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Key Points: 12 

 Flood models in data sparse areas must estimate river bathymetry 13 

 Existing methods are prone to over prediction bias 14 

 Channel estimation based on gradually varied flow theory is substantially more accurate  15 

 16 

Abstract 17 

Flood inundation modelling across large data sparse areas has been increasing in recent years, 18 

driven by a desire to provide hazard information for a wider range of locations. The 19 

sophistication of these models has steadily advanced over the past decade due to improvements 20 

in remote sensing and modelling capability. There are now several global flood models (GFMs) 21 

that seek to simulate water surface dynamics across all rivers and floodplains regardless of data 22 

scarcity. However, flood models in data sparse areas lack river bathymetry because this cannot 23 

be observed remotely, meaning that a variety of methods for approximating river bathymetry 24 

have been developed from uniform flow or downstream hydraulic geometry theory. 25 

We argue that bathymetry estimation in these models should follow gradually varying flow 26 

theory to account for both uniform and nonuniform flows. We demonstrate that existing methods 27 

for bathymetry estimation in GFM’s are only accurate for kinematic reaches and are unable to 28 

simulate unbiased water surface profiles for reaches with diffusive or shallow water wave 29 

properties. The use of gradually varied flow theory to estimate bathymetry in a GFM reduced 30 

water surface profile errors by 66% and eliminated bias due to backwater effects. For a large-31 

scale test case in Mozambique this reduced flood extends by 40% and floodplain storage by 79% 32 

at the 1 in 5 year return period. The results have significant implications for the role floodplains 33 

play in attenuating river discharges because previous GFM’s based on uniform flow theory will 34 

overstate the role of the floodplain.  35 
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1 Introduction 37 

In recent decades inundation modelling has become an integral component of flood management 38 

activities by providing hazard and risk mapping data to decision makers (Merz et al., 2010). 39 

Fundamental to this success has been the development of modelling frameworks where detailed 40 

river and floodplain bathymetry is combined with flow predictions or observations to construct 41 

numerical models that can simulate inundation depth for various scenarios (e.g. return periods) 42 

(de Moel et al., 2009). Results from such models have without question been useful to risk 43 

managers and are recognised by both national and international disaster risk reduction policies 44 

(Priest et al., 2016; Van Alphen et al., 2009). However, the expertise needed to implement these 45 

modelling methods, their data requirements and overall cost means that most flood risk data have 46 

been generated in developed countries, leading to substantial inequalities in risk information and 47 

an inadequate understanding of risk for many localities.  48 

Perhaps unsurprisingly, there has been a move towards extending flood predictions to data and 49 

resource sparse areas, and in some cases using automated modelling approaches to enable 50 

regional or global coverage (Dottori et al., 2016; Sampson et al., 2015; Ward et al., 2015; 51 

Winsemius et al., 2013). This has been supported by better numerical codes and improvements in 52 

the availability and accuracy of key datasets, such as global elevation models (Yamazaki et al., 53 

2017) and river width data (Allen & Pavelsky, 2018). Examples of regional and global scale 54 

inundation modelling now cover a range of applications including flood hazard estimation 55 

(Alfieri et al., 2014; Pappenberger et al., 2012; Sampson et al., 2015; Winsemius et al., 2013), 56 

flood event set and loss estimates (Quinn et al., 2019), flood risk and exposure modelling 57 

(Jongman et al., 2012; Ward et al., 2013), discharge estimation from remote sensing (Andreadis 58 

et al., 2007; Biancamaria et al., 2011; Durand et al., 2008; Neal et al., 2009), understanding 59 

wetland dynamics (Neal et al., 2012), estimating climate change impacts on flooding (Alfieri et 60 

al., 2017; Dottori et al., 2018; Hirabayashi et al., 2013) and modelling evaporative feedback to 61 

the atmosphere from wetlands (Dadson et al., 2010).  62 

Despite wide ranging applications, the accuracy of global flood model predictions is poorly 63 

understood, but also likely to be low in many cases given that different models tend to disagree 64 

on where is at risk  (Bernhofen et al., 2018; Trigg et al., 2016), and this is particularly the case 65 

over complex floodplains such as deltas. Furthermore, the models all over-predict exposure for 66 

more frequent events (smaller magnitudes) relative to loss observations (Quinn et al., 2019), 67 

which is often assumed to result from a lack of flood defence information (Ward et al., 2013). 68 

While not doubting the importance of flood defences, and there are noteworthy efforts to 69 

improve these data (Scussolini et al., 2016), it is imperative that the inundation model simulates 70 

an accurate water profile with respect to the river bank and floodplain heights. This is because 71 

most floodplains are inherently flat, and thus a small increase in simulated in-channel water 72 

height can generate a substantial increase in simulated flood extent.  It follows that modest biases 73 

in the simulated water profile around bankfull discharge will adversely impact model accuracy 74 

during small high-frequency flood events.  This has significant practical implications as high-75 

frequency events must inherently make up the majority of events in any quantitative risk 76 

calculation (such as a loss-exceedance curve), and therefore they have the ability to significantly 77 

impact resultant risk estimates (e.g. Quinn et al., 2019). 78 

This paper will review the methods used for river network definition when modelling floods in 79 

data sparse areas, focusing on their effectiveness at reproducing water surface profiles. Current 80 

methods are shown to be vulnerable to substantial errors when simulating river water surface 81 



profiles under nonuniform flow conditions, which we demonstrate results in an over-prediction 82 

of hazard. To address these issues and provide more robust simulation, improved approaches to 83 

river channel definition in the absence of cross-section data are proposed based on gradually 84 

varied flow theory. These approaches provide the necessary control over the behaviour of 85 

channel-floodplain interaction in data sparse areas and lead to simulations that are more 86 

consistent with the wave theories that underpin the inundation modelling. 87 

1.1 Approaches to flood inundation modelling in data scarce areas   88 

In the most basic terms, all flood inundation models require at least four components, with the 89 

last item on this list being the focus of this paper:  90 

1. Inputs that define the volumes of water flowing in the model domain  91 

2. A numerical modelling approach to simulate river and floodplain flows  92 

3. A definition of the floodplain surface over which the water might flow 93 

4. A definition of the river network - specifically bank full conveyance and the subordinate 94 

variables of channel width, depth, section shape and friction.  95 

Each of these four components can be handled quite differently depending on the intended 96 

application of the model, the balance needed between compute speed and accuracy, the data 97 

available and the expertise of the model developers. For example, volume inputs can range from 98 

direct observation of past events at gauges (Pappenberger et al., 2006), to design hydrographs 99 

representing extreme events via a regionalization of gauging station data (Flood estimation 100 

handbook, 1999; Smith et al., 2015), to runoff inputs from hydrological and land surface models 101 

(Dottori et al., 2016; Winsemius et al., 2013; Yamazaki et al., 2011). The numerical 102 

representation of river channel hydraulics in inundation models also varies substantially in 103 

complexity, encompassing methods such as linear advection and diffusion wave methods 104 

(Lohmann et al., 1998), kinematic waves (Bell et al., 2007; Oki & Sud, 1998), diffusive waves 105 

(Sayama et al., 2012; Yamazaki et al., 2011), dynamic waves (diffusion + local inertia) (Neal et 106 

al., 2012; Yamazaki et al., 2013) and shallow water wave processes (Paiva et al., 2011; Sanders 107 

& Schubert, 2019). These generally increase in complexity and accuracy of process 108 

representation in the above order, with simpler methods generally applicable in fewer physical 109 

settings or used for large scale modelling.  110 

To simulate floodplain inundation, the channel model must be linked to a model representing the 111 

floodplain conditioned on suitable digital elevation data (Courty et al., 2019; Ettritch et al., 2018; 112 

Hawker et al., 2018; Marks & Bates, 2000; Sanders, 2007; Sanders et al., 2005). Approaches to 113 

represent floodplain inundation range in much the same way as those for the channel, from 114 

relatively simple DEM filling type methods (Nardi et al., 2019; Winsemius et al., 2013), where 115 

no dynamics are assumed, to extending 1D model cross-sections onto the floodplain (UNISDR, 116 

2015), to models that dynamically link the channel to large floodplain storage areas (Decharme 117 

et al., 2008; Paiva et al., 2011; Yamazaki et al., 2011) to models that simulate inundation 118 

dynamics in two-dimensions (Neal et al., 2012; Sanders & Schubert, 2019; Sayama et al., 2012). 119 

As with the channel models, complexity, cost and accuracy generally increase as you move down 120 

this list, with simpler models easier to apply over large areas. The spatial resolution of the 121 

simulations is usually governed by the resolution of the floodplain topography and a trade-off 122 

between acceptable computational cost and the spatial precision required by the application.  123 

Finally, the model will require a definition of the river channel network, which acts as a critical 124 

control on how water moves through a landscape. In the case of fluvial flooding, the river 125 



channel is usually the main conveyor of discharge and will interact with the floodplain in a 126 

complex manner as water moves both from and to the channel, depending primarily on 127 

topography and friction variability (Fewtrell et al., 2011; Knight & Shiono, 1996). Even in the 128 

case of other types of flooding, such as pluvial and coastal, the role of channel conveyance can 129 

be significant. How channels are represented in a data scare setting where bathymetry has not 130 

been observed will therefore influence inundation simulations significantly (Neal et al., 2012; 131 

Sampson et al., 2015; Yamazaki et al., 2011), particularly at low return periods where small 132 

changes in river conveyance can have a disproportionately large impact on the simulated 133 

flooding. For traditional reach scale hydrodynamic modelling, the quality of river bathymetry 134 

data, often in the form of channel cross-sections or surfaces from sonar data, is key to accurate 135 

simulation of the relationship between discharge and water level (Cook & Merwade, 2009). 136 

However, since such data are unavailable in data scarce contexts an approximation must be used 137 

that best represents the water surface elevation and discharge relationship given the available 138 

data (Grimaldi et al., 2018). 139 

2 Methods for defining river channels in data sparse flood inundation models 140 

Several approaches have been proposed to simulating channel hydrodynamics in the absence of 141 

cross-section data. We review and categorize these starting from the simplest case of removing 142 

the channel component from the model entirely. Note that the methods cited also vary 143 

considerably in their treatment of hydrology, choice numerical scheme and floodplain DEM, but 144 

these will be secondary considerations here. 145 

For this discussion we will take as a starting point that the profile of the river water surface can 146 

be defined as a gradually varied flow: 147 

𝜕ℎ

𝜕𝑥
=

(𝑆0−𝑆𝑓)

1−𝐹𝑟2       (1) 148 

where h is depth, x is distance downstream, Fr is the Froude number, 𝑆0 is the bed slope and 𝑆𝑓 149 

is the friction slope. If we also assume that the river channel is rectangular, and that friction is 150 

represented by Manning’s equation then the friction slope is found via: 151 

𝑆𝑓 =  𝑛2 (
𝑄

𝑤ℎ
)

2
(

𝑤ℎ

2ℎ+𝑤
)

−4/3
     (2) 152 

where n is Manning’s roughness coefficient, w is the channel width and Q is discharge. The 153 

Froude number of the channel Fr is then  154 

𝐹𝑟 =
𝑄

𝑤√𝑔ℎ
      (3) 155 

where g is acceleration due to gravity. We argue that the inundation models need to accurately 156 

estimate the water surface profile p for bank full discharge Qbf along the river if the model is to 157 

simulate flooding during events or for specific design discharges. The simulation of the flow 158 

profile below bank full is not a priority in this case, justifying the commonly used simplification 159 

to a rectangular channel. Obtaining an accurate flow profile from equation 1 will depend on 160 

identifying the bed friction (n), bed elevation (z) from which bed slope (𝑆0 ) is defined, channel 161 

width (w) and bankfull discharge (Qbf) along the river network. Developers and researchers have 162 

approached defining these in several ways as outlined below in order of increasing complexity.  163 

i) The no channel method 164 



The simplest approach to represent the river network is to estimate bank full discharge and then 165 

remove this from the event or design flood discharge of interest. This ‘excess discharge’ is then 166 

used by a series of reach scale models of the floodplain without a river channel. This is a popular 167 

method due to the simplicity of not needing to estimate w, n, or z and can yield sensible results 168 

over large areas (Alfieri et al., 2014; Bradbrook et al., 2005; Dottori et al., 2016). However, 169 

floodplain flow pathways are usually complex and dominated by the interaction between the 170 

floodplain and channel (Lewin & Ashworth, 2014; Trigg et al., 2012). Essentially fast-moving 171 

water in the channel interacting with slow moving water on the floodplain is needed to correctly 172 

simulate wave propagation during a flood. This approach is also particularly sensitive to the 173 

presence of objects or errors in the topography that impede the propagation of the flood wave 174 

downstream because the channel network would mitigate for these by allowing water to return to 175 

the channel and move on downstream at greater velocity. Over prediction as a result of mass 176 

blockage effects is therefore a concern (e.g. Neal et al., 2012) such that this approach works best 177 

for simulating short reaches using very accurate terrain data e.g. the UK extreme flood zone 178 

maps of Bradbrook et al. (2005). Over large and complex floodplains and deltas we expect the 179 

method to become inaccurate (Neal et al., 2012; Sampson et al., 2015).  180 

ii) Empirical/Hydraulic geometry methods 181 

An alternative to removing the channel is to estimate its dimensions empirically given 182 

observations from surveyed rivers using downstream hydraulic geometry theory, as 183 

demonstrated in the GFM of Yamazaki et al. (2013). Downstream hydraulic geometry theory 184 

aims to estimate how the width and depth of the channel are related to bank full discharge by a 185 

series of power laws (Leopold and Maddock, 1953). These parameters have been estimated 186 

empirically from field observations over many sites to allow prediction at locations without 187 

observations (Andreadis et al., 2013; Hey & Thorne, 1986). Once depth has been established, the 188 

bed elevation is typically calculated by subtracting depth from the river bank height all along the 189 

river network as defined in the DEM (with the aid of some processing along the channel to 190 

reduce DEM noise (Yamazaki et al., 2013; Yamazaki et al., 2019)). This method benefits from 191 

being simple to implement but there is little chance that the desired surface profile will be 192 

simulated at bank full discharge because, 1) the hydraulic geometry parameters are uncertain and 193 

difficult to regionalise, with substantial variability expected between rivers; 2) the friction value 194 

in the hydrodynamic model will need to be estimated because there is no direct link between the 195 

hydraulic geometry parameters and friction parameters; and 3) changes in profile slope are not 196 

accounted for, meaning the hydrodynamic model will simulate a different water surface 197 

elevations to those expected. 198 

Given that width is readily observable from remote sensing platforms (Isikdogan et al., 2017; Lin 199 

et al., 2020; Yang et al., 2020) versions of this approach where the widths and other observable 200 

factors are used to help predict the bed elevation or bank full discharge have also been proposed 201 

(Gleason & Smith, 2014; Grimaldi et al., 2018). This approach has the advantage of not needing 202 

an estimate of bank full discharge, however when width is used to predict the depth a reach will 203 

shallow when the channel narrows and deepen when it widens if widths are not appropriately 204 

reach averaged, thus changing the conveyance in an unrealistic manner. This method was used 205 

by Neal et al. (2012) over a delta where the proportions of flow bifurcating down tributaries were 206 

unknown and strong evaporative feedback meant that mass was not conserved along reaches. 207 

However, the power law parameters and model friction were so uncertain that they needed to be 208 

estimated from water surface observations via a computationally expensive calibration process.  209 



iii) Uniform flow theory – Manning’s equation method 210 

A simple way to calculate the channel bathymetry is to assume that a uniform channel exists over 211 

long distances when calculating the depth such that uniform flow formula can be used. Under 212 

this assumption the bed slope 𝑆0 and friction slope 𝑆𝑓 are assumed equal, and if the channel is 213 

further assumed to be sufficiently wide that hydraulic radius (cross sectional area divided by 214 

wetted perimeter) is equal to depth (cross sectional area divided by width) then the channel depth 215 

h can be calculated analytically using Manning’s equation from the local water surface slope S, 216 

friction n, width w and discharge Q. 217 

ℎ = (
𝑛𝑄

𝑆1/2𝑤
)

3/5
       (4) 218 

Following the GFM described by Sampson et al. (2015) the channel bed is found by subtracting 219 

depths from a smoothed bank high profile. This approach overcomes some of the limitations of 220 

the hydraulic geometry method by accounting for the friction parameterization of the model (i.e. 221 

the friction might not be known but at least the same value can be used for the flood model and 222 

bathymetry estimation) and allowing depth and width to vary inversely for the same bank full 223 

discharge. However, we know that many controls exist on flows that cause the river to depart 224 

from uniform conditions, for example constrictions in channel width, changes in discharge (e.g. a 225 

tributary joining), changes in bed slope and the presence of water bodies such as lakes. 226 

Backwater effects from these controls will be significant in most lowland channels (Trigg et al., 227 

2009) meaning that the Sampson et al., 2015 GFM over-predicts the water surface profile in 228 

many places because the flood inundation model (LISFLOOD-FP) will simulate nonuniform 229 

flow profiles.  230 

iv) Nonuniform flow  231 

A more accurate method than those above would be to use a bed profile that simulates the 232 

desired water surface profile given the gradually varied flow equations themselves, such that 233 

nonuniform flow is accounted for. Unlike the uniform flow case there is no analytical solution, 234 

however solving these equations is well established when river bathymetry is defined (Chaudhry, 235 

2008). The calculation process involves starting from a control section where the water level is 236 

also known and then integrating upstream in the case of subcritical flows or downstream in the 237 

case of supercritical flows (Henderson, 1966). In the GFM case, the profile has been observed 238 

rather than the bathymetry and the control section can be a lake, the ocean or river where 239 

uniform flow is assumed. To estimate a channel for a nonuniform flow profile we must therefore 240 

find the channel bathymetry that best approximates the observed profile given equation 1.  241 

The next sections present two bed estimation methods targeted at two test cases. The first test 242 

evaluates the principal of using nonuniform rather than uniform flow theory to estimate the 243 

channel bed. It considers a reach scale situation where the water surface profile has been 244 

observed at a specific time and the discharge is known. The purpose of this test is to compare 245 

with observed bathymetry and assess the potential for improved accuracy at reach scale. The 246 

second test demonstrates practical application to a GFM. For this test we implement the bed 247 

estimation globally by simplifying the approach in test 1. The GVF based method is then 248 

benchmarked against the Manning’s equation method of Sampson et al. (2015) for a test case in 249 

Mozambique and Malawi.    250 



3 Implementation and testing of bed estimation for gradually varied flows  251 

3.1 Test case 1: Reach scale bed estimation from water surface elevation  252 

The data for this test case were obtained for a widely studied reach of the River Severn (UK) that 253 

flows from Worcester to Tewkesbury (Bates et al., 2006; García-Pintado et al., 2015; Neal et al., 254 

2015; Schumann et al., 2009). An observed water surface profile was sampled at 10 m intervals 255 

from a 0.5 m resolution airborne LiDAR survey conducted by the Environment Agency on the 256 

12
th

 December 2014 (similar to the approach of Smart et al. (2009)). LiDAR water surface 257 

returns for this reach are expected to include vertical error of 5-15 cm, equivalent to another flat 258 

surfaces. River discharge at the time of the LiDAR acquisition was measured at the Saxons Lode 259 

gauging station, around the middle of the study reach (See Figure 1 for map). Flows were within 260 

bank and assumed to be without error for the purpose of this test given the high-quality 261 

ultrasonic gauging station installed at this site and its use for operation flood forecasting (Q error 262 

<10% given the flow conditions). The gauged discharge of 225.6 m
3
s

-1
 was assumed to be 263 

constant along the 25 km reach and the average slope was 0.0001 m m
-1

. Observations of the 264 

lowest bed elevation and water surface top width were obtained from cross section data provided 265 

by the Environment Agency. Manning’s roughness coefficient was assumed to be 0.035 unless 266 

otherwise stated, which is physically reasonable for a reach like this with a gravel bed and 267 

cohesive banks. As flows in this reach are always subcritical, the GVF solver requires a water 268 

surface elevation and depth at the downstream boundary. These were estimated from the LiDAR 269 

observations of water surface elevation, slope and channel top width using Manning’s equation.  270 

 271 

Figure 1. Map of River Severn test site including locations of gauging stations and downstream 272 

boundary conditions. The modelled reach is shown in red. 273 



3.1.1 Estimating bathymetry 274 

The bed estimation method presented below derives from recent work, in anticipation of the 275 

NASA Surface Water and Ocean Topography (SWOT) mission, which has focused on joint 276 

estimation of Q, n and z from a time series of water surface height and slope observations 277 

(Durand et al., 2016; Durand et al., 2014). Specifically, the method presented here is a 278 

simplification of that proposed by Garambois and Monnier (2015) for SWOT discharge and 279 

bathymetry estimation, which aimed aim to estimate Q, n and z from multiple observations of 280 

water surface elevation and slope through time. In our implementation Q and n will be known to 281 

the algorithm and there is no time element to our approach. Thus, our approach assumes 282 

discharge varies in space, but that the river can be approximated as steady state. This steady state 283 

assumption could be relaxed, at considerable computational expense, with the use of a 1D 284 

hydrodynamic model and time varying discharge in place of the gradually varied flow solver. 285 

Brêda et al. (2019) evaluate several data assimilation methods that would be suitable for bed 286 

estimation in such circumstances, thus these are not discussed here. Meanwhile there are a range 287 

of alternative methods for finding the inverse of the gradually varied flow equations or similar, 288 

which are reviewed in detail by Sellier (2016) but not tested here.  289 

The steps taken to estimate the channel bed are outlined in Figure 2 and in detail below. A first-290 

order estimate of the bed elevations are needed as initial conditions, which would most obviously 291 

come from the Manning’s equation method (uniform flow assumption) described above. From 292 

these bed elevations the gradually varied flow profile given the Manning’s method bed is found 293 

using the Runge-Kutta method to solve equation 1 (function ode45 in Matlab).  294 

To refine the estimate of river bed elevations z from the first-order approximation, we seek the 295 

bed elevation that minimises the least squares difference between the desired water surface 296 

profile p and that simulated by the gradually varied flow solver. The response to changing bed 297 

elevation will be complicated due to backwater effects, therefore, nonlinear least squares 298 

optimization was undertaken using the trust region reflective method (More & Sorensen, 1983) 299 

to search within pre-defined bounds (zub and zlb) for the bed elevation, where subscripts ub and 300 

lb signify the upper and lower bounds respectively. The optimisation function used here 301 

(lsqnonlin in Matlab) requires a vector of residual values (differences between observed and 302 

simulated profile) as input from which to compute the sum of square errors, therefore for the 303 

case where the water surface profile p is being estimated given discharge Q the following vector 304 

values are to be optimised  305 

𝑓(𝒛) = 𝑀(𝒛, 𝑸, 𝜽) − 𝒑  , 𝒛𝑢𝑏 > 𝒛 > 𝒛𝑙𝑏    (5) 306 

Where 𝜽 contains all other parameters of the gradually varied flow solver e.g. roughness and 307 

channel widths and 𝑀(𝒛, 𝑸, 𝜽) is the water surface elevation simulated by the gradually varied 308 

flow solver. This condition was enough to find a channel bed that simulates the desired water 309 

surface profile in this test. However, the solution is non-unique and in practical applications this 310 

method alone created undesirable outcomes in that the bed elevations varied from one estimation 311 

point to the next far more than expected. Essentially the magnitude of bed slopes is greater than 312 

expected and often includes substantial adverse slopes that are implausibly steep and inconsistent 313 

with natural bedforms. Therefore, we evaluate the effectiveness of including three additional 314 

costs to the objective function to regularise (simplify) the solution, which aim to reduce the 315 

variability in bed elevation from one location to the next by penalising for greater bed gradient 316 

(∇𝒛), water surface gradient (∇𝒛+h) or channel depth (𝒛𝑏𝑓 − 𝒛). In other words, we are adding 317 



regularisation terms to the optimisation to prefer simpler solutions that are shallow or give 318 

gradually varying channel beds, or yield smooth water surfaces by passing one of the following 319 

vectors to the optimiser:   320 

𝑓(𝒛) = [
𝑀(𝒛, 𝑸, 𝜽) − 𝒑

𝜌𝑆−1∇𝒛
] ;  𝑓(𝒛) = [

𝑀(𝒛, 𝑸, 𝜽) − 𝒑

𝜌𝑆−1∇(𝒛 + 𝒉)
] ;  𝑓(𝒛) = [

𝑀(𝒛, 𝑸, 𝜽) − 𝒑
𝜌(𝒛𝑏𝑓 − 𝒛)

] (6a, 6b, 6c) 321 

How much weight is given to each of the additional costs is determined by parameter ρ, where 322 

the greater the parameter value the greater the weight and greater preference for a simple 323 

solution to the bed. The weight given to the gradient based costs needs to vary depending on the 324 

slope of a reach S to have a consistent effect against any given error magnitude. e.g. we expect 325 

lower gradient rivers to require greater weights. Therefore, we normalise for this effect by 326 

multiplying ρ by the river slope S in these cases. S can be estimated from the longitudinal water 327 

surface, bank or floodplain elevations. In the next section we will test this this gradually varied 328 

flow solver approach and examine the effect of ρ for cost functions in equations 6a-c on the 329 

optimization routine.  330 

 331 

 332 



Figure 2. Conceptual diagram of a bed estimation method for test 1, using a gradually varied 333 

flow solver and non-linear least squares estimation approach. 334 

3.1.2 Results from Test 1 335 

A series of tests were implemented to assess different configurations of the bed solver objective 336 

function and establish the performance of the method verse assuming uniform flow. The simplest 337 

configuration seeks the minimum between the simulated water surface and the LiDAR water 338 

surface while the others give differing weights to the preference for a smooth and shallow bed 339 

and a smooth water surface as described by equations 6a-c. Upper and lower bounds for the bed 340 

(zub & zlb) were set such that the channel could be no more than 30 m deep from the observed 341 

water surface and no higher than 5 m above the observed water surface. This range goes well 342 

beyond physically plausible values for depth for this reach which is typically in the range 6-8 m. 343 

Manning’s equation was used to estimate the initial bed profile and to provide a benchmark. 344 

Details of the Manning’s equation implementation are provided in the supplement, however 345 

when the Manning’s bed profile was used as input to the gradually varied flow solver a root 346 

mean squared error (RMSE) of 0.34 m and mean error (ME) of -0.24 m to the LiDAR water 347 

surface was achieved.  348 

Optimizing the bed elevation to the LiDAR water surface produced a water surface with a RMSE 349 

of 0.16 m and ME of 0.073 to the LiDAR observations, 53% more accurate and significantly less 350 

biased than the Manning’s based approach. The bed profile is plotted in figure 3a and shows a 351 

high degree of bed variability relative to the observed data, with many locations where the 352 

channel is unrealistically deep relative to the observed bed.  353 

The impacts of considering bed slope, water surface slope or bed depth in the cost function are 354 

plotted in figure 4, where (4a) plots RMSE against parameter ρ for each regularization term, (4b) 355 

plots the mean errors and (4c) plots the number of iterations the nonlinear least squares optimiser 356 

needed to find a solution (effectively the relative computational cost. The most accurate of the 357 

regularization terms preferred a lower gradient bed, which could reduce the RMSE to 0.095 m 358 

and the ME to -0.007 m for a ρ value of 0.046. This is a 72% reduction in RMSE relative to the 359 

Manning’s model and is within the vertical error of the LiDAR survey. It is probably not 360 

desirable or possible to fit the observation data any better than this. Imposing a cost for deeper 361 

beds reduced the RMSE to 0.099 m with a mean error of 0.014 m for a slightly lower ρ value of 362 

0.033, which at first glance suggests this regularisation approach could be almost as successful as 363 

the constraint on bed gradient. However, the range of ρ that produced good results (defined as 364 

results that are better than the approach without the regularisation) is much narrower and mean 365 

errors (over-prediction of the water surface) increase with the magnitude of ρ. Regularising on 366 

the water surface gradient could also reduce RMSE with higher values of ρ, however not by as 367 

much as the other two methods. This approach also required over twice the computational cost at 368 

the respective optimal values of ρ, suggesting it was better to regularise directly on the variable 369 

being estimated (channel bed elevations). Overall, the most accurate regularisation approach was 370 

to include a preference for a low gradient bed, which reduced water surface RMSE at no 371 

additional computational cost compared to not including the regularisation terms. Values for ρ 372 

>0 and <0.17 would all improve the simulation accuracy and bias, however an optimal value of 373 

0.046 indicates that scaling the bed gradient to around half the observation errors in the water 374 

surface profile produced optimal results in this case. There might be benefits in combining the 375 

constraints, this is possible, and we did try it. However, RMSE was not improved with more 376 



complex regularisation schemes, which was expected given the observation errors, while the 377 

inclusion of the shallow bed preference always increased the mean error due to the shallow bias. 378 

Further reach scale tests for a range of flow profiles would be needed to test the robustness of 379 

this conclusion.   380 

Figures 3b-d plot bed estimates and corresponding simulated water surfaces for the shallow 381 

channel (3b) bed gradient (3c) and water surface gradient (3d) based regularisation approaches, 382 

all of which resulted in a simplification of the bed elevations relative to the no regularisation case 383 

in figure 3a, albeit the impact being minor in the case of the smooth water surface constraint. 384 

Therefore, the regularisation was successful in reducing the complexity of the riverbed profile 385 

and made it easier to find an optimal solution to the observed water surface. This result was 386 

expected given that the flow characteristics of this river are highly diffusive such that the water 387 

surface at any point reflects the integrated response to the downstream channel geometry, 388 

discharge and friction.  389 

Finally, additional tests were conducted given channel friction values from 0.02 to 0.07, a range 390 

of initial starting depths from 1 m to 20 m, and a range of bed estimate and water surface 391 

observation resolutions from 100 m to 2,000 m. In all cases the smooth bed regularisation term ρ 392 

was set at 0.046 (the optimum from the previous experiments). The results of these experiments 393 

are tabulated in Table 1. Friction has a negligible impact on RMSE and ME, although lower 394 

friction values required more function calls to the GVF solver in order to perform the 395 

optimization, potentially because the channel is shallower and further from the first-order 396 

estimate based on Manning’s equation. The initial bed elevation had no impact on RMSE or ME, 397 

demonstrating that the solver did not get stuck in local optima for this test. A better initial bed 398 

required substantially fewer function calls (around half) of a poor initial bed (e.g. 1 m or 20 m), 399 

but if Manning’s equation is used for the initial bed and the friction is the same between the two 400 

method it is unlikely there will be many cases where the initial bed is as poor as some of those 401 

tested here. The resolution of the observations and bed estimation points influenced the accuracy 402 

of the results with respect to both RMSE and ME, with higher resolutions being more accurate as 403 

expected. For this reach, RMSE increased by a little over 0.02 m from 2 km to 1 km, but by only 404 

0.1 cm from 1 km to 100 m. The number of function calls increased at finer resolution due to the 405 

need to estimate more bed elevations, between 2 km and 0.5 km the function calls per estimation 406 

point were essentially the same, but doubled for the 0.1 km resolution indicating that it was more 407 

difficult to fit finer resolution data.  408 



 409 

Figure 3. Optimised bed elevations and simulated water surfaces relative to LiDAR observations 410 

for (a) GFV solver method with no regularisation terms, (b) GFV solver with shallow bed 411 

preference, (c) GVF solver with low gradient bed preference, and (d) GVF solver with low 412 

gradient water surface constraint. Also plotted is the initial bed estimated from Manning’s 413 

equation and the simulated water surface from this. Channel thalweg (lowest point of channel 414 

bed) is also plotted where available, note that the assumption of a rectangular channel means we 415 

would expect the optimal bed for the model to be above that of the real irregular river sections. 416 



 417 

Figure 4. Performance of optimised channel beds for different cost functions and values of 418 

parameters ρ. Performance metrics are a) RMSE to LiDAR water surface, b) Mean Error to 419 

LiDAR water surface, & c) Number of function calls to the GFV solver by the nonlinear least 420 

squares estimation function. 421 

Table 1. Impact of changing channel friction, initial depth of channel and resolution on GVF 422 

solver water surface accuracy (in terms of RMSE and ME to LiDAR water surface observations). 423 

Function calls to the GFV solver from the least squares nonlinear optimiser are also shown and 424 

are proportional to computation cost (note that the higher resolution models are also more 425 

expensive due to the number of estimation points). 426 

Friction n Initial bed Resolution RMSE ME Function calls 

0.02 Manning 500 m 0.099 0.0025 336 

0.03 Manning 500 m 0.095 -0.0055 336 

0.04 Manning 500 m 0.094 -0.0085 168 

0.05 Manning 500 m 0.094 -0.010 168 

0.06 Manning 500 m 0.095 -0.010 168 

0.07 Manning 500 m 0.095 -0.011 168 

0.035 20 m deep 500 m 0.094 -0.007 336 

0.035 10 m deep 500 m 0.094 -0.007 196 

0.035 5 m deep 500 m 0.094 -0.007 168 



0.035 2 m deep 500 m 0.094 -0.007 336 

0.035 1 m deep 500 m 0.094 -0.007 392 

0.035 Manning 2000 m 0.121 0.056 90 

0.035 Manning 1000 m 0.094 -0.0073 168 

0.035 Manning 500 m 0.094 0.0031 324 

0.035 Manning 100 m 0.093 0.00029 3432 

 427 

3.2 Test case 2: Implementation in a global flood model 428 

Given the improved profile accuracy seen at the reach scale, a bed estimation method based on 429 

gradually varied flow was implemented within a global flood model (GFM) (Sampson et al., 430 

2015; Wing et al., 2017). This model previously used the Manning’s method for bed estimation 431 

and is described in detail by Sampson et al. (2015). A full description of the GFM is beyond the 432 

scope of this paper; however the key components include: i) a regional flood frequency analysis 433 

(Smith et al., 2015) to provide return period discharge for all points on the global river network; 434 

ii) river network and terrain data sets based on the MERIT DEM (Yamazaki et al., 2017) and 435 

MERIT HYDRO (Yamazaki et al., 2019) from which river locations and floodplain elevations 436 

were extracted; and iii) a regionalised river width estimation approach as described by Sampson 437 

et al. (2015). Numerical simulations were performed using the LISFLOOD-FP hydrodynamic 438 

model given the 1D channel from the bed solver and a 2D floodplain model based on MERIT 439 

DEM. LISFLOOD-FP is a hydrodynamic model that solves a simplification of the shallow water 440 

equation without convective acceleration terms (Bates et al., 2010; de Almeida et al., 2012). For 441 

large scale applications, it uses a regular gird with either geographic (WGS84) coordinate 442 

systems and a 1D sub-grid scheme for river channels (Neal et al., 2012; Sampson et al., 2015). 443 

All rivers were assumed to convey the 1 in 2 year flow at bank full discharge; research elsewhere 444 

is examining the sensitivity to this assumption.  445 

The GFM was implemented at 3 arc second (~90 m resolution) with bed estimates linearly 446 

interpolated from a 30 arc second (~900 m resolution) river network that includes all rivers with 447 

an upstream catchment area above 50km
2
. For small channels, the initial bank elevation profile p 448 

was taken from DEM cells directly above the channel and conditioned using a local smoothing 449 

function and monotonicity constraint.  For larger rivers, a sample of elevation values for each 450 

node was taken from DEM cells adjacent to the water mask to ensure that bank elevations (rather 451 

than water elevations) were being sampled. A clustering algorithm was used segment the 452 

sampled elevations, with the median value of the lowest cluster assumed to be the bank 453 

elevation. As with small rivers, the channel elevation profile was then conditioned using a local 454 

smoothing function and monotonicity constraint (Sampson et al., 2015). For global application 455 

there are ~0.5 billion locations where the channel bed must be estimated. Thus, although it is in 456 

theory possible to implement the GVF method as applied to the Severn test case globally, 457 

computational constraints required a simplification to the estimation process whereby the trust 458 

region reflective nonlinear least squares estimation was replaced by a simpler bed nudging 459 



approach to optimise the bed elevations from the initial bed. This nudging involved the following 460 

steps:  461 

i) solve for the water surface profile given the initial bed estimate from Manning’s 462 

equation,  463 

ii) compute the differences between bank profile and simulated water surface elevations 464 

from step 1,  465 

iii) apply the differences between the bank profile and simulated water surface from ii to the 466 

bed elevations,  467 

iv) recompute the water surface profile, and  468 

v) repeat ii, iii, iv once more to get a final set of bed elevation estimates and water surface 469 

profile errors.  470 

The GFM is implemented as 10x10 degree overlapping tiles. Downstream boundary conditions 471 

for each river were estimated using Manning’s equation at the edge of each model tile or using 472 

the GVF method results for the river mainstem where tributaries join. Coastal water heights were 473 

set to mean sea level.  For sections of supercritical flow, the channel depth was set to the critical 474 

depth because the same Froude limit is applied in the LISFLOOD-FP inundation model when 475 

implemented at large scale following Adams et al. (2017). A gradually varying flow solver 476 

capable of simulating supercritical flow transitions could be used with shallow water 477 

hydrodynamic models. A convenient implication of this assumption is that the GVF solver only 478 

ever needs downstream boundary conditions as the supercritical profile is never simulated. 479 

One GFM tile has been chosen here for further analysis to keep the data volume presentable in 480 

the following plots. It covers 10°-20° south and 20°-30° east, which includes North and Central 481 

Mozambique, Malawi, southern Tanzania and the eastern edges of Zambia and Zimbabwe. 482 

Inundation data are presented for a smaller 3°x3° region including the town of Beira and the 483 

mouth of the Zambezi river for visualisation purposes (Figure 5). Beira experienced substantial 484 

flooding in 2019 due to cyclone Idai for which the GFM data were used to produce disaster 485 

bulletins that include details of population exposure estimates (Emerton et al., 2020 (in review)).  486 

Since the site includes the delta of the Zambezi, headwaters and extensive floodplains/wetlands 487 

we believe it is indicative of most locations where GFM data may be used.  488 



 489 

Figure 5. Flood inundation depths for the 1 in 5 year return period flows for the region around 490 

Beira and the mouth of the Zambezi River, Mozambique. Model run are identical except for the 491 

specification of bed elevations from a) Manning’s method and b) GVF method.  492 

Results from the Manning’s and GVF method are presented in figure 6, which plots the 493 

difference between the water surface profiles at bank full discharge simulated by the two 494 

methods and bank height for all 144,523 channel locations within the domain. This accuracy 495 

measure is plotted against a) bank height, b) bankfull discharge, c) bank slope, and d) Froude 496 

number (defined by equation 3) in order to understand how the wave properties and physical 497 

setting affect water surface profile accuracy.  498 

Overall, the root mean squared error between simulated water surface elevations and bank 499 

heights was 0.872 m for the Manning’s method and 0.291 m for the GVF method. Mean error 500 



was 0.167 m for the Manning’s method and -0.030 m for the GVF method. From these numbers 501 

and visually in Figure 6 it was clear that the Manning’s method tended to over predict the water 502 

surface relative to the target bank heights, whereas the grad solver was unbiased while also more 503 

accurate.  Elevation and bank full discharge had no systematic impact on the magnitude of errors 504 

for either method. However, Manning’s method errors were generally larger for slopes less than 505 

10-3 m m
-1

, with almost all of the overprediction at low Froude (<0.2). The GVF method was 506 

almost always more accurate than the Manning’s method, however there were 16 points with 507 

Froude number >0.99 where errors exceed -2 m.– These points of poor performance correspond 508 

to steep features such as dam outlets and waterfalls, however the impact was limited locally to 509 

just a few model cells and did not propagate widely through the model domain. These errors are 510 

likely a weakness of out GVF solver setup in that we do not consider supercritical flow profiles 511 

or discontinuities. 512 

Given the poor performance of the Manning’s method at low Froude we investigated the 513 

relationship between water surface error and wave type following the approach of Trigg et al. 514 

(2009) following Vieira (1983). This was done by calculating the kinematic wave number k in 515 

addition to the Froude number at every river location: 516 

𝑘 =
𝑆0𝐿

ℎ𝐹𝑟2        (7) 517 

Where L is the channel length. When plotted against Froude number, suitable approximations for 518 

the wave at each point on the river network can be identified. According to the analysis of Vieira 519 

(1983), a kinematic wave is considered to be a reasonable approximation for locations with 520 

approximately k > 10 and Fr > 0.5, for k > 3 and Fr < 0.5 the wave can be characterised as 521 

diffusive, while shallow water characteristics are important for lower values of k. Figure 7 plots 522 

each river location into this wave characteristics space for both bed estimation methods. The dot 523 

colour indicates the magnitude of the profile error (truncated at 1 m to aid visualisation). 524 

Manning’s method results (figure 7a) were only accurate for reaches that can be approximated by 525 

a kinematic wave, which was expected because uniform flow is assumed. The channel depth was 526 

underestimated where diffusive or shallow water wave processes become important. The poor 527 

performance of kinematic wave models over large lowland rivers and the important role 528 

backwater effects can have on flooding is well established (Ikeuchi et al., 2015; Trigg et al., 529 

2009; Yamazaki et al., 2011) and these results are in line with the expectation that the Manning’s 530 

bed estimation method would over-predict the water surface and flood extent. 531 

The GVF method was more accurate when diffusive and shallow water wave characteristics 532 

were important, with errors >1 m mainly present at the very lowest Froude and kinematic wave 533 

numbers. Further investigation revealed these locations to be lakes (predominantly lake Malawi). 534 

It is important to note that the GFM does not include a bespoke routine for simulating lake 535 

levels. Rather, lakes are represented as very flat rivers with widths as defined as if they were 536 

rivers (Sampson et al., 2015). Given this combination of unrealistic lake widths and a flat bank it 537 

was not possible to accurately simulate the lake surface profile, and in classic applications of 538 

GVF theory lakes would usually form boundary conditions rather than be estimated. 539 

Furthermore, tributaries joining the lake connect to the flat mainstem moving down the centre of 540 

the lake account for the encircled line of negative bias points (~-1 m) at a range of different 541 

slopes in Figure 6c. The range of channel slopes for the lake are due to the transition from the 542 

steep slopes either side of Lake Malawi to the flat mainstem in the middle of the lake. Results for 543 

lakes are usually discarded and replaced by a water mask when postprocessing the GFM data, 544 



meaning the impact on risk estimates from the GFM is likely to be small. However, an improved 545 

consideration of lakes will be needed for the GFM to simulate lake levels. There are also some 546 

cases of positive errors in the shallow water flow zone, these indicate the potential for reduced 547 

accuracy under such conditions. However, the same errors are present in the Manning’s method 548 

used for initial conditions, which are not corrected by the simple optimisation routine used here. 549 

Implementing the nonlinear least squares estimation method from test 1 or supercritical flow 550 

profiles may be necessary in some location to gain accurate results.  551 

Although errors in the water surface profile can be several meters greater for the Manning’s 552 

method than the GVF method we do not expect such large errors in water surface elevation to 553 

propagate into the inundation extents because floodplain storage and conveyance will dampen 554 

the wave amplitude.  Figure 4 plots the flood inundation extents for the 1 in 5 year return period 555 

flood to assess the impact of the surface profile errors on inundation simulation. Flood extent 556 

was 40.3% greater for the Manning’s method and total floodplain storage increased by 79.4%. 557 

Meanwhile exposure to this return period was 150,000 people for the Manning’s method and 558 

90,000 people for the GVF method according to High Resolution Settlement Layer (HRSL) 559 

population data (https://www.ciesin.columbia.edu/data/hrsl/). Therefore, inaccurate specification 560 

of the channel bed by not accounting for nonuniform flow will bias flood inundation and 561 

exposure calculations. Studies that use such methods for management activities such as assessing 562 

the value of floodplains for wave attenuation and national/international scale overviews of flood 563 

defence requirements (especially for low return period events) should take note of these 564 

substantial biases.  565 

 566 

Figure 6. Plots of water surface profile errors against a) bank elevation, b) bankfull discharge, c) 567 

logged bank slope and d) Froude number. Black dots are for the Manning’s method bed 568 

estimated and green dots are for the GFV method.   569 

 570 

https://www.ciesin.columbia.edu/data/hrsl/


 571 

Figure 7. Plots of log kinematic wave number against Froude number for every point on the 572 

river network. Colours indicate water surface profile errors (truncated at ±1 m) for a) the 573 

Manning’s method and b) GVF method. Lines indicate approximate boundaries between wave 574 

types. 575 

4 Conclusions 576 

This paper has developed and demonstrated methods for channel bed estimation based on a 577 

simple gradually varied flow solver, which are suitable for application in reach scale and global 578 

scale flood models. The principal of considering nonuniform flow rather than uniform flow when 579 

estimating the bed elevations was first evaluated on a well-studied site in the UK where the 580 

accuracy of the approach could be assessed, and different numerical methods evaluated. We 581 

found that: 582 

i) The GFV method outperformed a Manning’s equation method and could reconstruct a 583 

LiDAR observed water surface profile to within the expected observation errors (<10 cm 584 

RMSE). 585 

ii) Regularization was necessary to provide realistic bed profiles. For our test, an effective 586 

way to do this was to add a cost to the objective function for stepwise changes in bed 587 

elevation scaled in proportion to the reach slope. 588 

iii) The method was robust when given friction parameterisations within typical ranges and 589 

poor initial bed estimates.  590 

iv) The bed estimation process also performed well across resolutions from 100 m to 2 km, 591 

although cost increased rapidly for negligible accuracy gain towards 100 m resolution 592 

and accuracy was reduced between 1 km and 2 km resolution.   593 

A simplified GVF bed estimation method was implemented in a global flood model (Sampson et 594 

al., 2015). Results from a test case in east Africa demonstrated that water surface profile errors 595 

were reduced from 0.872 m for the Manning’s method to 0.291 m for the GVF method. Bias 596 

towards over prediction by the Manning’s method was also eliminated with mean error falling 597 

from 0.167 m for the Manning’s model to -0.030 m for the GVF method. Improvements over the 598 

Manning’s method were greatest for reaches with diffusive or shallow water wave properties, 599 

highlighting the importance of backwater effects on the flow profile.  600 



The improved bed estimates had a substantial impact on floodplain inundation and storage 601 

dynamics for small floods when use in a hydrodynamic model. For the 1 in 5 year return period, 602 

inundation extent was reduced by 40.3%, total floodplain storage decreased by 79.4% and 603 

exposure fell from 150,000 people to 90,000 people over the study domain. Therefore, inaccurate 604 

specification of the channel bed by not accounting for nonuniform flows biased flood inundation, 605 

storage and exposure calculations. Studies that use such methods for management activities such 606 

as assessing the value of floodplains for wave attenuation and national/international scale 607 

overviews of flood defence requirements (especially for low return period events) should take 608 

note of these biases. Similarly, any flood defences added to the model will likely underperform 609 

during hydrodynamic simulation for the same reasons. For financial services applications, where 610 

catastrophe risk modelling based on event sets is often needed, the issue is particularly acute. 611 

This is because event sets must simulate flooding from both large and small return period flows 612 

in order to estimate key risk metrics such as loss exceedance probabilities. These are unlikely to 613 

be accurate with channel geometries based on Manning’s equation or other simpler methods 614 

because of too much flooding for lower return period flows.  615 
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