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It's well known that lunar gravitational forces lead to ocean tides and deep ocean mixing, but why not the oscillation in the equatorial Pacific Ocean thermocline?

If a seasonal impulse that exaggerates the draconic and anomalistic lunar cycles is applied to Laplace's tidal equations, the result shown above is obtained.

Model is very similar to conventional tidal analysis
but operates on a long-period basis due to the
seasonal impulse influence.
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The model fit is good considering that
only four known periods are applied
(draconic, anomalistic, synodic, and
annual).. Regions that don't align well
are associated with discrepancies
observed between the NINO34 and
SOl time series..

Correlation likely limited by noise in
the SOI signal, but perhaps more
high-resolution work is needed to
establich what is signal versus noise.
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Any sloshing model for ENSO implies
angular momentum changes. The forcing
for the ENSO model aligns perfectly

with measured LOD-based changes £ sm
in the earth's angular momentum
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Precise modeling of draconic
and anomalistic periods required
to align seasonal impulse

AR

These second-order effects are mainly
due to the synodic influence on the
draconic and anomalistic cycles.
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Laplace developed his namesake tidal equations to mathematically explain the behavior of tides by e
applying straightforward Newtonian physics. In their expanded form, known as the primitive equations,
Laplace's starting formulation is used as the basis of almost all detailed climate models. The concise
derivation for a model of ENSO depends on reducing Laplace's tidal equations along the equator.
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Much of tidal analysis has been performed by Fourier analysis, whereby one can

and solar orbital factors. But in a non-linear world such as ENSO where the tidal
forces interact with the seasonal cycle via modulated feedbacks the picture is
quite different. What happens is that the cycles interact and get folded multiple
times until what originally were three cycles (yearly plus draconic and anomalistic
lunar periods) end up appearing as above. Further, most of the peak positions in
Fourier space are easily related to the physical aliasing, as the biennial mode
splits each peak into two paired satellite peaks (a high f and low f value)
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straightforwardly deduce the frequency components arising from the various lunar

The fitting process shows good cross-validation robustness

s condbfiom

Over-fitting is reduced by constraining the tidal cycles to match
other observations such as LOD and 2nd-order shaping.

A good fit is sensitive to the
precise values of the draconic

and tropical periods. Any deviation
results in degraded correlation

The data flow diagram for
the forcing mechanism is
shown above. There are
two other system-wide
processes that likely result
from tidal forcing, that of
QBO and the Chandler
wobble.

The same appoach for ENSO can be used to model QBO.
OnIy the draconic cycle is used as forcing leading to regulanty
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This shows excellent cross-validattion with a small training interval
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The Chandler wobble provides more evidence that the draconic
cycle controls the angular variations, and not a resonance

ler wohbll derivative
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