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Abstract.  An empirical model of radiation belt relativistic electrons (µ = 560–875 MeV G–1 and I 8 

= 0.088–0.14 RE G0.5) with average energy ~ 1.3 MeV is developed.  The model inputs solar wind 9 

parameters (velocity, density, interplanetary magnetic field (IMF) |B|, Bz, and By), 10 

magnetospheric state parameters (SYM-H, AL), and L*.  The model outputs radiation belt electron 11 

phase space density (PSD).  The model is operational from L* = 3 to 6.5.  The model is constructed 12 

with neural network assisted by information theory.  Information theory is used to select the most 13 

effective and relevant solar wind and magnetospheric input parameters plus their lag times based 14 

on their information transfer to the PSD.  Based on the test set, the model prediction efficiency 15 

(PE) increases with increasing L*, ranging from –0.043 at L* = 3 to 0.76 at L* = 6.5.  The model 16 

PE is near 0 at L* = 3–4 because at this L* range, the solar wind and magnetospheric parameters 17 

transfer little information to the PSD.  This baseline model complements well a class of empirical 18 

models that input data from Low Earth Orbit (LEO).  Using solar wind observations at L1 and 19 

magnetospheric index (AL and SYM-H) models solely driven by solar wind, the radiation belt 20 

model can be used to forecast PSD 30–60 min ahead.   21 

  22 
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Plain Language Summary 23 

An empirical model of radiation belt relativistic electrons with energy 1–2 MeV is developed.  The 24 

model inputs solar wind parameters, magnetospheric state parameters, and L*.  L* gives a measure 25 

of radial distance from the center of the Earth with a unit of RE (radius of the Earth = 6378 km).  26 

The model outputs radiation belt electron phase space density (PSD).  The model is operational 27 

from L* = 3 to L* 6.5.  The model is constructed with information theory informed neural network.  28 

Information theory is used to select the relevant solar wind and magnetospheric parameters and 29 

their lag times based on the amount of information they provide to the radiation belt electrons.  30 

The model performance increases with increasing radial distance (L*) because at distances close 31 

to Earth (L* = 3–4) the solar wind and magnetospheric parameters provide little information about 32 

the radiation belt electron PSD.  The model can be used to forecast radiation belt PSD 30–60 min 33 

ahead.   34 
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Broad Implications: A radiation belt relativistic electron model based on neural network assisted 41 

by information theory is developed.  The model performs well and complements a class of 42 

empirical models that input observations from LEO.  43 

Key points: (1) An empirical model to predict state of radiation belt relativistic electrons is 44 

developed; (2) The model PE increases with increasing L* with a max of 0.76 at L* = 6.5; (3) The 45 

model complements a class of empirical models that input observations from LEO.  46 

47 
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1. Introduction 48 

 The Earth’s radiation belts are populated by electrons having energies of hundreds of keVs 49 

to several MeVs or even higher.  These electrons are hazardous to satellites that encounter them in 50 

the inner-magnetosphere r ~1.2–8 RE, including at the geosynchronous orbit (GEO), and at their 51 

foot points at low earth orbit (LEO) in the ionosphere, where 1 RE = radius of the Earth = 6378 52 

km.  The MeV electrons can penetrate deep into spacecraft systems, leading to anomalous system, 53 

subsystem, or payload malfunctions while those with energies < 1 MeV can accumulate on or near 54 

the surface of the spacecraft structure, leading to potentially hazardous electrical discharges.   55 

 It has long been recognized that the variabilities of the radiation belt electrons, to a large 56 

extent, are driven ultimately by variability of the solar wind (e.g., Baker et al., 1990, 2018; 2019; 57 

Li et al., 2001; 2005; Reeves, 2007; Ukhorskiy et al., 2004; Reeves et al., 2013; Xiang et al., 2017; 58 

Pinto et al., 2018; Zhao et al., 2017, Alves et al., 2017).  However, many solar wind parameters 59 

positively and negatively correlate with one another, which can complicate the interpretation as to 60 

which solar wind parameters are the real drivers and which parameters are only coincidentally 61 

correlated with the radiation belt electrons (e.g., Wing et al., 2016; Wing and Johnson, 2019; 62 

Borovsky, 2018; 2020; Maggiolo et al., 2017; Wing et al., 2021).  For example, solar wind velocity 63 

(Vsw) positively correlates with radiation belt electron fluxes (Je) (e.g., Baker et al., 1990; Reeves 64 

et al., 2011; Balikhin et al., 2011; Paulikas and Blake, 1979; Li et al., 2001; 2005; Wing et al., 65 

2016; 2020).  Solar wind density (nsw) negatively correlates with radiation belt Je (e.g., Li et al., 66 

2005; Lyatsky and Kazanov, 2008a; Kellerman and Shprits, 2012; Rigler et al., 2007; Balikhin et 67 

al., 2011; Wing et al., 2016; 2020).  However, Vsw negatively correlates with nsw (e.g., Wing et al., 68 

2016; 2021; Borovsky, 2020).  69 

 Radiation belt electrons also have strong dependences on the magnetospheric state, which 70 
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can be proxied by geomagnetic activity indices such as SYM-H and AL (e.g., Reeves et al., 1998; 71 

Baker et al., 2019; Lyatsky and Khazanov, 2008b; Borovsky and Denton, 2014; Tang et al., 2017b; 72 

Borovsky, 2017; Zhao et al., 2017).  SYM-H index gives a measure of the strength of the ring 73 

current and geomagnetic storms (Iyemori, 1990) while AL gives a measure of the strength of the 74 

westward auroral electrojets and substorms (Davis and Sugiura, 1966).  SYM-H is similar to 75 

Disturbance Storm Time (Dst) index (Dessler and Parker, 1959), except that SYM-H index has 76 

one minute time resolution whereas Dst index has one hour resolution.  Unfortunately, SYM-H 77 

and AL both also correlate with solar wind parameters, which raises the question how much 78 

additional unique information these two magnetic indices provide to the radiation belt electrons 79 

and what their response lag times may be, given the solar wind parameters (Wing et al., 2021).   80 

 Wing et al. (2016; 2021) showed that information theoretic tool such as conditional mutual 81 

information can be quite useful to untangle the intertwined solar wind and magnetospheric drivers 82 

of the radiation belt electrons.  They were able to isolate the effect of individual drivers and their 83 

response lag times.  Moreover, they ranked the solar wind and magnetospheric parameters based 84 

on the information transfer of these parameters to the radiation belt Je (Wing et al., 2016) and more 85 

recently, electron phase space density (PSD) (Wing et al., 2021).  Thus, those studies provided 86 

relevant and useful information for radiation belt modeling.  87 

 Machine learning algorithms such as neural networks (NN) and deep learning (Rumelhart 88 

and McClelland, 1987; Schmidhuber, 2015) has found wide applications in space weather, 89 

particularly in empirical modeling.  For example, NN have been used to develop models for Kp 90 

(e.g., Boberg et al., 2000; Wing et al., 2005; Wintoft et al., 2017), geomagnetic storm (Wu and 91 

Lundstedt, 1997), source regions of particle precipitation (Newell et al., 1990; 1991), high-92 

frequency (HF) backscattered signals (Wing et al., 2003).  NN have also been used to construct 93 
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empirical radiation belt models (e.g., Koons and Gorney, 1991; Perry et al., 2010; Ling et al., 94 

2010; Smirnov et al., 2020; Claudepierre and O’Brien, 2020; Pires de Lima et al., 2020; Chen et 95 

al., 2019; Simms and Engebretson, 2020).  These empirical models generally complement physics-96 

based models, e.g., DREAM (Reeves et al., 2012), SPACECAST (Horne et al., 2013), VERB 97 

(Shprits et al. 2009) and other empirical models that use different approaches, e.g., NARMAX 98 

(Wei et al., 2011; Balikhin et al., 2016), Kalman filter (Coleman et al., 2018), linear prediction 99 

filter (Baker et al., 1990; Kellerman et al., 2012; Chen et al., 2019).  For operational purpose, one 100 

may need to consider trade-offs among accuracy, computational speed, computing resource 101 

requirements, availability of input parameters, ease of use, etc.  102 

 The Van Allen Probes or Radiation Belt Storm Probe (RBSP) mission ended in 2019 and 103 

there is no dedicated follow-on mission to the equatorial radiation belts planned in the near future.  104 

The Polar Operational Environmental Satellite (POES) program, which provides observations of 105 

the precipitating radiation belt electrons, may end in the next several years and there is no current 106 

plan to replace those assets.  Moreover, as discussed later, NN models that input the past values of 107 

the output parameters tend not to be able to respond accurately and timely to sudden changes in 108 

the solar wind drivers, e.g., sudden arrivals of density/pressure pulses or coronal mass ejections 109 

(CMEs) (e.g., Wing et al., 2005).   110 

 The present study develops an empirical model of radiation belt electron PSD using an 111 

information-theory informed NN as the core of the model (Johnson and Wing, 2018).  From the 112 

consideration of the versatility of running the model in real time and the aforementioned 113 

challenges, our model inputs only solar wind and magnetospheric state parameters (proxied by 114 

geomagnetic indices) and outputs outer radiation belt electron PSD.  The input parameters and 115 

their lag times are determined from Wing et al. (2021) information theoretic analysis of the solar 116 
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wind and magnetospheric drivers of PSD.   117 

 118 

2.  Data set 119 

 The NASA’s Van Allen Probe (RBSP) mission, which was launched in 2012, consisted of 120 

two identically instrumented spacecraft in near-equatorial orbit (about 10° inclination) with 121 

perigee at 600 km altitude and apogee at 5.8 RE geocentric (Mauk et al., 2013).  The MAGnetic 122 

Electron Ion Spectrometer (MagEIS) is part of the Energetic particle, Composition, and Thermal 123 

plasma Suite (ECT) instrument on board of RBSP (Spence et al.,, 2013).  MagEIS measured the 124 

energy range of 30 keV to 4 MeV for electrons and 20 keV to 1 MeV for ions (Blake et al., 2013).  125 

 Radiation belt electron dynamics can often be well-organized by electron PSD as a function 126 

of the three by their adiabatic invariants and PSD (µ, I, L*) where µ = the first adiabatic invariant 127 

related to the gyromotion perpendicular to the magnetic field line, I = the second adiabatic 128 

invariant related to the bounce motion along the field line (some studies use K instead of I, but 129 

they are related) (Green and Kivelson, 2004), and L* = the third adiabatic invariant related to the 130 

curvature and gradient drift motion around the Earth (actually L* is inversely proportional to the 131 

traditional third invariant F) (Roederer, 1970; Schulz and Lanzerotti, 1974). 132 

 The radiation belt electron PSD from MagEIS is calculated at 1 min resolution using TS04 133 

magnetic field model (Tsyganenko and Sitnov, 2005) and a method similar to that used in Turner 134 

et al., 2014a; 2014b).  We select the electrons with µ = 560–875 MeV G–1 and I = 0.088–0.14 RE 135 

G0.5.  These electrons have an average energy of about 1.3 MeV over L* = 2.9–6.5 and are 136 

concentrated near the magnetic equator (i.e., mirroring at low magnetic latitudes); thus, they are 137 

representative of the core population of relativistic electrons in Earth’s outer radiation belt. 138 

 The solar wind, AL, and SYM-H data 2013-2018 at 1-min resolution from the OMNI 139 
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dataset were used and provided by NASA (http://omniweb.gsfc.nasa.gov/).  Both the PSD and 140 

OMNI data 2013-2018 are averaged with 30 min sliding window.  141 

 We merge each OMNI solar wind parameter (Vsw, nsw etc.) with the RBSP electron PSD 142 

(data from both RBSP A and B are used).  The merged dataset has ~64,500 points distributed from 143 

L* = 2.9 to 6.5.  However, the distribution is not uniform across L*, as shown in Figure 1.  144 

 145 

3.  Methodology 146 

 It has been increasingly popular to use NN, including deep learning, to develop empirical 147 

space weather models, including radiation belt models.  However, a novelty with our approach is 148 

that we use information theory to assist with the modeling.  Figure 2 shows the schematic of the 149 

model.   150 

 The model inputs solar wind, magnetospheric parameters, and L*; and outputs radiation 151 

belt electron PSD.  Wing et al. (2021) ranked the solar wind and magnetospheric parameters based 152 

on the information transfer to the PSD (see Table 1 in Wing et al. (2021)).  We select the top 8 153 

parameters as the model input parameters, namely solar wind velocity, SYM-H, AL, solar wind 154 

dynamic pressure, IMF |B|, IMF Bz, solar wind density, and IMF By (in decreasing order by the 155 

amount of information transferred from the parameter to radiation belt electron PSD).  The solar 156 

wind dynamic pressure usually tracks the solar wind density fairly well and the information content 157 

in the dynamic pressure is entirely captured by the solar wind speed and density, so we omit solar 158 

wind dynamic pressure.  The input parameters and their lag times are listed in Table 1.  The model 159 

outputs PSD with no time lag with respect to the arrival time of the solar wind at the magnetosphere 160 

(nowcast).   161 

 The NN architecture used is the standard feedforward–backpropagation network, which is 162 
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sometimes referred to as multi-layered perceptrons (MLP).  The NN architecture has 5 layers: 1 163 

input layer (531 nodes), 1 output layer (1 node), and 3 hidden layers (each has 800 nodes).  The 164 

model is developed using python and Tensorflow machine learning package, which is an open 165 

source package (Abadi et al., 2016). 166 

 All the input and output parameters are normalized.  The PSD distribution is skewed to the 167 

left as shown in Figure 3a.  In order to get higher performance, log PSD is used rather than PSD.  168 

Log PSD (Figure 3b) reduces the skewness in the original PSD distribution, which would help 169 

training the NN.  Both RBSP A and B data are split into two sets: (1) training set and (2) test set.  170 

The training set consists of data in the time intervals (2013.5–2015.5), (2016–2017), (2017.5–171 

2018.5) while the test set consists of (2013–2013.5), (2015.5–2016), (2017–2017.5), and (2018.5–172 

2019.0).  Staggering the training and test sets ensures no systematic temporal bias (e.g., solar cycle 173 

dependencies) are present in the resulting model. 174 

 175 

4.  Results 176 

 In order to show the model performance, we select two long events from the test set where 177 

there are at least two weeks of continuous solar wind observations, AL and SYM-H records, and 178 

RBSP electron PSD observations: (1) 2013 April 27 – May 13 and (2) 2017 Mar 13 – 29.  These 179 

intervals are selected also because they exhibit a wide range of solar wind driving as well as 180 

geomagentic storm and substorm dynamics. Thus, they are intended to show how well the model 181 

can perform under average and unusual solar wind and magnetospheric conditions.  They are 182 

certainly not intended to show the best examples of the model performance.  183 

 Figures 4 plots solar wind velocity (a), density (b), SYM-H (c), AL (d), L* and model PSD 184 

(e), D log PSD = log(observed PSD) – log(model PSD) (f), and observed and model PSD (g) for 185 
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the first half of the first event, 2013 April 27 – May 5.  Panel d shows quasi-periodic substorms 186 

(minimum AL > –400 nT) throughout the interval, which is fairly typical (Borovsky and 187 

Yakymenko, 2017).  However, an unusual feature of this interval is that there is a sharp density 188 

pulse (maximum ~15 cm–3) that is followed by a moderate storm (minimum SYM-H ~ –60 nT) 189 

and large substorm (minimum AL ~ –900 nT) on May 1.  Panel g shows that there is a drop in 190 

PSD on May 1, which may be attributed to magnetopause shadowing due to the sharp rise in solar 191 

wind density and dynamic pressure (e.g., Li et al., 2001; Kellerman and Shprits, 2012; Turner et 192 

al., 2012; Ukhorskiy et al., 2006).  However, the PSD seems to have recovered by the end of May 193 

2.  Panels f and g show that the model generally performs reasonably well throughout this interval 194 

even in the presence of quasi periodic substorms, but it does not do as well around the 195 

density/pressure pulse and the storm and substorm on May 1–2.  At high L*, L* > 4, the model 196 

PSD appears to track the decrease and then the increase of the observed PSD reasonably well.  197 

However, at low L*, L* < 4, the model PSD decreases significantly, by more than an order of 198 

magnitude, whereas the observed PSD does not appear to be affected much by the density pulse.   199 

 Figure 4f shows that most of the time the observed and model PSD are within the same 200 

order of magnitude of each other, |D log PSD| < 1 (c3 MeV–3 cm–3)–1.  Large |D log PSD| generally 201 

corresponds to low PSD and low L* that is in the slot region.  In order to show this, several dotted 202 

vertical red lines are drawn to connect some of the largest |D log PSD| in Figure 4f to their 203 

corresponding PSD in Figure 4g.  This trend can be seen throughout Figure 4.  When PSD is low, 204 

a little discrepancy from the observed value would lead to large |D log PSD|.  Low PSD may be 205 

less relevant for space weather than high PSD within the outer radiation belt.  It should be noted 206 

that as shown in Figure 4, most of the time, the error is small, |D log PSD| < 1 (c3 MeV–3 cm–3)–1, 207 

for high and low PSD,  208 
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 Figure 5 presents the interval 2013 May 05–13, which is the second half of the first event, 209 

in the same format as Figure 4.  As in Figure 4, panel d shows quasi periodic moderate and small 210 

susbstorms (minimum AL > ~ –300 nT) throughout the interval.  This interval starts out with a 211 

small storm (minimum SYM-H ~ –28 nT) on May 5, and a narrow density pulse (maximum density 212 

~ 19 cm–3) on May 6.  There is a brief PSD decrease that occurs at or just before the storm onset 213 

on May 5, but the model misses this brief drop in PSD (panel g), resulting in a brief large 214 

discrepancy (D log PSD < –2 (c3 MeV–3 cm–3)–1) on panel f.  Unlike the density/pressure pulse in 215 

Figure 4, the density/pressure pulse on May 6 does not seem to affect the observed PSD that much, 216 

but the model responds by decreasing its PSD, particularly at L* < 4, resulting in a brief large 217 

discrepancy (D log PSD > 1 (c3 MeV–3 cm–3)–1) on May 6 (panel g).  The rest of the interval has 218 

no storm, but there are small and moderate substorms (minimum AL > –300 nT).  The model 219 

performs well (|D log PSD| < 1 (c3 MeV–3 cm–3)–1) during this interval, except near the end at low 220 

L* (L* < 4) where D log PSD > 1 (c3 MeV–3 cm–3)–1.  It is not clear what causes the model to 221 

underestimate PSD at this time.  As in Figure 4, several dotted vertical red lines from some of the 222 

largest |D log PSD| are drawn in panels f and g to show that generally large |D log PSD| corresponds 223 

to low PSD, but most of the time the error is small for large and small PSD.    224 

 Figure 6 presents the interval 2017 Mar 13–21, which is the first half of the second event 225 

in the same format as Figures 4 and 5.  This interval shows the worst model performance out of 226 

the four intervals presented herein and one of the worst intervals seen in the entire test set.  As in 227 

the previous intervals, there are quasi periodic small and moderate substorms (minimum AL > –228 

350 nT) in panel d.  The solar wind velocity fluctuates but is lower than average, < 400 km s–1, 229 

throughout the interval. There is a broad density pulse (maximum ~ 23 cm–3) on Mar 15, which is 230 

followed by a small storm (minimum SYM-H ~ – 20 nT) and moderate substorm (minimum AL 231 
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~ –350 nT) near the beginning of Mar 16. There is no significant change in the observed PSD that 232 

can be attributed to these solar wind parameters and magnetospheric activity indices (storm and 233 

substorm).  However, the increase of solar wind density/pressure followed by substorm injections 234 

cause the model PSD to first decrease due to the expected magnetopause shadowing (e.g., Li et al., 235 

2001; Kellerman and Shprits, 2012; Turner et al., 2012; Ukhorskiy et al., 2006; Wing et al., 2016; 236 

2021) and then increase due to the expected storm-time acceleration and substorm injections (e.g,, 237 

Baker et al., 1996; Tang et al., 2017a; Boyd et al., 2016; Wing et al., 2016; 2021; Meredith et al., 238 

2001; Li et al., 2009).  It is not clear why this expected behavior is not observed in the RBSP PSD.  239 

Because the model significantly decreases its PSD while the observed PSD does not significantly 240 

change, the model PSD severely underestimates the observed PSD at all L* as seen in panels f and 241 

g.  As before, several dotted vertical red lines from some of the largest |D log PSD| are drawn in 242 

panels f and g to show that large |D log PSD| fairly consistently corresponds to low PSD. 243 

 Figure 7 presents the interval 2017 Mar 21–29, which is the second half of the second event 244 

in the same format as Figure 6.  The solar wind velocity is higher than average, > 500 km s–1, 245 

throughout most of the interval.  This interval has two interesting features, one at the beginning 246 

and one at the end of the interval.  At the beginning of the interval, there is a density pulse 247 

(maximum ~ 32 cm–3) which is followed by a large substorm (minimum AL ~ –750), but there is 248 

no indication of a corresponding geomagnetic storm.  In response to the density/pressure increase, 249 

both the observed and model PSDs first decrease and then increase on Mar 21–22.  However, the 250 

model PSD decreases more than the observed PSD, resulting in a large discrepancy with D log 251 

PSD > 2 (c3 MeV–3 cm–3)–1.  However, the model PSD increases quickly such that by the end of 252 

Mar 21, it has more or less caught up with the observed PSD.  Thereafter, the model PSD tracks 253 

the observed PSD fairly well as they are both recovering from the electron loss due to the 254 
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magnetopause shadowing.  The PSD completely recovers by the middle of the day on Mar 22 and 255 

thereafter, the model PSD generally performs well (D log PSD < 1 (c3 MeV–3 cm–3)–1) as shown in 256 

panels f and g.  As before, several dotted vertical red lines from some of the largest |D log PSD| 257 

are drawn to show that large |D log PSD| fairly consistently corresponds to low PSD. 258 

 At the end of the interval, there is another density pulse (maximum ~22 cm–3) that is 259 

followed by a large or moderate storm (minimum SYM-H ~ – 80nT) and three large substorms 260 

(two with minimum AL ~ –1000 nT one with minimum AL ~ –750 nT) on Mar 27.  In response, 261 

the observed PSD decreases soon after the density/pressure pulse in the first half of Mar 27 and 262 

then increases.  The observed PSD completely recovers by the middle of the day on Mar 28.  The 263 

model PSD tracks the observed PSD fairly well during this highly disturbed period (D log PSD < 264 

1 (c3 MeV–3 cm–3)–1) as shown in panels f and g.   265 

 Figures 4–7 show that the model performs well and the error is small for large and small 266 

PSD.  There are instances when the error is large, |D log PSD| > 1 (c3 MeV–3 cm–3)–1, but these 267 

points are usually associated with low PSD.   268 

 The model performance has also been evaluated statistically.  There are 23,853 number of 269 

points in the test set.  Based on the evaluation of model PSD for the entire test set: root mean 270 

square (rmse) = 3.1´10–6 c3 MeV–3 cm–3; the mean absolute percent error (mape) = 115%; the 271 

median absolute percent error = 57%; and the prediction efficiency (PE) = 0.62.  PE is defined as 272 

𝑃𝐸 = 1 −	 ∑ (#!	%	&!)"#
$

∑ (#!	%	(#))"#
$

	 where o = observed PSD, m = model PSD, <o> = mean observed PSD.  273 

PE = 1 indicates the model PSD exactly matches the observed PSD while PE = 0 indicates the 274 

model simply outputs the mean value.  PE < 0 indicates the model output is worse than simply 275 

outputting the mean for each point in the test set.   276 

 The model performance has a dependence on L*.  The data are binned from L* = 3 to 6.5 277 
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into 7 bins with each bin having 0.5.  Figure 8a plots the PE as a function of L*, which ranges 278 

from from –0.043 for L* = 3 to 0.76 for L* = 6.5.  Figure 8b shows the histogram of the number 279 

of points in each bin.  The L* = 6–6.5 bin has the fewest points, n = 227 and hence the PE for this 280 

bin may be less accurate than those for other L* bins.  The PE for the entire test set (0.62) is close 281 

to that obtained for L* = 4.5–5.5 because this L* range has the most data points as shown in Figure 282 

8b.   283 

 The model PSD accuracy generally increases with increasing distance from the Earth 284 

(increasing L*).  The model PE for L* = 3–4 is nearly 0 because the solar wind and magnetospheric 285 

drivers have less influence on the PSD at this location that at L* > 4.  Indeed, Wing et al. (2021) 286 

showed that the solar wind density transfers information to PSD only at L* > 4.5.  Solar wind 287 

velocity and AL transfer information to PSD at L* > 4 and only small amount of information at 288 

L* = 3.5–4.  Out of all the parameters that are inputted to the model, only SYM-H transfers 289 

information to PSD all the way to L* = 3, but the amount of information transfer at L* = 3–3.5 is 290 

small.  Conversely, the input parameters (solar wind parameters, SYM-H, and AL) provide 291 

significant information about PSD at L* > 4 (Wing et al., 2021) and consequently, the model 292 

performance improves at this L* range.   293 

 The model PE is similar to that obtained by DREAM (Reeves et al., 2012) at L* > 4.5 and 294 

slightly better than that obtained by DREAM at L* < 4.5.  As with DREAM, our model performs 295 

better than AE8min (Vette, 1991) and CRRESELE (Brautigam and Bell, 1995) models.  For many 296 

years, AE8 series model was considered standard for engineering applications.  (AE8min model 297 

is superseded by a newer model, AE9, (Ginet et al., 2013), but like AE8, AE9 is a statistical model 298 

that is not relevant to individual event-based prediction).  299 

 We have also compared our model PE with that of PreMevE 2.0, which inputs solar wind 300 
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velocity, POES and Los Alamos National Laboratory (LANL) geosynchronous satellite 301 

observations of MeV electrons at LEO and GEO, respectively, (Pires de Lima et al., 2020).  The 302 

comparison is inexact because PreMevE 2.0 uses 5-hour time resolution, and forecasts 100 keV – 303 

2MeV electron fluxes one day ahead.  If these differences can be ignored, PreMevE 2.0 performs 304 

better than our model at L = 2.8–4.5 (PE = 0.6–0.8), but not as well at L = 4.5–6 (PE = 0.4–0.6).  305 

Their high PE at L < 4.5 can be attributed to the model inputting POES data.  As noted by the 306 

authors, PreMeVE 2.0 forecasted values often lag behind the observations when the fluxes 307 

suddenly jump in response to the sudden change in the solar wind drivers (Pires de Lima et al., 308 

2020), presumably because the NN assigns more weight to the POES electron fluxes than to the 309 

solar wind velocity as discussed in the next Section.  310 

 311 

5.  Discussion and conclusion 312 

 The radiation belt electron PSD has dependences on the solar wind drivers and the state of 313 

the magnetosphere.  The PSD also has a strong dependence on its past values because the 314 

magnetospheric dynamics can often be characterized, to a large extent, as being persistent.  315 

Because of this magnetospheric persistence characteristic, knowledge of the previous values of 316 

PSD (or Je), either directly from in situ satellites or inferred from the precipitating electrons, would 317 

immensely help NN learn more easily and reduce the error of the output PSD (or Je) significantly 318 

(e.g., Pires de Lima, 2020; Ling et al., 2010).  However, a common problem for supervised learning 319 

NN models is that during the learning phase, the models would learn quickly that they would do 320 

very well if they assigned a lot of weight on the previous values and far less weight on the solar 321 

wind input parameters.  As a result, the model output would, to some extent, mimic the input value 322 

with some time lag and would not be able to respond correctly and timely to sudden changes in 323 
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the solar wind drivers, e.g., sudden arrival of CMEs or density/pressure pulses.  This persistence 324 

behavior is widely seen not just in the radiation belt models, but also in other magnetospheric 325 

models that input past values of the predicted parameters (e.g., Wing et al., 2005; Pires de Lima, 326 

2020).   327 

 The present study develops an empirical radiation belt model that inputs solar wind 328 

parameters, the magnetospheric state parameters as proxied by AL and SYM-H, and L* (i.e., 329 

location in the radiation belts).  The model outputs radiation belt electron PSD at a particular set 330 

of adiabatic invariant coordinates (µ = 560–875 MeV G–1 and I = 0.088–0.14 RE G0.5, and user-331 

input L*).  It is, of course, more challenging to model PSD without having its past values as a 332 

reference.  On the other hand, the model PSD does not exhibit the undesired persistence behavior 333 

where the output PSD would simply mimic the observed PSD with a time lag. Also, this new 334 

model can operate independent of input data from any radiation belt observatories, whether they 335 

be in the near-equatorial plane (e.g., Van Allen Probes) or at LEO (e.g., POES). This renders the 336 

model robust for operational space weather purposes. 337 

 The study demonstrates how information theory can be used to assist empirical modeling 338 

of the radiation belt electron variability.  Information theory is used to select the solar wind 339 

parameters and magnetospheric indices (proxy for the magnetospheric state) and their optimal lag 340 

times.  The rather large number of past values, up to 72 hours, used in some input parameters (see 341 

Table 1) are justified because the results from information theory analysis reveals long range linear 342 

and nonlinear causal relationship between these parameters and PSD (Wing et al., 2021).  343 

Information theory analysis also helps explain the model performance such as increasing PE with 344 

increasing L* as discussed in Section 4.  Recently, there has been increasing amount of efforts put 345 

into developing “explainable” models, which stems from the desire to build more confidence on 346 
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the usage of black box models such as neural networks.  The fact that all the input parameters and 347 

their lag times have been shown to transfer information to PSD (instead of choosing input 348 

parameters in an ad hoc manner) and the model performance falls within the expected behavior of 349 

information theory analysis, should help build confidence in our model.   350 

 Moreover, we have used one of the simplest neural network architecture, namely feed 351 

forward-backpropagation or MLP architecture.  Although the neural network dimension is wide 352 

and deep, the simple architecture allows for relatively quick training and development time (the 353 

model was developed on a laptop computer).  However, despite the simple architecture, the model 354 

appears to perform well.  Using PE as a metric, the model performs as well as or slightly better 355 

than DREAM (Reeves et al., 2012) and performs better than AE8min (Vette, 1991) and 356 

CRRESELE (Brautigam and Bell, 1995) models.  Moreover, in our model, the error is generally 357 

small, |D log PSD| < 1 (c3 MeV–3 cm–3)–1.  There are instances when the error is large, but these 358 

points are usually associated with low-PSD slot region, which is expected considering the very 359 

high and sharp gradient in PSD at the boundary between the outer belt and the slot.  Also, low PSD 360 

may have smaller space weather impacts.  The good performance can be attributed, at least partly, 361 

to the usage of information theory, which guides the selection of the input parameters and their lag 362 

times.   363 

 Interestingly, just like our model, the DREAM model PE increases with increasing L* but 364 

for a different reason.  DREAM performs better at higher L* because the model was developed 365 

using data at L* > 4.2 (Reeves et al., 2012) whereas our model performs better at higher L* because 366 

solar wind and magnetospheric indices (SYM-H, AL) transfer more information to higher L* than 367 

lower L*.  This behavior can be contrasted to a class of empirical models that input precipitating 368 

radiation belt electrons observed at LEO.  For example, the PEs for PreMevE (Chen et al., 2019) 369 
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and PrevMevE 2.0 (Pires de Lima et al., 2020) generally decrease with increasing L because the 370 

models input POES data.  PreMevE inputs only observations from POES at LEO and LANL at 371 

GEO (Chen et al., 2019).  The lower performance with increasing L is also seen in another model, 372 

SHELLS, which inputs POES data (and Kp) (Claudepierre and O’Brien, 2020).  They suggested 373 

that this behavior can be explained by (1) pitch angle scattering rate, which is proportional to |B|, 374 

decreases with increasing L; (2) rate of radial diffusion increases with L; and (3) low to high 375 

altitude mapping accuracy decreases with increasing L due to deviation from dipolar field.  Thus, 376 

it can be seen that based on the performance as a function of L or L*, our model can complement 377 

a class of empirical models that input POES data or in general, LEO satellite data.   378 

 For operational consideration, the model can input solar wind observations that are 379 

routinely available from the solar wind monitor at L1 and forecast PSD 30–60 min ahead.  The 380 

input AL can be obtained from an AL forecast/nowcast model that is driven entirely by solar wind 381 

(e.g., Luo et al., 2013; Li et al., 2007; Weigel et al., 1999; Amariutei et al., 2012).  Likewise, the 382 

input SYM-H can be obtained from a SYM-H or Dst forecast/nowcast model that is driven entirely 383 

by the solar wind (e.g., Temerin and Li, 2006; Cai et al., 2009; Bhaskar and Vichare, 2019; 384 

Chandorkar et al., 2017; Siciliano et al., 2021).  The Luo et al. (2013) AL and Temerin and Li 385 

(2006) Dst forecasts are routinely made available at the University of Colorado website 386 

http://lasp.colorado.edu/space_weather/dsttemerin/dsttemerin.html.   387 

 The present model, which uses simple neural network architecture, is intended to serve as 388 

a baseline model.  To follow up on the present study, we plan to use a more sophisticated neural 389 

network architecture, long short term memory (LSTM), which was designed to work with time 390 

series data, and hence holds promises for better performance.    391 

 392 
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Input and output parameters of the model 664 

 Input parameters Output parameter 

1 Vsw(t) to Vsw(t–72 hr) PSD (t) 

2 nsw(t) to nsw(t–12 hr)  

3 IMF |B(t)| to |B(t–10 hr)|  

4 IMF Bz(t) to Bz(t–10 hr)  

5 IMF By(t) to By(t–10 hr)  

6 SYM-H(t) to SYM-H(t–72 hr)  

7 AL(t) to AL(t–72 hr)  

 665 

Table 1.  Input and output parameters of the model.  Vsw = solar wind velocity. nsw = solar wind 666 

density. IMF (By, Bz) = GSM y and z component of the interplanetary magnetic field, respectively.   667 
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 671 
Figure 1.  The distribution of the merged RBSP and OMNI dataset 2013–2018.   672 
 673 
  674 
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 678 

 679 

Figure 2.  Schematic of the model that combines information theory and neural network.  The 680 
neural network inputs the solar wind and magnetospheric parameters and L*; and outputs PSD 681 
(see Table 1).  Information theory is used to select and rank solar wind and magnetospheric 682 
parameters and their lag times based on information transfer to radiation belt electron PSD.  The 683 
model operates at L* range from 3 to 6.5. 684 
  685 
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 687 

Figure 3.  The distribution of PSD (a) and log PSD (b). 688 
 689 

  690 



35 

 691 

Figure 4.  Solar wind velocity (a), solar wind density (b), SYM-H (c), AL (d), L* and log model 692 
PSD (e), D log PSD = log(observed PSD) – log(model PSD) (f), and observed (green curve) and 693 
model PSD (blue curve) (g) for 2013 April 27 – May 5, which is the first half of the first event.  694 
The unit for PSD and DPSD is (c3 MeV–3 cm–3).  In panels f and g, dotted vertical red lines are 695 
drawn to show that generally large |D log PSD| can be associated with low PSD.  696 
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 697 
Figure 5.  Solar wind velocity (a), solar wind density (b), SYM-H (c), AL (d), L* and log model 698 
PSD (e), D log PSD = log(observed PSD) – log(model PSD) (f), and observed (green curve) and 699 
model PSD (blue curve) (g) for 2013 May 5 – 13, which is the second half of the first event.  The 700 
unit for PSD and DPSD is (c3 MeV–3 cm–3).  In panels f and g, dotted vertical red lines are drawn 701 
to show that generally large |D log PSD| can be associated with low PSD.  702 
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 703 
Figure 6.  Solar wind velocity (a), solar wind density (b), SYM-H (c), AL (d), L* and log model 704 
PSD (e), D log PSD = log(observed PSD) – log(model PSD) (f), and observed (green curve) and 705 
model PSD (blue curve) (g) for 2017 Mar 13 – 21, which is the first half of the second event.  The 706 
unit for PSD and DPSD is (c3 MeV–3 cm–3).  In panels f and g, dotted vertical red lines are drawn 707 
to show that generally large |D log PSD| can be associated with low PSD.  708 
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 709 
Figure 7.  Solar wind velocity (a), solar wind density (b), SYM-H (c), AL (d), L* and log model 710 
PSD (e), D log PSD = log(observed PSD) – log(model PSD) (f), and observed (green curve) and 711 
model PSD (blue curve) (g) for 2017 Mar 21 – 29, which is the second half of the second event.  712 
The unit for PSD and DPSD is (c3 MeV–3 cm–3). In panels f and g, dotted vertical red lines are 713 
drawn to show that generally large |D log PSD| can be associated with low PSD. 714 
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 715 
Figure 8. The model prediction efficiency (PE) of the test set as a function of L* (a).  The PE is 716 
lower at L* < 4 or 4.5 because solar wind and magnetospheric parameters transfer little information 717 
to PSD at these L*.  The distribution of the test set (b).   718 
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