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Key Points:

• A new organization metric was developed to quantify the degree of aggre-
gation of tropical convective systems at synoptic scales

• The new organization metric is optimized for multiple organized aggre-
gates occupying sparsely a large and noisy domain.

• The new organization metric successfully captures known synoptic convec-
tive behavior like the responses to the Madden-Julian Oscillation, and is
potentially applicable to a wide range of domain sizes.

Abstract

Organization metrics were originally developed to measure how densely convec-
tive clouds are arranged at mesoscales. In this work, we apply organization
metrics to describe tropical synoptic scale convective activity. Such activity
is identified by cloud-precipitation (hybrid) regimes defined at 1-degree and 1-
hourly resolution. Existing metrics were found to perform inadequately for such
convective regime aggregates because the large domain size and co-existence of
sparse aggregate occurrences with noisy isolated convection often violate as-
sumptions inherent in these metrics. In order to capture these characteristics,
the existing “convective organization potential” (COP) metric was modified so
as to: (1) focus on local organization and (2) provide increased weight to aggre-
gate size. The resulting “area-based COP” (ABCOP) is found to outperform
existing metrics in tropical convective events at synoptic scales. Moreover, this
new organization metric can match the performance of existing metrics, or ar-
guably be better, over a wide range of domain sizes.

Plain Language Summary

Organization metrics examine the distribution of objects and quantify how
densely objects are clustered together. Existing organization metrics were de-
veloped for small scales (e.g., mesoscale) convective activity, but we found their
performance as measures of organization level to be insufficient when objects
were resolved at 1-degree resolution in large grid (e.g., 40×40 and above). This
is because large scale convective objects occur sparsely and form multiple local
clusters, while existing metrics specialize in measuring the organization level of
the domain as a whole. In this study, we propose a new organization metric
that is optimized for multiple local organizations, and tolerant to noisy isolated
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objects. A series of tests demonstrated the superiority of the new organization
metric on most cases with a wide range of grid sizes.

1 Introduction

Atmospheric convection is one of the most important processes contributing to
weather and climate variability. Individual tropical convective cores are usually
of sub-kilometer to a few kilometer scales, while convective systems comprising
several cores and anvil clouds often develop to scales of a few hundred kilome-
ters. Moreover, multiple convective systems sometimes aggregate together to
form a mesoscale convective system (MCS), which is a major contributor to
hydrological and radiation variability (Houze, 2004; Jin et al., 2020; Nesbitt et
al., 2000 among many others).

Many models of various types appear to simulate organized convection sponta-
neously in large domains even with homogeneous boundary conditions and forc-
ings, a behavior known as convective self-aggregation (see the review of Wing
et al. 2017). Moreover, it has also been found that a higher level of organized
convection results in the atmosphere being drier, less cloudy overall, and more
efficient in cooling to space on average (e.g., Bony et al., 2020; Holloway et al.,
2017; Windmiller & Craig, 2019; Wing, 2019; Wing et al., 2020). Considering
the potential effect of self-aggregation on climate sensitivity through the control
of humidity and cloudiness (e.g., Coppin & Bony, 2018; Cronin & Wing, 2017;
Hohenegger & Stevens, 2016), the availability of proper measures of the degree
of aggregation across a range of scales is important for climate studies.

The degree of aggregation of convective systems can be quantified using a so-
called organization metric. Tobin et al. (2012) suggested an organization metric
called the “simple convective aggregation index” (SCAI), for aggregates identi-
fied by satellite-observed 0.5° brightness temperatures in 10°×10° domains (i.e.,
20×20 grids). The basic idea of SCAI is that more organized scenes are com-
posed of fewer convective systems that are closer to each other. Subsequently,
White et al. (2018) and Xu et al. (2019) argued that the size of each convective
system should be an important element in the definition of organization met-
rics, and suggested the presumably superior “convective organization potential”
(COP), and “modified SCAI” (MCAI) metrics, respectively. Independently,
Tompkins & Semie (2017) developed an organization metric that compares the
horizontal distribution of convective clouds to a purely random distribution
(Iorg), while Kadoya & Masunaga (2018) introduced the Morphological Index
of Convective Aggregation (MICA) metric based on the area fraction occupied
by convective clouds. Lastly, Retsch et al. (2020) developed the Radar Organi-
zation Metric (ROME) based on the same principle as COP but optimized for
radar observations (details for some of these metrics are discussed in section 2)

Recently, Jin et al., (2020; J20 hereinafter) extended the convective aggregation
analysis to the synoptic scale using the concept of “cloud regimes” (CRs; Ore-
opoulos et al., 2014, 2016). Based on regime identification at 1° resolution, J20
examined characteristics of aggregates, the sizes of which vary from a handful
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to hundreds of grid cells. However, gaps in coverage and the infrequent daily
sampling were impediments to analyzing the aggregates in greater detail. Subse-
quently, Jin et al., (2021; J21 hereinafter) developed cloud-precipitation (hybrid)
regimes (CPRs) also at 1° resolution by combining cloud and precipitation ob-
servations, and introduced a novel methodology to seamlessly extend convective
regime identification to half-hour temporal resolution using these CPRs (details
forthcoming in section 2.1). This new approach enabled examination of aggre-
gated convective systems even at sub-daily time scales, something not feasible
with J20’s cloud-only data.

Building on the work of J20 and J21, we examined the temporal evolution of
convective aggregates at synoptic scales. However, we found that the applica-
tion of existing organization metrics on our CPR aggregates produced results
that were inconsistent with previous studies because the characteristics of large
synoptic scale domains are notably different from those of smaller domains used
for the development of existing metrics. Simply put, in a large domain multi-
ple organized groups of aggregates can be distributed sparsely, a condition not
captured well by existing metrics. This finding motivated us to develop a new
organization metric optimized for synoptic scale phenomena. The methodology
to identify CPR-based convective aggregates and the steps that led to the de-
velopment of the metric are described in sections 2 and 3. The characteristics
of the new organization metric are discussed in section 4, and its performance
relative to existing metrics at various domain sizes is provided in section 5. We
conclude with a summary and discussion in section 6.

2 Identifying aggregates based on cloud-precipitation regimes

2.1 Cloud-precipitation (hybrid) regimes

Previously, J20 identified convective aggregates with tropical CRs derived
from the Moderate Resolution Imaging Spectroradiometer (MODIS) Level-3
2-dimensional joint histograms resolving cloud fraction in predetermined bins
of cloud optical thickness (COT) and cloud top pressure (CTP) at 1°×1°
horizontal resolution (Platnick et al., 2018, 2003). A convective aggregate
was defined as a group of adjacent grid cells assigned to CR1 (representing
mixtures of convective cores and thick stratiform clouds), CR2 (cloud mixtures
at various phases of the convective life cycle), and CR3 (anvil clouds), with
CR1 presence being a prerequisite for the aggregate to be considered part of
active convection.

In the subsequent work by J21, CRs were replaced by CPRs which combine
cloud observations from MODIS with co-located precipitation information from
the Integrated Multi-satellitE Retrievals for GPM (IMERG; Huffman, Bolvin, et
al., 2019; Huffman, Stocker, et al., 2019; Tan et al., 2019). J21 found that when
precipitation and cloud information were equally weighted (“equal-weight set”
hereafter), it was possible to predict certain CPRs of substantial precipitation
intensity and areal coverage with high accuracy exceeding 90%, by using the
precipitation information as the sole predictor. This means in practice that the
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full diurnal cycle of select CPRs can be reconstructed at the half-hour resolution
of IMERG without swath gaps.

Among J21’s 19 CPRs derived with equal cloud-precipitation weighting in the
15°S-15°N tropical domain, CPR1 and CPR2 had the heaviest precipitation with
high cloud top (low CTP), large COT, and near overcast coverage (cloud frac-
tion > 94%), and were deemed to represent the grid cells containing convective
cores and adjacent thick stratiform clouds (Figs. 1a and 1b). When comparing
coincidences of CPR1 and CPR2 to J20’s tropical CRs, we were able to confirm
that grid cells assigned to CPR1 and CPR2 co-occur mostly with tropical CR1
(not shown). These two most convective CPRs are therefore used for identifying
convective grid cells in this study.

For this study, the projection (prediction) of these two CPRs was performed at
one-hour resolution using IMERG data from June 2000 to May 2021. Specifi-
cally, one-hour IMERG data was obtained by averaging the original half-hour
IMERG data after smoothing by a 1-2-1 filter, which reduces the noisy fluc-
tuations of half-hour data shown in J21 (e.g., their Fig. 10). In June 2014,
IMERG transitioned from using TRMM to GPM as the reference for calibra-
tion, a transition that did not severely disrupt the timeseries of the combined
relative frequency of occurrence (RFO) of one-hour projected CPR1 and CPR2
in the tropics (Fig. 1f).
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Figure 1. Cloud-precipitation “hybrid” regimes (CPRs) derived in the deep
tropical domain (15°S-15°N) from cloud and precipitation histograms that are
equally weighted (referred to as Cld42+Pr6x7 set in Jin et al. 2021) in the clus-
tering procedure. (a), (b) Centroids of the cloud and precipitation components
of hybrid regimes CPR1 and CPR2, (c) The number count (gray histogram) and
areal fraction (blue line and star symbol) of CPR1+2 aggregates as a function
of size in the extended domain 25°S-25°N, and (d), (e) geographical distribu-
tion (relative frequency of occurrence [RFO]) of the projected CPR1 and CPR2.
(f) smoothed pentad (5-day mean; 7-pentad running mean) timeseries of CPR1
RFO (blue), CPR2 RFO (orange), and their combined RFO (green) for the
extended tropical domain of 25°S to 25°N. The vertical dashed line demarcates
the transition from TRMM to GPM (June 2014).

The RFO maps of projected (predicted) CPR1 and CPR2 (Figs. 1d and 1e)
are largely consistent with the RFO maps of the original CPR1 and CPR2 in
Fig. 5 of J21, as well as with the RFO pattern of J20’s CR1, including RFO
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peaks at the Intertropical Convergence Zone (ITCZ), South Pacific Convergence
Zone (SPCZ), and Indo‐Pacific warm pool regions. On the other hand, the
projected CPRs have greater chance of occurrence over the islands of Borneo
and New Guinea than the original CPRs. This deviation is because convection
and associated rainfall activity are weaker during the overpass times of the
Terra and Aqua satellites in accordance with the known diurnal variability in
this region (e.g., Worku et al., 2019).

2.2 Identification of aggregates

The definition of “aggregate” in this study is essentially the same as in J20,
i.e. adjacent grid cells assigned to either CPR1 or CPR2 (“CPR1+2” aggregate
hereinafter). The only deviations from the J20 definition are that the absence
of one of the two regimes does not disrupt the aggregate (since both CPR1 and
CPR2 largely correspond to previous CR1), and that a diagonal connection is
allowed. As shown in the snapshot of CPR aggregates in Fig. 2b, synoptic
scale convective systems sometimes form quasi-linear patterns where the diag-
onal connection plays a key role in identifying an aggregate. The statistical
distribution of resulting aggregates shows the expected exponential decrease of
aggregate counts with size (expressed as the number of 1° grid cells), which can
exceed even 200 grid cells in extreme cases (Fig. 1c).

The occurrence pattern of CPR1+2 aggregates is consistent to that of IMERG
precipitation of heavy intensity because the CPRs in this study are predicted
by precipitation information, as illustrated in the snapshot example of Fig 2.
To provide additional context we also add the distribution of outgoing longwave
radiation (OLR) and brightness temperature (Tb) for the near-simultaneous
scene (Figs. 2c and 2d) from Atmospheric Infrared Sounder (AIRS; Kahn et al.,
2014; Susskind et al., 2014) observations, and from the NCEP/CPC Merged IR
dataset (Janowiak et al., 2017). These datasets show quite consistent pattern
with the CPR (and precipitation) distribution. However, it can be seen that
the areas occupied by CPR1+2 grid cells are slightly smaller than the dark-
colored area (low OLR/Tb, representing high and thick cloud). For example,
no heavy precipitation is registered by IMERG near the southern tip of India:
an indication of the somewhat subjective nature of identifying the most active
convection.
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Figure 2. A snapshot of (a) precipitation rate from IMERG, (b) occurrence
of selected CPRs, (c) outgoing longwave radiation (OLR) from AIRS, and (d)
brightness temperature (Tb) from NCEP/CPC merged IR data on 2018/12/12.
The select coordinated universal time (UTC), 8:00 is the closest time to the
Aqua satellite passing time on the equator in the eastern tropical Indian Ocean
(around 85°E).

3 Development of a new organization metric

3.1 Review of existing organization metrics

The basic idea in the convective organization potential (COP) metric developed
by White et al. (2018) is to measure the proximity of aggregates using the
concept of “interaction potential” (V ). For two aggregates, i and j, V and COP
are defined as:
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𝑉 (𝑖, 𝑗) = 𝑟𝑖+𝑟𝑗
𝑑(𝑖,𝑗) , 𝑤ℎ𝑒𝑟𝑒 𝑟 = √ Area

𝜋 (1)

𝐶𝑂𝑃 = ∑𝑁−1
𝑖=1 ∑𝑁

𝑗=𝑖+1 𝑉 (𝑖,𝑗)
1
2 𝑁(𝑁−1) 𝑓𝑜𝑟 𝑁 ≥ 2 (2)

where ri and rj are the nominal radii (radii of equal area circles) of aggregates i
and j, d(i,j) is the distance between their centers, and N is the total number of
aggregates in the domain. COP is then the average of V for all available pairs
of aggregates. More organized systems are represented by higher values of V
(larger aggregates closer to each other), and thus COP. The upper limit of value
V is 1 in the ideal case of two perfectly circular tangential aggregates. However,
the shapes of realistic convective aggregates are far from circles (e.g., Fig. 5 in
later subsection), so V values can exceed 1. The Radar Organization Metric
(ROME) is a variant of COP optimized for radar observations (Retsch et al.,
2020). In ROME, the interaction potential is changed to the distance-weighted
sum of aggregate area, but the process of averaging the interaction potentials
for all pairs is the same as in COP.

The simple organization index (Iorg) developed by Tompkins & Semie (2017)
measures the relative organization level of aggregates compared to the ideal-
ized random distribution, using the cumulative distribution function (CDF) of
nearest-neighbor distance (NNCDF). The authors considered the idealized dis-
tribution as a Poisson point process, the CDF of which is given by the Weibull
distribution (Chiu et al., 2013; Weger et al., 1992):

NNCDFrandom(𝑑) = 1 − 𝑒𝑥𝑝(−𝜆𝜋𝑑2) (3)

where � is the normalized count, i.e. the number of aggregates per unit area,
and d is the nearest-neighbor distance. Iorg is then defined for a given number
of aggregates in a domain as the integrated area of actual NNCDF along the
axis of NNCDFrandom for a range of nearest-neighbor distances (0<r<maximum
distance in a domain; see Fig. 18 in Tompkins and Semie, 2017). An Iorg value
of 0.5 represents then an organization level similar to that of a randomly dis-
tributed system, while higher values (up to 1) indicate more organized systems.

Actually, the organization metric with the longest history is the simple convec-
tive aggregation index (SCAI) proposed by Tobin et al. (2012) and defined as
the product of normalized distance between aggregates and normalized number
of aggregates:

𝑆𝐶𝐴𝐼 = 𝑁
𝑁max

𝐷0
𝐿 × 1000 (4)

where N and Nmax are the number of aggregates and the maximum number of
aggregates in the domain, respectively, L is the domain’s characteristic length,
and D0 is the geometric mean of distances between all available pairs of ag-
gregates (called “order-zero diameter”). Later, Xu et al. (2019) proposed the
modified SCAI (MCAI) whereby D0 was replaced by D1 (“order-one diameter”,
the arithmetic mean of distances), and the aggregate size was taken into account
in the distance term (i.e., “inter-object distance”; defined as D2 by combining
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them).

The basic idea behind the SCAI and MCAI is that the mean distance of aggre-
gate pairs is expected to be inversely proportional to the number of aggregates
in a domain, hence a smaller number of aggregates clumped together is a well-
organized ideal scene. However, the assumptions behind SCAI and MCAI seem
inappropriate for synoptic scale convective systems in large domains. For our
dataset and domains, we found the D0 and D2 values to be nearly constant
regardless of aggregate population (Supplementary Fig. S1). As a result, SCAI
and MCAI values depend heavily on the number of aggregates so that scenes
with larger numbers are interpreted as less organized, which is counterintuitive
(see also Figs. 8 and 9 in White et al., 2018). A reason the assumptions of SCAI
fail in this study is that the density of convective aggregates is quite low (mostly
under 0.08 with peaks at around 0.15 in 40×40 grid domain; see Supplementary
Fig. S2).

Lastly, Kadoya and Masunaga (2018) proposed the Morphological Index of Con-
vective Aggregation (MICA), defined as the product of two area ratios, namely
convective cloud area over the smallest rectangle enclosing all convective clouds,
and outside-the-rectangle area over the total domain. This metric works well for
small rectangular domains where a group of organized aggregates occurs in one
side of the domain while the other side is clear. However, it is not suitable for
the case of multiple groups of sparsely organized aggregates, which is a common
occurrence in our dataset. Taking all this into consideration, we selected the
COP and Iorg metrics as the main benchmarks in this study against which to
compare our new organization metric (SCAI and MCAI results are shown in
Supplementary materials).

3.2 New organization metric

Previously, White et al. (2018) showed values of SCAI and COP for a few
simplified examples on a 20×20 grid (reproduced below in Fig. 8 and Supple-
mentary Fig. S11). Similar idealized experiments but on a 40×40 grid with
more complex situations (motivated by our sample area analyzed in this study)
are shown in Fig. 3 to examine the characteristics of COP and Iorg. Figures 3a,
3b, and 3c assume three groups of organized aggregates, with an isolated cloud
subsequently added (Fig. 3c). The only difference between Figs. 3a and 3b is
the aggregate size in the upper left corner. As noted earlier, since Iorg does not
consider aggregate sizes but only the location of their centers, the value of Iorg
remains unchanged between Figs. 3a and 3b, while the value of COP increases
from 0.163 to 0.199 (+22.1%) indicating stronger organization in Fig. 3b than
3a.

9



Figure 3. Comparison of organization metrics for synthetic scenes comprising
three groups of organized aggregates (panels (a) and (b)), and with an isolated
convective element subsequently added (panel (c)). N is the total number of ag-
gregates. Panel (d) is a simple example demonstrating the relationship between
aggregate size and interaction potential (V ).

The only difference between Figs. 3b and 3c is the addition of a single grid cell
of an isolated convective element on the right side. This small difference would
be intuitively perceived as a negligible change in convective organization, but
both COP and Iorg nevertheless decrease notably, from 0.199 to 0.173 (-13.1%)
and 0.589 to 0.493 (-16.3%).

For this problem, our conclusion is that COP is optimized for assessing the
organization level for the whole domain, but its skill in assessing local organi-
zations in a sparsely populated environment is lacking. For example, COP is
defined as the “average” of interaction potentials (V ) for “all available pairs”
(Eq. 2). However, for the circumstances shown in Fig. 3, the interaction with
surrounding neighbors seems more appropriate (like Iorg considering the nearest
neighbor only). Moreover, a notable decrease in the value of COP with the
addition of an isolated object is unavoidable when the metric is normalized by
the number of objects (i.e., “averaging”). Hence, the first set of modifications
we propose is: (1) for each aggregate, selecting the pair providing maximum
interaction potential, and (2) summing these select interaction potentials.

Secondly, after testing various approaches on a wide range of sample scenes,
we found that the current form of interaction potential does not give sufficient
weight to the size of the aggregate. As shown in Fig. 3d, for the comparison
of A-B pair with B-C pair, the size of C, which is quadruple the area of A, is
represented only as twice as large in terms of nominal radius. In addition, the
distance between non-tangential aggregates in rectangular coordinates increases
for larger aggregates. As a result, the interaction potential of the B-C pair
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(0.664) is only 17.7% greater than that of the A-B pair (0.564). In order to
rectify this problem, we propose a second set of modifications: (3) modifying
the interaction potential to use the area rather than the radius of aggregates,
and (4) changing the distance from “center-to-center” to “(outer) boundary-
to-boundary”, as in MCAI (referred to as “inter-object distance” in Xu et al.
2019).

Based on these four changes, a new modified COP, which we call the “area-based
convective organization potential” (ABCOP) is defined as:

𝑑2(𝑖, 𝑗) = 𝑚𝑎𝑥 [1, 𝑑(𝑖, 𝑗) − 𝑟𝑖 − 𝑟𝑗] (5)

𝑉area(𝑖, 𝑗) =
(

𝐴𝑖+𝐴𝑗
2 )

𝐴domain
𝑑2(𝑖,𝑗)

𝐿domain

(6)

𝐴𝐵𝐶𝑂𝑃 = ∑𝑁
𝑖=1 max [𝑉area(𝑖, 𝑗)]𝑗≠𝑖 𝑓𝑜𝑟 𝑁 ≥ 2 (7)

where d(i,j) is the distance between the centers of aggregates i and j, and ri
and rj are their nominal radii; d2(i,j) is hence meant to represent the nominal
distance between the boundaries of the two aggregates. Ai and Aj are the areas
of the aggregates, and Ldomain is a length scale calculated as the square root
of domain area, Adomain. N is the total number of aggregates. Finally, the
unitless Varea represents then mean areal density of the two aggregates over
their normalized distance.

As noted earlier, because the shapes of real aggregates are far from circular,
d2 can be close to zero or even negative values in extreme cases, which can be
problematic since it appears in the denominator of Eq. 6. Hence, the minimum
value of d2 is set as 1 to prevent odd results. We tested several values from 0.2
to 1 as candidates for the minimum value of d2, and found that the behaviors of
the new interaction potentials were very similar while smaller minimum values
tend to produce much larger value of Varea, and thus ABCOP.

With this new area-based interaction potential, values in the previous simple
example shown in Fig. 3d change from 0.564 to 0.177 for A-B pair, while
from 0.664 to 0.442 for B-C pair, which results in 150% increase for the pair
of quadruple-sized aggregate (cf. +17.7% with original V ). In addition, for the
cases of Figs. 3a-3c, since ABCOP is more sensitive to the size of aggregates by
definition, it results in a 64.1% increase from Figs. 3a to 3b (0.941 to 1.544). The
added isolated cell in Fig. 3c results in only a 1.3% increase of ABCOP, which
is notably different from (and better than) COP (-13.1%) and Iorg (-16.4%).

4 Characteristics of the new organization metric

4.1 Properties of the new organization metric

The upper limit of Varea can be obtained by assuming that the mean area of Ai
and Aj cannot be larger than the half of domain area with non-overlap condition,
and d2�1:
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𝑉area(𝑖, 𝑗) = ( 𝐴𝑖+𝐴𝑗
2 )

𝐴domain
× √𝐴domain

𝑑2(𝑖,𝑗) < √𝐴domain
2 (8)

Hence, Varea can be quite a large number depending on the domain size, and
an upper limit of ABCOP is hard to predict due to summing feature. In the
domains selected for this study (typically 40×40 grid) with CPR1+2 aggregates,
most values of ABCOP are below 2 (see Fig. 6 in the next subsection).

Even though ABCOP is a unitless metric, caution should be exercised when
comparing its values between domains of different sizes. For example, assuming
exactly the same distribution of two aggregates (i.e., the same mean area of
aggregates and same distance between them) in domains X and Y, Varea values
vary depending on the size of domains X and Y according to Eq. 6; they will dif-
fer by the factor 1/Ldomain, and a bigger domain will appear with smaller Varea
(thus ABCOP, too), i.e. less organized. This gets magnified when the sizes (or
areas) of the two convectively active domains being compared are substantially
different. Still, if someone focuses on the size of the aggregates relative to the
domain, the smaller ABCOP values in the bigger domain have a straightfor-
ward interpretation since the areal density of the same aggregates is lower in
the bigger domain compared to the smaller domain.

The case of a sole aggregate in the domain is problematic for most organization
metrics (except ROME). The behavior of ABCOP for this single aggregate case
is examined in the Appendix. The essence is that the value of ABCOP can vary
depending on how to interpret the situation. For example, if it is assumed that
this situation resulted when one of two aggregates moved far away from the
other and left the domain, the lowest value of interaction potential in Appendix
Eq. A5 would be the best candidate. If on the other hand it is assumed
that the aggregate resulted from two aggregates moving towards each other
and ultimately merging, the highest value would be the right answer. In this
study, we think the former assumption makes ABCOP more consistent with
other organization metrics, the value of which set to zero for this very rare case.
Hence, ABCOP in this special case is defined as:

𝐴𝐵𝐶𝑂𝑃 = 𝑉area(𝑖) =
√𝜋
2

𝐷𝑒𝑛𝑠𝑖𝑡𝑦_𝐴𝑖
2−√𝐷𝑒𝑛𝑠𝑖𝑡𝑦_𝐴𝑖

𝑓𝑜𝑟 𝑁 = 1 (9)

where the Density_Ai is defined as Ai/Adomain. Eq. 9 (derived in the Appendix)
is set with the (semi-) lowest limit value of ABCOP by applying a loosely approx-
imated maximum length in the domain. As a result, while ABCOP increases
when two aggregates get closer and closer, as soon as they are connected, AB-
COP becomes substantially smaller. For example in the case of Fig. 3d where
only A and B aggregates exist (i.e., no C aggregate) in the domain of 8×4 grid,
ABCOP’s value changes from 1/

√
32 ≈ 0.177 to

√𝜋
2

0.0625
1.75 ≈ 0.032 when A and B

are connected. However, as mentioned above, the definition of ABCOP for the
single aggregate case can be adapted to the situation. For example, if ABCOP
is applied to the small-scale scenes where large single aggregate should be more
emphasized, the alternate definition of ABCOP producing the highest value in
Eq. A5 would be a better choice.
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Lastly, it is also worth to noting that, like other metrics, by applying the concept
of “nominal” radius, ABCOP does not consider the specific shape of individual
aggregate. Hence a squall line and MCS have the same effect on ABCOP if
their areas (i.e., number of grid cells) are the same. Furthermore, ABCOP only
considers the size of the domain, but not its shape.

4.2 Performance of the new organization metric for synthetic scenes

Figure 4. Comparison of organization metrics for synthetic scenes with: (a) uni-
form random distribution (Case 1); (b) uniform random distribution in limited
area (32% of total area; Case 2); (c) Gaussian random distribution with two cen-
ters (Case 3); and (d) same as (c) but with two additional objects in opposite
corners (Case 4), while the areal density remains unperturbed (5%). N is the
total number of aggregates. Panels (e)-(h) show box-whisker plots of the pop-
ulation of organization indices for 1000 random realizations of synthetic scenes
representing cases 1-4. Whiskers indicate 5% to 95% range, boxes inter-quartile
range, and red lines median values.

For a more rigorous test than the ideal cases of Fig. 3, we performed experiments
with four different cases, each of which consisting of 1000 randomly generated
samples of fixed areal density of aggregates (or objects) (Fig. 4). Cases 1 and
2 assume uniform random distribution in the whole area (case 1) and limited
region (case 2; meant to be more organized than case 1). In case 3, a random
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Gaussian distribution was applied in the similar portions of the domain as case
2 in order to increase its organization, producing larger aggregates near the
center of the Gaussian distribution. Case 4 is exactly same as case 3 except for
the presence of two isolated objects in the previously unoccupied corners. We
expect that the cases 3 and 4 would be identified as the most organized scenes
to a similar degree.

The variability of each organization metric for these 1000 samples is displayed
in the form of box-whisker plot in the bottom row of Fig. 4. The performances
of COP and Iorg are generally consistent to the results shown in Fig. 3. Both
perform well for identifying differences in the relative organization levels among
cases 1-3. They differ slightly however in that Iorg tends to identify case 2 as
relatively more organized (thus close to case 3) than COP. This is likely caused
by the fact that Iorg counts for only location, but not aggregate size. For the
last case, the addition of the two isolated grid cell objects to the scene of case
3, results in the suppression of COP and Iorg values, as in the examples of Figs.
3b and 3c.

On the other hand, ABCOP also properly captures the evolution of the level of
organization for cases 1-3, but with a relatively smaller increase from case 1 to
case 2. In addition, the value range of case 4 is nearly identical to that of case 3,
as it should (Fig. 4g). One important difference of ABCOP is that the range of
values is much wider than those of COP or Iorg for cases 3 and 4. This is caused
by the sensitivity of ABCOP to the aggregate size. Indeed, the higher values
of ABCOP for cases 3 and 4 stem from scenes in which a large aggregate is
surrounded by several satellite aggregates, which ABCOP preferentially sees as
very organized compared to scenes of a few medium-sized aggregates surrounded
by fewer satellite aggregates.

4.3 Real-world performance of the new organization metric

We now evaluate the new organization metric ABCOP against existing metrics
with real scenes of tropical CPR1+2 aggregates We select four target domains
for this analysis: (1) the tropical Indian Ocean (TIO; 50°E-90°E, 20°S-20°N;
40×40 grid), (2) the Maritime Continent (MC; 95°E-145°E, 15°S-15°N; 30×50
grid), (3) the western tropical Pacific (WTP; 150°E-170°W, 20°S-20°N; 40×40
grid) and (4) the Amazon basin and its vicinity (AMZ; 80°W-40°W, 25°S-15°N;
40×40 grid). Figure 5 shows scenes sampled from the WTP domain, with figures
for other domains provided in Supplementary Figs. S4, S5, and S6.
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Figure 5. Select scenes of fixed 5% (±0.25%) areal density with organization
metric values in 5th (left two columns; less organized), and 95th percentiles
(right two columns; more organized) for (a)-(d) COP, (e)-(h) Iorg, (i)-(l) ABCOP
for in the western tropical Pacific domain (WTP; 150°E-170°W, 20°S-20°N).
Above each panel we provide the observation time and number of aggregates
(N).

Figure 5 shows real scenes corresponding to 5th (left two columns; less organized)
and 95th percentile (right two columns; more organized) of each organization
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metric, COP (top row), Iorg (middle row), and ABCOP (bottom row). In the top
row, COP clearly distinguishes between the less organized scene of Fig. 5b and
the two organized scenes of Figs 5c and 5d. In the case of Fig. 5a, a big aggregate
on the right side of the domain makes the scene to be seen visually as organized,
but the value of COP (and ABCOP, too) is quite low. This is an example of
the weakness of measuring interaction potential: no satellite aggregates near
a big aggregate means no (or weak) interaction potential. On the other hand,
the scene of Fig. 5c is quite interesting in that large aggregates look organized
according to COP, but not close enough in the view of ABCOP whose value for
Fig. 5c is lower than that for Fig. 5b. This shows the salient COP feature of
being based on an average of interaction potentials, which gives more chance of
perceived organization for the scenes of fewer aggregates. COP samples in other
domains (shown in the Supplementary Figures) also show that more-organized
scenes always have fewer aggregates, typically less than 15, compared to the
less-organized scenes.

Iorg results shown in the middle row seem to be most affected by isolated objects.
Because Iorg only considers the location of objects and not their sizes, pairs of
small objects close together in Figs. 5g and 5h make it identify these scenes as
more organized. On the other hand, sparsely existing isolated objects in Figs.
5e and 5f make the scenes identified as less organized. For the same scenes,
ABCOP reports consistently low values because of the small sizes of close pairs
in Figs. 5g and 5h.

In the case of ABCOP, comparison of Figs. 5i and 5l where the scenes contain
similarly small number of total aggregates (N), the values of ABCOP are dra-
matically different, with greater organization suggested for Fig. 5l. The key
difference between the two scenes is the proximity of satellite aggregates sur-
rounding a big aggregate. This example shows that, similarly to the cases in
Fig. 4c and 4d, ABCOP tends to identify a scene as more organized when a
big aggregate is surrounded by several aggregates, due to the summing feature
of ABCOP. In contrast, COP suggests that both scenes are similarly organized,
with values somewhere between its 5th and 95th percentiles; relatively lower COP
values for the scene of Fig. 5l is mainly because it averages for “all available”
pairs.

4.4 Dependence of the new organization metric on areal density

One modification of ABCOP from its COP ancestor was the change from aver-
aging to simply summing the interaction potentials. This translates to higher
chances of larger value of ABCOP (more organized) with a higher population
(or density) of objects, something examined in Fig. 6 where the distributions of
the three organization metrics are shown as a function of areal density.
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Figure 6. Distribution of (a) COP, (b) Iorg, and (c) ABCOP values as a function
of the areal density of aggregates for all four domains (TIO, MC, WTP, and
AMZ). The vertical width of the box indicates the interquartile range (25th to
75th percentile), and whiskers extend from 5% to 95% percentiles. The red
line shows median values. The gray bars visualize the relative distribution of
population of scenes by areal density.

While ABCOP values increase with areal density, as expected, the rate of in-
crease seems faster than linear. In addition, the variability of values also in-
creases with areal density. These patterns indicate that ABCOP behaves in a
way consistent with the proposition that there are higher chances of organiza-
tion with more individual convective cells. While COP also shows increase of
values by areal density, the rate of increase is relatively weak, and the interquar-
tile ranges overlap greatly for nearby areal density bins. It is also notable that
some of the extremely large values of COP come from the population of lowest
areal density bin (less than 1%). In the case of Iorg, values generally decrease
for higher areal density, and this probably reflects the fact that the reference
random distribution (NNCDFrandom in Eq. 3) approaches unity faster with a
greater number of objects (assuming that the number of aggregates is generally
proportional to the areal density).

The fact that COP and ABCOP increase with areal density is actually impor-
tant for large-scale climate studies. This is because responses to notable climate
variability like the Madden-Julian Oscillation (MJO) or El Niño–Southern Oscil-
lation (ENSO) are usually associated with dramatic changes in the convective
system population. For example, the MJO, defined as a convective envelope
propagating eastward near the equator from the Indian to the Pacific Ocean
with a 40 to 50-day period (Madden & Julian, 1971, 1994), has active and
inactive phases in specific regions, and both the size and count of convective
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aggregates increase significantly in the active phase compared to the inactive
phase (Supplementary Fig. S8). As a result, an organization metric that is
generally proportional to the areal density enables it to capture the climate
variability effectively.

Figure 7. Lead-lag correlation coefficients between OMI PCs, transformed to
pentad (5-day mean), and band-pass filtered anomalies (5 to 21 pentads) of
organization metrics in the boreal winter seasons (December to February). The
left column shows results in the tropical Indian Ocean (TIO; 50°E-90°E, 20°S-
20°N) and the right column in the Maritime Continent (MC; 95°E-145°E, 15°S-
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15°N). (a), (b) COP, (c), (d) Iorg, (e), (f) ABCOP, (g), (h) Areal Density. Open
and closed circle symbols indicate that the correlation coefficients are above the
two-tailed 90% and 95% significance levels, respectively, estimated using degrees
of freedom deduced by the factor of autocorrelation.

To demonstrate this, Fig. 7 shows lead-lag correlations between organization
metrics and MJO indices. We chose the OLR-based MJO index (OMI; Kiladis
et al. 2014), which is known of being more sensitive to convective systems than
other dynamics-based MJO indices, to represent the MJO. OMI consists of the
first and second principal components (PC1 and PC2) of the filtered OLR field,
which correspond to the most active convection in the tropical Indian Ocean
(TIO) and Maritime Continent (MC), respectively. We calculated organization
metrics in the TIO (50°E-90°E, 20°S-20°N) and MC (95°E-145°E, 15°S-15°N)
domains over the 21 boreal winter seasons (December to February in 2001-2021).
The lead-lag correlation analysis shows that ABCOP as well as areal density
itself captures the effect of MJO as expected. In the TIO domain, OMI PC1 is
simultaneously (zero-lag) correlated with ABCOP and areal density (Figs. 7e
and 7g). After two to three pentads (10-15 days) of PC1 peak, the PC2 peak
occurs, which is followed by the negative PC1 peak after another two pentads.
This result is consistent with the approximate 50-day repeat period of MJO
convective characteristics. Similar to ABCOP and areal density, the response
of COP to the MJO also captures the in-phase relationship, but with relatively
weaker correlations. In the case of Iorg, the smaller correlation coefficients are
even out-of-phase in the MC domain (Fig. 7d).

Comparing the MJO responses in the TIO and MC domains, particularly Iorg
show different correlation magnitudes for the two domains, probably due to the
different nature of convective systems, namely large sized systems in open oceans
vs. small but numerous systems over land or complex layouts like the Maritime
Continent (e.g., Yuan & Houze, 2010). Supplementary Fig. S8 also confirm that
when the active MJO phase composite is compared to the inactive composite,
the increase of mean size is more notable in the TIO domain while the count
increase is more substantial in the MC domain. These characteristics may affect
the behavior of Iorg. For example, in the TIO domain, correlations of Iorg are
very weak likely because Iorg does not consider object size. ABCOP, on the other
hand, seems to respond well to changes of both size and count. The performance
of ABCOP is also outstanding in response to ENSO (Supplementary Fig. S10).

In summary, based on the above examples, our new proposed organization met-
ric (ABCOP) represents best multiple organizations in a large and noisy domain,
and thus performs well for convective activity at synoptic scales. In the following
section, we discuss the performance of the new metric in domains of drastically
different sizes.

5 Performance of the new organization metric in other domain sizes

5.1 Scale, resolution, and domain size

As noted in the previous sections, existing organization metrics were optimized
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for more highly resolved convection in smaller domains (i.e., mesoscale), while
the newly developed ABCOP was shown to work well for large scale features
(i.e., synoptic scales). However, the numerical definition of either the previously
defined organization metrics, or the new ABCOP, does not actually consider the
scale directly. The most important factor included in any organization metric is
the distribution of objects, commonly represented numerically by the distance
between two objects. (Some organization metrics like COP and MCAI also
consider the size of aggregates.)

Our calculation of organization metrics has been performed with data implicitly
(synthetic cases) or explicitly (real cases) mapped onto an equidistant cylindrical
grid that employs Cartesian coordinate system where the distance between two
objects was measured in units of grid size. Under this convention, the true
physical scale cannot be inferred from grid size (= number of grid cells) since
resolution is not fixed. For example, Tobin et al. (2012) examined the organized
convection using 10°×10° segmented domains with 0.5-degree data, thus the
scenes consisted of cells arranged in a 20×20 grid. After Tobin et al. (2012),
the performance of succeeding organization metrics like MCAI and COP were
intercompared with SCAI in such 20×20 grid as well as in (their own) much
larger grid (i.e., higher resolution in similar or larger domains; White et al. 2018;
Xu et al. 2019). A large grid means that there are increased chances of multiple
organized objects occurring throughout the domain, thus resulting in probably
different performances of organization metrics compared to those in small 20×20
grid scenes. However, this was barely discussed in previous studies.

Our ABCOP metric was originally motivated by synoptic scale convective aggre-
gates, but with the numerical definition, strictly speaking, optimized for scenes
of large grids where multiple organized objects occur sparsely interspersed with
noise; test scenes in this study are mostly of low density, usually less than 0.1
in a 40×40 grid (Supplementary Fig. S2). We therefore need to examine the
performance of ABCOP for grids of two widely different sizes, a 20×20 small
grid, and an oversize 360×50 grid of representing the whole tropics. This is
done in the next two subsections.

5.2 Small domain case

Previous works on organization metrics used select reference examples to inter-
compare performances. One example composed of four scenes (our Fig. 8) was
introduced originally in Fig. 2 of Tobin et al. (2012), and reproduced later in
Fig. 4 of White et al. (2018) for the purpose of comparing COP and SCAI. We
note first that diagonal connections are prohibited when identifying aggregates
in this small domain environment, and second that for unknown reasons the
value of COP is slightly different from that in White et al. (2018) only for Fig.
8a; those of the other scenes are the same.
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Figure 8. COP, Iorg, and ABCOP computed for the four example scenes in Fig.
2 of Tobin et al. (2012), also shown in Fig. 4 of White et al. (2018).

For the examples with five or fewer aggregates on a 20×20 grid, COP works well
as indicated by case 1 being the most organized and case 2 the least organized
scene. Iorg also shows similar results except the value for case 3 that is relatively
low, close to the value for case 2. For these examples, ABCOP shows the same
order of organization levels as COP and Iorg. In addition, White et al. (2018)
showed another idealized example in their Fig. 5, and this is reproduced in
Supplementary Fig. S11. The performance of ABCOP is generally consistent
to that of COP with the scenes containing bigger aggregates identified as more
organized. ABCOP deviates from COP in that its value increases more rapidly
as aggregate sizes increase owing to the greater weight given to object size in
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the ABCOP definition.

Moreover, in an attempt to draw more generalized conclusions, we performed
the evaluation of metrics with many randomly generated scenes, similar to the
earlier Fig. 4. The top row in Fig. 9 shows a single sample from the 1000
stochastically generated realizations of each case. Case 1 represents small ag-
gregates distributed randomly, thus is the least organized scene, while case 2
represents an organized scene with big aggregates near the center, and is thus
the most organized scene. Case 3 contains two organized aggregations, but it
looks less organized than case 2 when assessed over the whole domain. Similarly
to Fig. 4d, case 4 is identical to case 3 except for two isolated objects at opposite
corners.

Figure 9. Similar to Fig. 4, but for smaller 20×20 grid with target areal density
0.1. Case 1 represents uniform random scenes, case 2 a single Gaussian random
distribution in the center of the domain, and case 3 consists of two Gaussian
random distributions. Case 4 is identical to case 3 except for two additional
isolated objects at opposite corners.

For these cases, we note interesting difference between COP and Iorg. COP,
which considers all available pairs of aggregates, identifies case 2 as the most
organized scene, while Iorg, which considers the distance to the nearest neighbor,
identifies case 3 as the most organized scene in general. Similar to the example
case of Fig. 8, ABCOP’s result indicating relative degree of organization for
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each case implies that it is somewhere between COP and Iorg; for example, case
3 is identified as slightly less organized than case 2, but the differences are not as
notable as that of COP. For case 4, ABCOP is the only one to show similar level
of organization with the addition of two isolated objects to case 3, echoing the
corresponding example in Fig. 4. However, one can argue that for such a small
domain the addition of isolated objects can decrease the degree of organization
of the scene. In this sense, the behavior of ABCOP that identifies case 4 as
(slightly) more organized can be viewed as unphysical. We also note that the
performances of SCAI and MCAI resemble that of COP for these cases (not
shown). In summary, the various organization metrics have their own diverse
characteristics for such a small 20×20 grid domain; ABCOP seems to work at
least as effectively as existing organization metrics under these conditions.

5.3 The tropics as a single large domain

In this subsection, motivated by the work of Bony et al. (2020), we compare
the performance of organization metrics in the whole extended tropical domain
(25°S-25°N). Bony et al. (2020) employed Iorg in the 30°S-30°N domain to
investigate the relationship between tropical radiation budget and convective
organization. With our CPR data at 1-degree and 1-hourly resolution, the
combined RFO of CPR1 and CPR2 is consistently near 2% as shown in Fig. 1f,
and so is the areal density of CPR1+2 aggregates (Fig. 10), which is quite a low
density with narrow range compared to that in our previous 40×40 domains.

Figure 10. Same as Fig. 6, but for whole tropics (25°S to 25°N).

First, we examine the distribution of organization metrics as a function of areal
density. The fundamental behaviors of the three organization metrics are similar
to those shown in Fig. 6, namely positive slope of COP and ABCOP and
negative slope of Iorg. The COP slope looks steeper here, but actual value is
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slightly smaller than that in Fig. 6. In the case of Iorg, values are generally
higher than those in Fig. 6; median values are around 0.65 here, but were below
0.6 in Fig. 6. The whole tropical domain is composed of a huge number of grid
cells (360×50=18000), but deep convective systems occur mostly in the limited
region of the upwelling branch of atmospheric circulation (Figs. 1d and 1e).
This environment shares some similarity to case 3 of the small domain (Fig. 9c)
where the higher sensitivity of Iorg to the nearest neighbor distance contributed
to the relatively high value of it. We also examined select real scenes by 5th and
95th percentiles of each organization metric as in Fig. 5, but visual inspection
is not as helpful in this instance due to the low density of aggregates in a huge
domain (Supplementary Fig. S12).

Previously, Bony et al. (2020) showed the simultaneous negative relationship
between Iorg anomaly and net radiation anomaly at top-of-atmosphere (TOA;
referred to as Net_TOA; their Fig. 6a), but found no significant relation-
ship between Iorg and ENSO. This issue is examined in Fig. 11 where lead-
lag correlations are shown for de-seasonalized and smoothed (3-month running
mean) monthly anomaly timeseries of organization metrics, Niño3.4 index, and
Net_TOA from the CERES SYN1deg dataset (Doelling et al. 2016).

In terms of general trend, the timeseries of the organization metrics COP, AB-
COP, and areal density (A_Den; black lines in Figs. 12a, 12e, and 12g, re-
spectively) share some similarity; for example, less organized or populated on
average in the 2002-2009 period and more organized or populated in the period
2009-2012 and 2014-2016. In the case of Iorg, the timeseries has a “V” shape
trend with a minimum (the least organization) around 2011. However, lead-lag
correlation patterns are similar between COP and Iorg. Both metrics have simul-
taneous negative correlations with Net_TOA which is consistent to the results
of Bony et al. (2020), and follow the variability of ENSO index a few months
later. ABCOP and A_Den have no notable simultaneous relationships with
either ENSO index or Net_TOA anomaly. Recall that in the case of organi-
zation metrics in the Maritime Continent domain, active (inactive) convection
activity occurred near-simultaneously with La Niña (El Niño), but COP and
Iorg showed a reverse relationship by reporting less (more) organization in La
Niña (El Niño) period (Supplementary Fig. S10).
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Figure 12. Lead-Lag correlation coefficients between monthly anomaly of orga-
nization metrics and Niño3.4 index and CERES net radiation anomaly at TOA
(Net_TOA). The left column shows timeseries of organization metrics (black),
Niño3.4 index (orange, in K), and Net_TOA (green, in Wm-2), which are de-
seasonalized and smoothed by a 3-month running mean. The right column
shows lead-lag correlation coefficients where open and closed circle symbols in-
dicate confidence levels above the 90% and 95% significance, respectively. (a),
(b) COP, (c), (d) Iorg, (e), (f) ABCOP, and (g), (h) Areal density (A_Den) of
CPR1+2 aggregates.

The negative relationship between Iorg and Net_TOA led Bony et al. (2020) to
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argue that most organized scenes are composed of smaller area where convective
systems are clumped together while the areas of (relatively) clear sky were exten-
sive and resulting in increased loss of radiative energy to space. The proposition
itself makes sense physically, but we think that it merits a more sophisticated
analysis that examines whether a third factor, namely areal density, can affect
the negative relationship. For example, Iorg values tend to decrease (indicat-
ing less organization) as areal density increases (Figs. 6b and 10b), which can
contribute to the negative relationship, i.e., both the decreasing Iorg value and
increasing Net_TOA can have the same root cause of enhanced occurrence of
convective systems. Moreover, the significance of negative relationship between
Iorg and Net_TOA (and ENSO index) is not consistent across the 21-year period.
We tested the same calculations for sub-periods, 2000 to 2013 and 2008 to 2021
(each 13-year), and found that the negative correlation coefficient was stronger
in the earlier years while hardly significant in the later years (Supplementary
Figs. S13 and S14). Correlations with Niño3.4 are also different depending on
the period selection. While inconsistencies in the IMERG timeseries may be
able to contribute to this changing relationship, the relationship between Iorg
and Net_TOA based on our CPR-based analysis is still dubious. Considering
the complex features of radiative effects by various cloud types, this issue should
be further investigated with more detailed analyses.

6 Summary and Conclusions

Organization metrics are a convenient way to represent how densely convective
events are distributed in a limited domain. Such metrics were originally designed
to examine small scale convection in satellite, model, and radar observations. In
this study, we extended application of organization metrics to the synoptic scale
with larger grid. A seamless and temporally highly resolved cloud-precipitation
(hybrid) regime dataset developed by J21 served as the basis for identifying
convective aggregates consisting of 1° grid cells and for calculating organization
metrics in large domains (40×40 or 30×50 grids).

Our regime dataset indicates that existing metrics are inadequate for large do-
mains where sparse occurrences of multiple organized aggregates often violate
assumptions inherent in the metrics. In order to rectify this problem, we intro-
duced modifications in one of the metrics, the convective organization potential
(COP):

1. To focus on local organization, interaction potentials are calcu-
lated for only one pair per aggregate providing maximum in-
teraction potential, and they are then summed up (instead of
being averaged over all pairs).

2. To increase the weight on the size of aggregate, the radius-based
interaction potential of COP is changed to an area-based form
which is normalized by domain size, and with other definition
of distance, corresponding to the distance between outer bound-
aries rather than centers.
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The performance comparison of the new ABCOP and existing organization met-
rics for domains of various sizes and cases that include synthetic and real scenes,
the latter consisting of CPR1+2 aggregates, unveiled the pros and cons of each
metric. COP works well for identifying the organization level of the domain
as a whole (e.g., case 2 in small domain [Fig. 9]), but tends to overestimate
(underestimate) the organization level for scenes with fewer (more) aggregates
(e.g., Fig. 5c). Iorg has a good sensitivity on local organization (e.g., case 3 in
small domain [Fig. 9]), but tends to underestimate the organization of scenes
containing big aggregates since it does not consider size. On the other hand,
ABCOP shows similar performance to COP and Iorg in various simple cases, but
with the additional advantage of being tolerant to the noise of isolated aggre-
gates, something that existing metrics cannot handle well. Moreover, existing
metrics imply weak or even opposite responses of convective organization to no-
table climate features like MJO and ENSO, which generate dramatic changes in
the population and size of convective systems at their various phases. ABCOP
captures the known relationships of these climate features in a way consistent
with our expert knowledge of how convection behaves.

ABCOP is a unit-less metric, but caution should be exercised when comparing
ABCOP values for significantly different sizes of domains as discussed in sub-
section 4.1. In addition, the scenes that ABCOP identifies as greatly organized
tend to be the ones containing one or more big aggregates surrounded by many
satellite aggregates. For this kind of scenes, the ABCOP value can increase
drastically, which is the reason why the extreme values of ABCOP appear to
come from near-exponential increases at higher areal densities (Figs. 6 and 10).
Moreover, ABCOP may produce unexpected behavior, particularly in a small
domain, because it is designed for the environment of scarce local organizations
in large domain, rather than assessing the domain as a whole. Nevertheless,
ABCOP works effectively for most cases by following the principle of more in-
dividual convective cells the higher chance of organized scenes.
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