead times ranging from 6 to 168 hours at 6-hour80

increments (for a total of 28 lead times). We use data for the period from 1 January 201381

to 31 December 2018. The sample size is therefore 4384 for each weather station and lead82

time. Five variables are selected: temperature and dew point temperature at 2 m height,83

surface pressure, and the zonal and meridional wind components at 10 m height.84

Observations from weather stations in China are obtained from www.meteomanz.com85

for the same period (1 January 2013 through 31 December 2018). As too few data are86

available in Xizang and Qinghai, we omit these areas from the analysis. We select 30187

weather stations with data covering at least half of the year 2018 (the testing period as88

introduced below). Four variables (surface air temperature, surface pressure, surface air89

relative humidity, and near-surface wind speed) are provided every 3 hours (00, 03, 06,90

09, 12, 15, 18, and 21 UTC). Static information for each station is also used, including91

latitude, longitude, and elevation. Missing values are filled via linear interpolation in the92

time dimension.93

The historical observations are processed to generate feature vectors with shapes94

defined by (nsamples, nsteps, nfeatures), where nsamples is the number of records for a spec-95

ified station, nsteps is the number of time steps used for temporal pattern mining, and96

nfeatures is equal to 4 (i.e., the number of measurements to match at each time step). For97

example, the shape of the input vector for the Beijing station is (4384, 25, 4) when three98

days of past observations are used. NWP data are interpolated to each station location99

using an inversion-distance weighting ¡IDW;¿(Myers, 1994) applied to forecast data from100

the four nearest model grid cells. The observational and NWP data are combined for101

input to the CDT framework.102

3 Methods103

The CDT framework consists of three individual ML modules: clustering, decision-104

tree, and transfer learning. The clustering module classifies the 301 stations into groups105

using the traditional K-means technique. Separate decision-tree-based post-processing106

modules are then developed for each cluster and each lead time. Each newly-built sta-107

tion is assigned to the best-fit existing cluster. The transfer learning module is then used108

to produce the final results.109

3.1 Clustering Stations with K-means110

The traditional K-means (Hastie et al., 2009) clustering technique is often used for111

climate data analysis (e.g., Bador et al., 2015; Bernard et al., 2013). Stations with sim-112

ilar features are categorized into K individual clusters by calculating the feature distance113
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between them. The features used in this study are the annual averages and standard de-114

viations of surface air temperature, surface air relative humidity, near-surface wind speed,115

surface pressure, latitude, longitude, and elevation. Models are established and trained116

for each cluster instead of for each station to reduce the computational cost and enlarge117

the training sample for each model.118

The clustering result is highly sensitive to the value of K. We use the Silhouette119

Coefficient (Rousseeuw, 1987) to identify the optimal value of K. This metric measures120

the consistency of samples within each cluster as the ratio between cluster tightness and121

cluster dissociation. A larger Silhouette Coefficient indicates an increase in the inter-cluster122

distance relative to the intra-cluster distance. The maximum coefficient thus marks the123

optimal clustering result according to this metric.124

The average Silhouette Coefficient (ASC; Text S1 in the supporting information)125

varies with the number of clusters K (Fig. 1a). We use the ASC to reduce the number126

of candidate K values so that we do not need to train ML models for all possible val-127

ues of K. Although the ASC is useful for identifying potential optimal values of K, a128

larger ASC does not necessarily translate to a better ML model result. We test clusters129

based on K = 2, K = 4, and K = 8, which each produce climatologically coherent130

station groups. The result for K = 2 divides stations into two main groups correspond-131

ing to northern and southern China (Fig. 1b), while that for K = 4 produces clusters132

corresponding to the Northeast, North, and South regions along with some scattered sta-133

tions (Fig. 1c). The scattered stations in cluster 3 are grouped because they experience134

much larger wind speeds than their geographic neighbors. The result for K = 8 fur-135

ther distinguishes some sub-regions with distinct climatological characteristics, such as136

the northwestern region and Yunnan Province (Fig. 1d).137

3.2 Temperature post-processing based on LightGBM138

After clustering, we apply a decision-tree model (Quinlan, 1986) to characterize re-139

lationships between the NWP forecasts and observations, correct biases, and identify how140

different features affect the prediction results. Decision trees are tree-like graph mod-141

els. Information is passed from the root (representing the raw data) and split into branches142

at each level. The splitting rule is typically set by the variable that best discriminates143

among the samples along each branch. Decision trees produce naturally explainable out-144

puts and can provide valuable insight into hidden relationships uncovered by the algo-145

rithm. This method has been successfully employed in a wide variety of weather appli-146

cations (McGovern et al., 2017).147

Gradient Boosting Decision Tree (GBDT; e.g., Chen & Guestrin, 2016) is a pop-148

ular decision tree approach that involves an ensemble of sequentially-trained decision trees149

and gains knowledge by fitting negative gradients. In this work we use LightGBM (Ke150

et al., 2017), a highly efficient and scalable GBDT algorithm, to explore the relationships151

between NWP forecasts and observations in each cluster. LightGBM has been applied152

to sorting, classification, and regression tasks in a number of big-data studies (e.g., Cao153

& Gui, 2019; Ju et al., 2019). Adopting a leaf-wise growth strategy with depth limita-154

tion and gradient-based one-side sampling, LightGBM seldom overfits on small train-155

ing datasets (Ke et al., 2017). More details on the LightGBM model and its implemen-156

tation in this study are provided in Text S2 and Fig. S2 of the supporting information.157

3.3 Transfer Learning for Newly-built Stations158

In practice, ML models may malfunction due to data deficiencies or over-fitting.159

Transfer learning helps to reduce the likelihood of these types of failures by transferring160

knowledge from a previously trained model. The transferred model is then fine-tuned161

using newly-added data. This approach has been widely applied, including for the pre-162
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Figure 1. The effect of the number of clusters (K) on the clustering results. (a) The average

Silhouette Coefficient (ASC, Text S1 in SI) as a function of K. Local maxima occur at K = 2,

K = 4, and K = 8. (b) The spatial distribution of clusters for K = 2. (c) Same as (b) but for

K = 4. (d) Same as (b) but for K = 8.

diction of wind speed (e.g., Hu et al., 2016; Qureshi & Khan, 2019). The LightGBM model163

for each cluster is taken as a pre-trained model, transferred and further trained on ob-164

servations from newly-built stations identified as belonging to that cluster. The cluster165

to which each new station belongs is determined by static geolocation information along166

with the estimated annual means and standard deviations of key meteorological features167

(surface air temperature, pressure, wind speed, and relative humidity). The latter are168

IDW-interpolated from gridded NWP forecasts to accommodate the limited observational169

records at these stations. The refined LightGBM model is then applied to surface air tem-170

perature forecasts at the newly-built station.171

4 Results172

Data spanning the six-year period from 2013 to 2018 are divided into three parts.173

Data from 2013 to 2017 are used for training (80% of the data) and validation (the re-174

maining 20%). All data for 2018 are used for testing. We construct a separate model to175

post-process ECMWF forecasts at each lead time (28 in all; Sect. 2) in each cluster. The176

benefits are most significant at short lead times, with error reductions as large as 39.4%177

(1.02◦C) for 1-day forecasts (6∼24 h lead times; Table 1). Improvements decrease steadily178

to 20.0% (0.68◦C) for 7-day forecasts (144∼168 h lead times). The average RMSE across179

all lead times is reduced by 0.81◦C, corresponding to a 27.9% increase in accuracy. Clus-180
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tering improves the effectiveness of the decision tree algorithm, with the greatest error181

reduction achieved when stations are grouped into four clusters. Compared to models182

without clustering (i.e., a single model trained on all stations), the RMSE is reduced by183

0.54% when two clusters are used (K = 2), 0.62% when K = 4, and 0.41% when K =184

8. Since the K = 4 result produces the smallest RMSE, we adopt this model for all sub-185

sequent experiments. In addition to improving the overall forecast quality, clustering re-186

duces the RMSE at 296 out of 301 individual stations (98.3%) when K = 4 (Fig. 2a).187

Table 1 and Fig. 2 also show results for three alternative ML algorithms that are188

also widely used in meteorological applications (e.g., Gensler et al., 2017; Akram & El,189

2016; Qing & Niu, 2018; Cao & Gui, 2019): linear regression (LR), artificial neural net-190

work (ANN), and long short-term memory (LSTM) with a fully-connected network (FCN).191

LR, ANN, and LSTM-FCN are used as control models to predict temperature using iden-192

tical inputs. Detailed descriptions of the ANN and LSTM-FCN models are given in Text S3193

and Figs. S3–S4 in the supporting information. The overall RMSE is reduced by 0.49◦C194

(16.8%) under LR, 0.71◦C (24.7%) under ANN, and 0.71◦C (24.7%) under LSTM-FCN195

in the K = 4 scenario, including RMSE reductions at 211 stations under LR (Fig. 2b),196

270 stations under ANN (Fig. 2c), and 272 stations under LSTM-FCN (Fig. 2d). Light-197

GBM outperforms all three models, providing a further reduction of the RMSE for sur-198

face air temperature forecasts of 14.2% relative to LR, 3.8% relative to ANN, and 2.6%199

relative to LSTM-FCN, indicating that LightGBM is more effective for this application.200

LightGBM also takes less time for training (∼10 minutes) than ANN (∼20 minutes) or201

LSTM-FCN (∼40 minutes).202

Table 1. RMSE of surface air temperature based on five different models for seven different

lead times (Unit: ◦C). See text for details and definitions.

Lead Time ECMWF LightGBM LR ANN LSTM-FCN

6∼24 h 2.59 1.57 1.94 1.63 1.60
30∼48 h 2.72 1.83 2.22 1.91 1.89
54∼72 h 2.83 2.00 2.37 2.10 2.09
78∼96 h 2.93 2.15 2.48 2.25 2.23
102∼120 h 3.05 2.30 2.60 2.40 2.39
126∼144 h 3.21 2.49 2.76 2.61 2.61
150∼168 h 3.41 2.73 2.95 2.85 2.95

Based on these findings, we conclude that LightGBM in combination with four clus-203

ters presents a substantial improvement over both the original operational forecasts and204

other ML-learning post-processing products. We therefore apply transfer learning to fine-205

tune the LightGBM model for extension to data-poor stations. To replicate the oper-206

ational scenario, we randomly select 20% of the stations to serve as synthetic newly-built207

stations, using the remaining 80% stations to produce pre-trained models for each of the208

four clusters. We then fine-tune the pre-trained models using data covering between zero209

and 24 months at 2-month increments. The use of zero months of data corresponds to210

applying the pre-trained model directly without fine-tuning. We then evaluate the cor-211

rected forecasts for the ‘new’ stations using testing data from the year 2018. To validate212

the transfer learning results, we select seven lead times ranging from 24 h to 168 h at 24-213

h increments. The pre-trained models outperform the original NWP by 0.56◦C (16.8%)214

even without fine-tuning (Fig. 3). The RMSE reduction continues to improve as the data215

span used for fine-tuning is extended, reaching 36.4% (1.23◦C) when 12 months of data216

are used. Further improvements are negligible, indicating that the fine-tuning benefits217

plateau once the annual cycle is fully represented.218

–6–



manuscript submitted to Geophysical Research Letters

Figure 2. Model assessment for test data. (a) Spatial distribution of relative error reduction

by the LightGBM model with four clusters. Blue colors indicate improvement; red colors indicate

deterioration. (b) Same as (a) but for LR. (c) Same as (a) but for ANN. (d) Same as (a) but for

LSTM-FCN.

LightGBM, as a GBDT variant, is a ‘grey box’ AI algorithm. Information gain, split219

times, and coverage rate can be calculated for each feature and used to explain the re-220

sults (Gilpin et al., 2019). For example, the raw (NWP) surface air temperature fore-221

cast contributes the most information for most lead times and cluster members when K =222

4 (Fig. 4). Temperature observations are the second most influential feature, but make223

only marginal contributions in most cases. For clusters where the RMSE of the opera-224

tional ECMWF forecasts is already relatively small, such as cluster 2, the NWP fore-225

casts account for a larger proportion of the overall influence. Conversely, observed tem-226

peratures play a larger role for clusters with larger RMSEs in the operational forecasts,227

such as cluster 4. The importance of the operational forecasts also increases as lead time228

increases, with concomitant reductions in the importance of the direct observations.229
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Figure 3. Results of transfer learning for the 60 sites randomly selected to serve as synthetic

newly-built stations. The time span of training data used to fine-tune the model ranges from

zero to 24 months, where zero months means the pre-trained model is used directly without fine-

tuning. (a) RMSE values at seven different lead times using pre-trained models based on four

clusters. (b) RMSE of the ECMWF forecasts and LightGBM post-processed results at seven

different lead times. The LightGBM results reflect average RMSEs for training data time spans

ranging from zero to 24 months.

5 Conclusion230

ML algorithms show great potential for post-processing numerical weather fore-231

casts, but their application is often restricted by the amount of available observations.232

In this paper we propose the CDT framework, based on clustering, decision tree, and trans-233

fer learning, and assess its performance in post-processing ECMWF forecasts of surface234

air temperature at lead times ranging from 6 to 168 h for 301 weather stations in China.235

The stations are first divided into two, four, and eight clusters, as these classifications236

produce climatologically and geographically meaningful station groupings. The CDT frame-237

work reduces the average RMSE of temperature forecasts at the 301 stations by up to238

0.81◦C (27.9%). These benefits are seen for all clustering scenarios and at all lead times,239

but the greatest improvements are for the 4-cluster scenario at 6–24 h lead times. Trans-240

fer learning aids the extension of models trained on data-rich stations to data-sparse sta-241

tions within the same cluster. The RMSE at new stations is reduced by 16.8% (0.56◦C)242

relative to the raw ECMWF forecasts even without fine-tuning, rising to 36.4% (1.23◦C)243

once one year of observations is available for fine-tuning the algorithm. These improve-244

ments illustrate the great potential of the CDT framework for operational model post-245

processing, since newly-built sites typically suffer from short data records that restrict246

the application of AI techniques.247

An attractive feature of decision tree-based models is that the results can be ex-248

plained in terms of the contributions from each input feature. Here the main contribu-249

tion is from the raw ECMWF forecast, especially at longer lead times. However, the sta-250

tion temperature observations are most important contributor for short lead times at sta-251

tions in cluster 4, where the operational forecasts are less accurate than in other clus-252

ters. Overall, the CDT framework can help to correct prediction biases between NWP253

and observations, especially for newly-built stations or sites with sparse data records.254
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Figure 4. The relative importance of features at different lead times and for different clusters.

The “EC” prefix indicates variables from the original ECMWF forecasts, while the “OBS” prefix

indicates direct observations. Temp stands for temperature; RH for relative humidity; Press for

surface pressure; WS for wind speed; dew for dew point temperature; WS U and WS V for the

zonal and meridional components of wind speed, respectively; Lat Lon for the latitude and longi-

tude of the station; and ELE for the elevation of the station. The cluster numbers correspond to

the K = 4 clustering result (Fig. 1c).
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