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In the Arctic, the spatial R
distribution of boreal forest -
cover and soil profile

transition characterizing the
Taiga-Tundra Ecological
Transition Zone (Taiga- 5.‘
Tundra Ecotone: TTE) is :
experiencing an alarming e
transformation.

Permafrost thaw and
feedback mechanisms
remain critical of climate
change in this region.
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CALM site validation practices
jointly support the monitoring
and forecasting precision of
permafrost thaw/active layer
depth dynamics and forest
canopy/vegetation distribution
spatiotemporality among the

| Tundra and Taiga
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SIBBORK-TTE MODEL FRAMEWORK | TESTING PERMAFROST MODULAR
UPGRADES (SUBROUTINES) WITH CALM SITE IN-SITU DATA COLLECTION

* To evaluate the performance of the SIBBORK-TTE model and continue monitoring permafrost thaw and
vegetation distribution in the TTE, four CALM validation sites were selected based on geographic proximity to
a pre-existing TTE site in the Brooks Range (Brooks02; 67.476°N, 150.059°W); the low temporal resolution is
a function of site institution/accessibility and terrain constraints accompanying in-situ data sampling collection
(1996-2017).

*  Prior to validation, Brooks02 model simulation performance metrics were first analyzed relative to CALM model
simulations with cross-model output comparisons/residuals (RMSE) based on annual maximum permafrost
thaw depth and rate of change (August). After cross-model simulation analyses, CALM site model-in situ data
validation processing began. DEM-upscaled simulations of annual maximum permafrost thaw depths and rates
of change were compared to the in situ measurements.

Sites: Brooks02 (Mountainous Trees/Shrubs Site, TTE), Old Man (Flat Trees/Shrubs Site, CALM), Chandalar Shelf (Mountainous Shrubs Site, CALM),
Toolik1km (Flat Shrubs Site, CALM), and ToolikMAT (Flat Shrubs Site, CALM)
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We validated site-specific model simulations
with CALM in-situ field observations.
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Active Layer Depth (m)
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Active Layer Depth Rate of Change (m/year)

CALM Site SIBBORK-TTE Model v. In-Situ Validation: Annual
Maximum Permafrost Thaw Depth Rate of Change (RMSE:0.1380)
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SIBBORK-TTE MODEL CMIP6 PROJECTIONS (1980-2100)

e SIBBORK-TTE Model Driver: Instantiation of a warming climate function with mean
monthly temperature and precipitation (with standard deviations) and average seasonal
rate of change (slope) alongside real climate collection arrays, i.e. MERRAZ2 (1980-2017)
+ CMIP6 (2018-2100) datasets.

o CMIP6.ScenarioMIP.CAS.FGOALS-f3-L.ssp585.r1i1p1f1.Amon.tas.gr, Version: 20191013
o CMIP6.ScenarioMIP.CAS.FGOALS-f3-L.ssp585.r1i1p1f1.Amon.pr.gr, Version: 20191013

WCRP2‘CMIP6

.~ ,'
World Climate Research Programme
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Model Results and Analyses

As indicated by the bi-decadal CALM-validated annual plots (1996-2017) and 120-year CMIP6-
integrated projections (1980-2100), seasonal disturbance is evident. The broadening of the growing

season facilitates more opportunity for rapid +thaw/-freeze kinetics and increased permafrost thaw, as
illustrated via plot widening and deepening (i.e. annual thaw curve integration).

In addition to climate forcing (i.e. increasing surface temperature and precipitation) and localized spatial
scaling corrections, microtopography and vegetation classification appear to play a critical role in
annual active layer depth variability and seasonal pattern disruption.

Topographic disparities and hydrogeochemical factors between sites may help identify specific drivers
of permafrost dynamics and support the development of topographic hyperparameters strongly
contributing to the spatiotemporal distribution of soil water content and associated vegetation patterns.
As a result, these causal feedbacks instigate wide active layer depth variability and thaw subsistence,
advance water infiltration and mineral dislocation, disrupt carbon and nutrient cycling, and exacerbate
localized warming and global climate change.
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Potential Drivers of Thaw Depth Variability

Topography | Elevation, Aspect, Slope

Brooks02 TTE Site OId Man CALM Site Chandalar CALM Site Toolik1lkm CALM Site ToolikMAT CALM Site

SHAPING
THE FUTORE
OF SCIENCE



Future Directions for Improving Permafrost
Thaw Projections

Model enhancement
— MERRAZ2 replacement with a more robust, dynamic, higher spatially-resolved precipitation
dataset; continued integration of shrub allometry and plant functional types with
belowground processes via Bonan-ArcVeg code translation/integration (nutrient cycling,
moss/lichen distribution, and decomposition/mortality.

Utilization of additional CALM and other model-in situ validation results and subsequent model
hyperparameterization updates in order to further simulate, monitor, and project permafrost
dynamics, vegetation dynamics, and forest distribution within the TTE

Dissertation: Incorporate soil-ecosystem-carbon-climate nexus (SECCN) database and pattern
recognition via machine/transfer learning/Al technology (soil carbon, ecosystem response) to
further validate and enhance modeling framework for future projections
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THANK YOU

Contact me with any questions:
bgay2@gmu.edu

Special thanks to Dr. Amanda H. Armstrong and the NASA ABoVE team
and my ESGS PhD advisor at George Mason University, Dr. John Qu.
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