loading page

The three-dimensional light field within sea ice ridges
  • +6
  • Christian Katlein,
  • Jean-Philippe Langelier,
  • Alexandre Ouellet,
  • Félix Lévesque-Desrosiers,
  • Quentin Hisette,
  • Benjamin Allen Lange,
  • Simon Lambert-Girard,
  • Marcel Babin,
  • Simon Thibault
Christian Katlein
Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung

Corresponding Author:[email protected]

Author Profile
Jean-Philippe Langelier
Centre d'Optique, Photonique et Laser (COPL) and Département de Physique, de Génie Physique et d'Optique, Université Laval, Centre d'Optique, Photonique et Laser (COPL) and Département de Physique, de Génie Physique et d'Optique, Université Laval
Author Profile
Alexandre Ouellet
Centre d'Optique, Photonique et Laser (COPL) and Département de Physique, de Génie Physique et d'Optique, Université Laval, Centre d'Optique
Author Profile
Félix Lévesque-Desrosiers
Centre d'Optique, Photonique et Laser (COPL) and Département de Physique, de Génie Physique et d'Optique, Université Laval, Centre d'Optique
Author Profile
Quentin Hisette
Hamburg Ship Model Basin (HSVA), Hamburg Ship Model Basin (HSVA)
Author Profile
Benjamin Allen Lange
Norwegian Polar Institute, Norwegian Polar Institute
Author Profile
Simon Lambert-Girard
Takuvik Joint International Laboratory, Université Laval and CNRS, Takuvik Joint International Laboratory, Université Laval and CNRS
Author Profile
Marcel Babin
Universite laval, Universite laval
Author Profile
Simon Thibault
Centre d'Optique, Photonique et Laser (COPL) and Département de Physique, de Génie Physique et d'Optique, Université Laval, Centre d'Optique, Photonique et Laser (COPL) and Département de Physique, de Génie Physique et d'Optique, Université Laval
Author Profile

Abstract

Sea ice pressure ridges have been recognized as important locations for both physical and biological processes. Thus, understanding the associated light-field is crucial, but their complex structure and internal geometry render them hard to study by field methods. To calculate the in- and under-ridge light field, we combined output from an ice mechanical model with a Monte-Carlo ray tracing simulation. This results in realistic light fields showing that light levels within the ridge itself are significantly higher than under the surrounding level ice. Light guided through ridge cavities and scattering in between ridge blocks also results in a more isotropic ridge-internal light field. While the true variability of light transmittance through a ridge can only be represented in ray tracing models, we show that simple parameterizations based on ice thickness and macro-porosity allow accurate estimation of mean light levels available for photosynthesis underneath ridges in field studies and large-scale models.
16 Jun 2021Published in Geophysical Research Letters volume 48 issue 11. 10.1029/2021GL093207