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Appendix 1: WBV, numerical aspects and symmetry 
We briefly reiterate and extend here the maths in Wheeler et al. (2009); for notation see 

Table S1. We write some equations using vector notation for brevity though we find that 

index notation (including Einstein summation convention) is most generally useful. We use 

Greek and Latin indices for sample and crystal coordinate systems respectively otherwise 

confusion can easily result. For second rank and higher tensors, either can be used, or a 

“mixed” space. A fundamental concept is the orientation tensor h which relates a vector C in 

Cartesian crystal coordinates to its equivalent V in sample coordinates 

𝑉𝛾 = ℎ𝛼𝑖𝐶𝑖  

In what follows we assume that there are no elastic strains on the grain scale. 

1.1. Differential method 

Considering h is a mathematical function of position the Nye tensor is defined by  

𝛼𝑖𝛾 = 𝑒𝛼𝛽𝛾ℎ𝛼𝑖,𝛽 =  ∑ 𝜌(𝑁)𝑏𝑖
(𝑁)

𝑙𝛾
(𝑁)

𝑁         (A1.1) 

where e is the permutation tensor. If we know only the x and y gradients of h, we can still 

determine 3 out of the 9 components of the Nye tensor 

𝑊𝑖 =  𝛼𝑖3 =  𝑒𝛼𝛽3ℎ𝛼𝑖,𝛽 =  ℎ1𝑖,2  − ℎ2𝑖,1 =  ∑ 𝜌(𝑁)𝑏𝑖
(𝑁)

𝑙3
(𝑁)

𝑁 = ∑ [𝜌(𝑁)𝑙3
(𝑁)

]𝑏𝑖
(𝑁)

𝑁  (A1.2) 

The vector W encapsulates some but not all of the GND content: the term in square brackets 

indicates it is weighted towards dislocations lines at a high angle to the map. 

EBSD measurements and hence h values are determined at a finite number of spaced points. 

Thus, we must differentiate h numerically. For example, to evaluate  

ℎ2𝑖,1 =  𝜕ℎ2𝑖/𝜕𝑥 

we could choose 

(ℎ2𝑖(𝑥 + 𝑢, 𝑦) −  ℎ2𝑖(𝑥, 𝑦))/𝑢  

where s is step size, or, more symmetrically, 

(ℎ2𝑖(𝑥 + 𝑢, 𝑦) −  ℎ2𝑖(𝑥 − 𝑢, 𝑦))/(2𝑢)  

Because we are differentiating, we call this “differential” method. 

The algorithm requires a minimum of 3 points to get gradients in both x and y (e.g. Fig. 4a)). 

However, this asymmetric pattern may give biased results, so Fig. 4b)-d) show some more 

symmetric patterns of nearby points which can be involved in the calculation. Such patterns, 

used for numerical differentiation in other contexts, are called “stencils”. In detail our 

differential method calculates a “best fit” lattice curvature to the misorientations at each point 

in the stencil. When high angle boundaries pass through the stencil, the points beyond the 

boundary are excluded from the fitting. This means that only a subset of the points in the 

stencil are used. Our “edge preserving” method differs somewhat from that of Humphreys et 

al. (2001).  



S I  p.  3 

 

Crystal symmetry must be accounted for in the calculation. When Kikuchi patterns are 

indexed, the procedure will give one orientation tensor h from each pattern. Because of 

crystal symmetry there is a choice of h values, related by symmetry, all equally valid. 

Adjacent points which are actually close in orientation may be indexed with different 

symmetry choices, giving very different numerical h components and Euler angles. 

Numerical differentiation would then give huge and artificial orientation gradients so, rather 

than calculate gradients directly, the misorientations between points are calculated. The 

misorientation angle (strictly, “disorientation”) is defined as the minimum angle needed to 

rotate one orientation into another (Wheeler et al., 2001), and the misorientation tensors 

generated are then used to calculate orientation gradients.  

1.2. Integral method 

Again considering h is a mathematical function of position, evaluate the integral of h around 

a closed loop on the map, followed anticlockwise. This gives the net WBV of GNDs whose 

lines cross through that loop, in units of length.  

𝐵𝑖 =  − ∮ ℎ𝛼𝑖 𝑑𝑥𝛼      
𝑎𝑛𝑡𝑖𝑐𝑙

            

We generally report the calculation after dividing the net WBV by loop area A, hence 

delivering a vector B/A with units of (length)-1. Mathematically the differential and integral 

methods are precisely equivalent (they are related by a tensor version of Stokes’ theorem).   

𝐵𝑖 = ∫ 𝑊𝑖𝑑𝐴           

So B/A is just the average value of W inside the loop. 

The numerical version of the integration is written as follows. For a square grid of points, we 

assume that a particular orientation measurement ℎ𝛼𝑖 
(𝑝)

 applies to a square region around the 

point p at which it was taken. In numerical integration, then, the “dx” term becomes a vector 

𝑥𝛼
(𝑝)

 spanning this square region, horizontally, vertically, or diagonally (at corners). Then: 

𝐵𝑖 =  − ∑ ℎ𝛼𝑖 
(𝑝)

𝑥𝛼
(𝑝)𝐿

𝑝=1       

where L is the number of points included in the loop.  

1.3. Symmetry 

When a crystal has symmetry, there is more than one choice for the orientation tensor h. If h 

is a valid description, then so is hS where S is any symmetry operator expressed in crystal 

coordinates. Because h is non-unique, so is 𝛼𝑖𝛾 and so is the WBV in crystal coordinates: 

hence it is plotted on the usual IPF segment. However, we now show that if the first index is 

transformed to sample coordinates, the tensor is unique. In sample coordinates  

𝛼′𝛿𝛾 = ℎ𝛿𝑖𝑒𝛼𝛽𝛾ℎ𝛼𝑖,𝛽           

Let us replace h by the symmetric equivalent hS, so then ’ becomes 

𝛼′
𝛿𝛾 = ℎ𝛿𝑝𝑆𝑝𝑖𝑒𝛼𝛽𝛾(ℎ𝛼𝑞𝑆𝑞𝑖),𝛽

= 𝑆𝑝𝑖𝑆𝑞𝑖ℎ𝛿𝑝𝑒𝛼𝛽𝛾ℎ𝛼𝑞,𝛽 = ℎ𝛿𝑖𝑒𝛼𝛽𝛾ℎ𝛼𝑖,𝛽  (A1.3) 
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because S is a rotation tensor and so 𝑆𝑝𝑖𝑆𝑞𝑖 is the identity tensor. So ’ has a unique value 

when both coefficients are in sample coordinates, and so does the WBV. 

Appendix 2: Derivations of model Nye tensors 
Since we have chosen olivine as our example mineral, we have designed models so that 

distortion can be expressed by GNDs with [100] and [001] vectors. The distortions are 

gradational but we use the same nomenclature as that for subgrain walls. 

2.1. Tilt 

Our tilt model is in essence 2D - there are no distortions in the 3rd dimension – so we begin 

with a completely general 2D model n which lattice orientation is defined by a single angle 

as a function of position (x, y), with anticlockwise rotation positive. Then the orientation 

tensor is 

ℎ𝛼𝑖 = (
cos 𝜃 − sin 𝜃 0
sin 𝜃 cos 𝜃 0

0 0 1
) 

So 

ℎ𝛼𝑖,𝛽 = 𝑞𝛼𝑖𝜃′𝛽 

where 

𝑞𝛼𝑖 = (
− sin 𝜃 − cos 𝜃 0
cos 𝜃 − sin 𝜃 0

0 0 0
) 

From eqn (A1.1) we obtain, considering the zero values in e and q 

𝛼𝑖𝛾 = 𝑒𝛼1𝛾𝑞𝛼𝑖 + 𝑒𝛼2𝛾𝑞𝛼𝑖𝜃′2 =  𝑒21𝛾𝑞2𝑖𝜃′1 + 𝑒12𝛾𝑞1𝑖𝜃′2  

So setting  = 3 the WBV is, in crystal coordinates 

𝑾 = (− cos 𝜃 𝜃′1  − sin 𝜃 𝜃,2 , sin 𝜃 𝜃′1  − cos 𝜃 𝜃,2 , 0)  

and in sample coordinates 

𝑾 = −(𝜃′1 𝜃,2 , 0)  

This simple result tells us that orientation variations in the x direction relate to Burgers 

vectors with an x component (in sample coordinates) and similarly for y: a rigorous version 

of what we discussed in the introduction. 

Now we design a specific 2D model: a tilted crystal so that rotations are around [001], 

perpendicular to the map, and [010] is parallel to rays from the centre of curvature. Then, let 

x and y in map view be measured relative to the centre of curvature, r be the distance from 

the centre so the misorientation of [100] relative to the x axis is: 

𝜃 = −atan (
𝑥

𝑦
) 

so the gradient vector is 
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𝜃′𝛽 =
1

𝑟
(−cos 𝜃 , −sin 𝜃 , 0)  

so in sample coordinates  

𝑾 =
1

𝑟
(cos 𝜃 , sin 𝜃 , 0)         (A2.1) 

And in crystal coordinates  

𝑾 =
1

𝑟
(1, 0,0)  

2.2. Twist 

Misorientation is around the [010] axis, running parallel to x. Let the misorientation relative 

to the y axis be an arbitrary function of x. This allows us to deal with a linear function 

(constant distortion) or a quadratic function (increasing distortion) 

𝜃 = 𝜃(𝑥) 

and 

ℎ𝛼𝑖 = (
0 −1 0

cos 𝜃 0 sin 𝜃
− sin 𝜃 0 cos 𝜃

) 

So 

ℎ𝛼𝑖,𝛽 = 𝑞𝛼𝑖𝜃′𝛽 

where 

𝑞𝛼𝑖 = (
0 0 0

− sin 𝜃 0 cos 𝜃
− cos 𝜃 0 − sin 𝜃

) 

And the gradient vector  

𝜃′𝛽 = (
𝑑𝜃

𝑑𝑥
, 0,0)  

From eqn (A1.1) we obtain  

𝛼𝑖𝛾 = 𝑒𝛼1𝛾𝑞𝛼𝑖𝜃′1 =  𝑒21𝛾𝑞2𝑖𝜃′1 +  𝑒31𝛾𝑞3𝑖𝜃′1  

=
𝑑𝜃

𝑑𝑥
(

0 − cos 𝜃 sin 𝜃
0 0 0
0 − sin 𝜃 − cos 𝜃

) 

and in crystal coordinates (setting  = 3) 

𝑾 =
𝑑𝜃

𝑑𝑥
(sin 𝜃 , 0, − cos 𝜃)         (A2.2) 

To transform W sample coordinates, calculate hW to find 

𝑾 =
𝑑𝜃

𝑑𝑥
(0, 0, −1) .    

So in sample coordinates the WBV (= 3) is a vector parallel to z. 
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Appendix 3: Error analysis 

3.1. Standard deviation of WBV 

We undertook numerical modelling to assess how errors in orientation measurements 

propagate. To generate figures S1 and S2, we took the two models of Fig. 2 and added 

orientation errors by imposing small additional rotations. Each additional rotation matrix was 

generated using a unit vector rotation axis selected at random, and a rotation angle selected at 

random from the range 0 to 0.01 rad. We then calculated the WBV using various methods. 

The calculations are undertaken in sample coordinates, meaning the theoretical and calculated 

WBVs have unique values as shown in eqn. (A1.3). and implying that crystal symmetry does 

not enter into the calculations. For that reason, although the models are for olivine, we assert 

that the results will apply in any crystal system, because we are applying equations which do 

not involve symmetry operations. For display we find IPFs are easier to understand even 

though calculations are undertaken in sample coordinates.   

First row. Fig. S1 a)-c) show IPFs for three different stencil sizes, and d)-f) for three different 

tile sizes. The noise has led to larger scatter in WBV direction for small stencils and tiles.  

Second row. To understand this in more detail, we compare the theoretical WBV of eqn 

(A2.1), denoted here as Wc, with the calculated WBV, defining an error vector E as the 

difference between the two. Fig. S1 g)-i) show the magnitudes of the error vectors (blue 

cloud) for three stencil sizes. Errors do not seem to be correlated with WBV size and to 

quantify this, we must use the statistics of vectors. Any error vector E has a covariance 

matrix given by  

𝐶𝑖𝑗 =  𝑚𝑒𝑎𝑛(𝐸𝑖𝐸𝑗) 

We find that the covariance, a second rank tensor, is somewhat anisotropic in our models but 

rather than consider that detailed complexity, we assume isotropy 

C = 
1

3
2I , 

where I is the identity tensor, and then 

  𝜎2 = 𝑡𝑟𝑎𝑐𝑒(𝑪) =  𝑚𝑒𝑎𝑛(𝐸1
2 + 𝐸2

2+𝐸3
2) 

Here  can be thought of as a standard deviation for the vector E. We calculated it for the 

entire W range, and also for binned intervals of W to discover whether W had a strong effect 

on . For each particular model, e.g. Fig S1g), the cyan line shows the average values of  in 

bins of width 0.002. We do not see a strong correlation with W (bearing in mind the vagaries 

of such numerical experiments) so we propose that  should be considered independent of W. 

In contrast,  clearly decreases from g) to i) so the idea that larger stencils will reduce 

directional errors is confirmed. Although directional errors are reduced, the larger stencil size 

means that a larger region of microstructure is contributing to the calculation, so it is less 

obvious where the contributing GNDs are. In Fig. S1j)-l) we repeat this analysis for tiles of 

different sizes.  

Third row. In Fig. S1m)-r) we display the angular errors. The magenta lines indicate the 

points below which 95% of the data lie (for binned ranges of W). The red lines are discussed 

below. 
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In Fig. S2 we show the same error analysis for a smooth twist structure as in Fig. 2, using the 

theoretical WBV given by eqn. (A2.2). The same patterns in error are shown: again, the 

magnitude of the error vector is not dependent on W, so the angular error is less for larger W; 

again, larger stencil sizes give smaller errors.  

These graphs are not intended as a universal guide as to how orientation measurement errors 

will affect WBV directional errors, because many different types of 3D orientation gradients 

may exist, but they serve as a preliminary indication. We quantify the link between standard 

deviation of W with dimensionless stencil size S or tile size T. For each of the 12 models (6 

tilt, 6 twist) we calculate the value of  across the entire range of W (in essence averaging the 

values shown by the blue lines). We then did a best fit of log  versus log S or log T, finding 

an exponent of -0.99 for stencils and -0.718 for tiles. An outline algebraic analysis under 

development for tiles suggests the exponent is -3/4; for stencils we rounded it to -1. A best fit 

using these exponents then gives: 

𝜎𝑆 = 0.0247𝑆−1/𝑢         (A3.1) 

where u is step size, and with the dimensionless area T of a tile: 

𝜎𝑇 = 0.0081𝑇−3/4/𝑢 .         (A3.2) 

3.2. Angular errors from standard deviations 

To link these standard deviations to directional statistics we assume a Fisher distribution in 

which the directions are distributed in accordance with a probability density function F 

𝐹 =
κ

4π sinh 𝜅
exp (𝜅 cos 𝜓) 

where  is the angle from the mean direction, and  is known as a “concentration” parameter 

(Watson, 1982). When  is large the distribution is very focussed around the mean direction 

and that would be expected to relate to small values of standard deviation  of W. To 

quantify that, we refer to section 2 of (Watson, 1982) and note that the definition of  there is 

equal to our definition divided by 3. Watson defines a parameter m = W3/ (in our 

notation) and then shows how it relates to  via his eqn. (30). Having  we calculate the 95% 

confidence angle by integrating F to obtain the proportion of the distribution within an angle 

, and then rearranging to find the angle within which 95% of the distribution lies: 

𝛼95 = acos ( 1 +
1

𝜅
ln(1 − 0.95(1 − exp(−2𝜅)))      

To help to understand the errors, this equation can be related back to the inset cartoons in Fig. 

4. When  is large and errors are small 

𝛼95 ≅ acos ( 1 +   
1

𝜅
ln(0.05)) ≅  acos ( 1 +   

1

𝑚2
ln(0.05)) ≅   

1

𝑚
√2 ln(20) 

=  
𝜎

𝑊
√2 ln(20)/3 = 1.413

𝜎

𝑊
   

where we have used the Watson eqn. 30 for large  and the power series expansion of cos. 

Although there is now a constant of proportionality, the basic link between vector and 

directional errors in Fig. 4 is confirmed. For binned ranges of W, we plot the calculated 
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values of 95 as red lines in the bottom rows of Figs. S1 and S2. These are comparable to the 

magenta lines which are calculated directly from the model data (particularly for the twist 

models), suggesting that our statistical analysis is adequate. We note our models are based on 

“noise” up to 0.01 radian. We expect that eqns (A3.1) and (A3.2) will scale with the level of 

noise but assessing angular noise levels is not a straightforward procedure and is a topic for 

future research. 

3.3. Angular errors and crystal symmetry 

Our calculation of 95 does not consider crystal symmetry. The error cone should be the same 

in crystal coordinates but there are some subtleties to consider. If 95 was for example 3° then 

this could help specify a narrow cone of directions, displayed as a small circle, within which 

the true direction lay on a PF or an IPF. However, if 95 was 40° in, for example, the cubic 

crystal system, then the error cone would overlap several symmetric equivalents and be 

difficult to interpret; it might cover most of the IPF. In general, the error cone would be sliced 

up by symmetry operations and would be represented by several small circle arcs on an IPF; 

it is beyond the scope of this contribution to consider this in detail. Nevertheless, we find our 

estimates of 95 are always informative. 

3.4 Summary 

In summary, and adding practical detail, errors are evaluated as follows. In bold are the 

quantities which enter into the calculation. 

1. Assume a particular range of orientation measurement errors in the EBSD measurements 

(we give an example where we assume errors go up to 0.01 rad). 

2. We use a particular stencil or tile area for WBV calculation and calculate the standard 

deviation in W from eqn (A3.1) and (A3.2) which also requires the step size. 

3. To get an overview of errors in WBV PFs and IPFs when looking at a range of WBVs, we 

want the maximum relevant 95 so we select a minimum WBV length which then allows 

calculation of m, then , then 95. 
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Supplementary Table S1. Notation. 
 

Symbol Meaning Units, if 

dimensional 

A Area of integration loop on map (length)2 

B Net Burgers vector sum for dislocations threading a particular 

loop 

length 

e Permutation tensor (3rd rank) - 

h Orientation tensor (2nd rank) - 

Ki ith coefficient for writing W in terms of lattice basis vectors (length)-2 

Li ith lattice basis vector length 

S Area of stencil in pixels - 

T Area of tile in pixels - 

W Weighted Burgers Vector (length)-1 

W Magnitude of W (length)-1 

Wt Characteristic W used in precision analysis (length)-1 

Wc Theoretical value of W in noise-free model (length)-1 

E Error vector in value of W in noisy model = W – Wc (length)-1 

𝜌(𝑁) Density of Nth type of dislocation (length)-2 

𝒃
(𝑁)

 Burgers vector of Nth type of dislocation length 

𝒍
(𝑁)

 Unit line vector of Nth type of dislocation - 

u Step size length 

X, y, z Cartesian coordinate system  length 

95 Angle related to precision of a direction. 95% chance that the 

true direction of a vector is that angle or less from the 

calculated direction 

- 

 Nye Curvature tensor (2nd rank) (length)-1 

 Curvature tensor (2nd rank)  (length)-1 

 “concentration” parameter in spherical statistics (Appendix 3)  - 

𝜎  “Standard deviation” of a vector, assuming isotropic covariance 

(Appendix 2) 

Same as 

vector 

𝜎𝑆 Standard deviation of W when calculated using stencils (length)-1 

𝜎𝑇 Standard deviation of W when calculated using tiles (length)-1 

 

  



S I  p.  10 

 

Captions for supplementary figures 
Figure S1. Analysis of errors in the noisy tilt model. 

a)-f) For the noisy model, IPF plots for WBV calculated for three stencil sizes (left) and three 

tile sizes (right) with a W threshold of 0.001 (m)-1. 

g)-l) Errors (magnitude of We) versus W for the various stencils and tiles in a). In each graph, 

individual values are plotted as a blue cloud and the cyan line indicates the average value of 

error for binned ranges of W. 

 

m)-r) Directional errors (angle between W and Wc) versus W for the various stencils and tiles 

as in upper rows. In each graph, individual values are plotted as a blue cloud and the magenta 

line indicates the points below which 95% of the data lie (for binned ranges of W). The red 

line indicates predicted 95. The W minimum thresholds used in displays in a) are shown by 

stars. 

 

Figure S2. Analysis of errors in the noisy twist model, organised as in Fig. S1. 
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