The three-dimensional light field within sea ice ridges
- Christian Katlein,
- Jean-Philippe Langelier,
- Alexandre Ouellet,
- Félix Lévesque-Desrosiers,
- Quentin Hisette,
- Benjamin Allen Lange,
- Simon Lambert-Girard,
- Marcel Babin,
- Simon Thibault
Christian Katlein
Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung
Corresponding Author:[email protected]
Author ProfileJean-Philippe Langelier
Centre d'Optique, Photonique et Laser (COPL) and Département de Physique, de Génie Physique et d'Optique, Université Laval, Centre d'Optique, Photonique et Laser (COPL) and Département de Physique, de Génie Physique et d'Optique, Université Laval
Author ProfileAlexandre Ouellet
Centre d'Optique, Photonique et Laser (COPL) and Département de Physique, de Génie Physique et d'Optique, Université Laval, Centre d'Optique
Author ProfileFélix Lévesque-Desrosiers
Centre d'Optique, Photonique et Laser (COPL) and Département de Physique, de Génie Physique et d'Optique, Université Laval, Centre d'Optique
Author ProfileQuentin Hisette
Hamburg Ship Model Basin (HSVA), Hamburg Ship Model Basin (HSVA)
Author ProfileBenjamin Allen Lange
Norwegian Polar Institute, Norwegian Polar Institute
Author ProfileSimon Lambert-Girard
Takuvik Joint International Laboratory, Université Laval and CNRS, Takuvik Joint International Laboratory, Université Laval and CNRS
Author ProfileSimon Thibault
Centre d'Optique, Photonique et Laser (COPL) and Département de Physique, de Génie Physique et d'Optique, Université Laval, Centre d'Optique, Photonique et Laser (COPL) and Département de Physique, de Génie Physique et d'Optique, Université Laval
Author ProfileAbstract
Sea ice pressure ridges have been recognized as important locations for
both physical and biological processes. Thus, understanding the
associated light-field is crucial, but their complex structure and
internal geometry render them hard to study by field methods. To
calculate the in- and under-ridge light field, we combined output from
an ice mechanical model with a Monte-Carlo ray tracing simulation. This
results in realistic light fields showing that light levels within the
ridge itself are significantly higher than under the surrounding level
ice. Light guided through ridge cavities and scattering in between ridge
blocks also results in a more isotropic ridge-internal light field.
While the true variability of light transmittance through a ridge can
only be represented in ray tracing models, we show that simple
parameterizations based on ice thickness and macro-porosity allow
accurate estimation of mean light levels available for photosynthesis
underneath ridges in field studies and large-scale models.