Kiwamu Nishida

and 3 more

Seismic interferometry is a powerful tool to monitor the seismic velocity change associated with volcanic eruptions. For the monitoring, changes in seismic velocity with environmental origins (such as precipitation) are problematic. In order to model the environmental effects, we propose a new technique based on a state-space model. An extended Kalman filter estimates seismic velocity changes as state variables, with a first-order approximation of the stretching method. We apply this technique to three-component seismic records in order to detect the seismic velocity change associated with the Shinmoe-dake eruptions in 2011 and 2018. First, ambient noise cross-correlations were calculated from May 2010 to April 2018. We also modeled seismic velocity changes resulting from precipitation and the 2016 Kumamoto earthquake, with exponential type responses. Most of the results show no significant changes associated with the eruptions, although gradual inflation of the magma reservoir preceded the 2011 eruption by one year. The observed low sensitivity to static stress changes suggests that the fraction of geofluid and crack density at about 1 km depth is small, and the crack shapes could be circular. Only one station pair west of the crater shows the significant drop associated with the eruption in 2011. The gradual drop of seismic velocity up to 0.05% preceded the eruption by one month. When the gradual drop began, volcanic tremors were activated at about 2 km depth. These observations suggest that the drop could be caused by damage accumulation due to vertical magma migration beneath the summit.

Tung-Cheng Ho

and 8 more

An unusual devastating tsunami occurred on 28 September 2018 after a strike-slip faulting earthquake in Sulawesi, Indonesia. The induced tsunami struck Palu city with 4-m wave height and flow depth. We performed a two-step analysis to investigate the source of the tsunami. We first conducted the teleseismic source inversion and obtained the slip distribution of the strike-slip fault. Our tsunami simulation from the coseismic deformation of the seismically-estimated strike-slip faulting produced a tsunami comparable to the leading part of the observation at Pantoloan. We then jointly utilized the tsunami waveform and Synthetic Aperture Radar (SAR) data to reconstruct the detailed slip distribution on the fault plane. Because of the lack of SAR data in the bay, the tsunami data is necessary to constrain the offshore slip distribution, which directly induces the tsunami. The inverted source model shows a strike-slip fault which consists of three segments extending from the epicenter to the south of 1.4°S with two bends and two asperities around Palu city. The joint inversion model accurately reconstructs the observed surface displacements and the leading part of the tsunami waveform. Our result exhibits the significant contribution of the strike-slip faulting to the tsunami, but it also suggests additional tsunami sources, such as landslides, for the high inundations near Palu bay. The result also indicates that regional devastating tsunamis can result from an onshore strike-slip fault with localized large dip slip.