loading page

Estimation of NAPL-Water interfacial areas for unconsolidated porous media by kinetic interface sensitive (KIS) tracers
  • +5
  • Alexandru Bogdan Tatomir,
  • Huhao Gao,
  • Christopher Pötzl,
  • Nikolaos K. Karadimitriou,
  • Tobias Licha,
  • Holger Class,
  • Rainer Herbert Helmig,
  • Martin Sauter
Alexandru Bogdan Tatomir
Uppsala University

Corresponding Author:[email protected]

Author Profile
Huhao Gao
University of Göttingen
Author Profile
Christopher Pötzl
University of Göttingen
Author Profile
Nikolaos K. Karadimitriou
University of Stuttgart
Author Profile
Tobias Licha
University of Göttingen
Author Profile
Holger Class
Institut for Hydraulic Engineering
Author Profile
Rainer Herbert Helmig
University of Stuttgart
Author Profile
Martin Sauter
University of Göttingen
Author Profile

Abstract

Employing kinetic interface sensitive (KIS) tracers, we investigate three different types of glass-bead materials and two natural porous media systems to quantitatively characterize the influence of the porous-medium grain-, pore-size, and texture on the “mobile” interfacial area between an organic liquid and water. By interpreting the breakthrough curves (BTCs) of the reaction product of the KIS tracer hydrolysis we obtain a relationship for the specific interfacial area (IFA) and wetting saturation. The immiscible displacement process coupled with the reactive tracer transport across the fluid-fluid interface is simulated with a Darcy-scale numerical model. The results show that the current reactive transport model is not always capable to reproduce the breakthrough curves of tracer experiments and that a new theoretical framework is required.
Total solid surface area of the grains, i.e., grain surface roughness, is shown to have an important influence on the capillary-associated IFA by comparing results obtained from experiments with spherical glass beads having very small or even no surface roughness and those obtained from experiments with the natural sand. Furthermore, a linear relationship between the mobile capillary associated IFA and the inverse mean grain diameter can be established. The results are compared with the data collected from literature measured with high-resolution microtomography and partitioning tracer methods. The capillary associated IFA values are consistently smaller because KIS tracers measure the mobile part of the interface. Through this study, the applicability range of the KIS tracers is considerably expanded and the confidence in the robustness of the method is improved.