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ABSTRACT

Models indicate a time-varying radiative response of the Earth system to CO2 forcing (Andrews

et al. 2012; Zhou et al. 2016). This variation implies a significant uncertainty in the estimates of

climate sensitivity to increasing atmospheric CO2 concentration (Hawkins and Sutton 2009; Grose

et al. 2018). In energy-balance models, the temporal variation is represented as an additional

feedback mechanism (Winton et al. 2010; Geoffroy et al. 2013a; Rohrschneider et al. 2019),

which also depends on the ocean temperature change. Models and observations also indicate

that a spatio-temporal pattern in surface warming controls this additional contribution to the

radiative response (Ceppi and Gregory 2017; Zhou et al. 2016). Some authors picture the effect

as a purely atmosphere-based feedback change (Stevens et al. 2016), reducing the role of the

ocean’s enthalpy-uptake variations. For the first time, I derive, using a widely-known linearised

conceptual energy-balance model (Winton et al. 2010; Geoffroy et al. 2013a; Rohrschneider et al.

2019), an explicit mathematical expression of the radiative response and its temporal evolution.

This expression connects the spatio-temporal warming pattern to an effective thermal capacity,

stemming from changes in the ocean enthalpy uptake. In comparison with more realistic energy-

balance frameworks, and unlike the notion of additional feedback mechanisms, I show that an

expanded effective thermal capacity better explains the variation of the radiative response, naturally

connects with the spatio-temporal surface warming pattern, and provides a non-circular framework

to explain the variation of the climate feedback parameter.
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Significance statement. Understanding the factors that change the Earth’s radiative response24

to CO2 forcing is central to reduce the uncertainty in the climate sensitivity estimates. The25

current atmospheric-only view on the problem of the time-varying climate feedback parameter26

unnecessarily hides the ocean’s role. This work shows a novel perspective for the problem,27

enabling the development of a more general theory.28

1. Introduction29

Climatemodels show awide range of temporal variation in their radiative response to CO2 forcing30

(Senior and Mitchell 2000; Andrews et al. 2012; Ceppi and Gregory 2017). This variation appears31

in numerical experiments where the atmospheric CO2 concentration is raised and maintained32

constant afterwards. The rise in the atmospheric CO2 concentration modifies the Earth’s emissivity33

to longwave radiation, resulting in surface warming. Surface warming modifies the radiative flux at34

the top of the atmosphere (TOA). Themodified flux tends to cancel the energy imbalance introduced35

by the radiative forcing. Surface warming also changes other variables, such as the atmospheric36

temperature and humidity, that further modify the radiative flux. These changes are the feedback37

mechanisms on surface warming. The net rate at which the globally-averaged surface warming38

reduces the globally-averaged TOA imbalance is known as the climate feedback parameter.39

If the feedback mechanisms did not change with time, the climate feedback parameter would be40

constant, and a diagram of globally-averaged TOA imbalance change versus surface temperature41

change (NT−diagram) would be linear. However, climate models present NT−diagrams with42

different degrees of curvature, indicating a non-constant climate feedback parameter (Andrews43

et al. 2012; Ceppi and Gregory 2017) (presented schematically on figure 1). The degree of44

curvature is also modified by forcing strength (Senior and Mitchell 2000; Meraner et al. 2013;45

Rohrschneider et al. 2019). Hence, the variation of the climate feedback parameter comes from46
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temporal and state dependencies. Observations indicate that a spatio-temporal pattern of surface47

warming modifies cloud feedback in decadal timescales by altering atmospheric stability, leading48

to feedback changes that depend not only on surface warming (Zhou et al. 2016; Mauritsen 2016).49

The spatio-temporal warming pattern is modified by forcing, leading to both the temporal and the50

state dependency.51

In a globally-averaged energy-balance framework, the energy imbalance change at the TOA, N ,52

is equal to the forcing F plus the radiative response of the system R, N = F + R. Following the53

classical picture of the linearised feedback mechanisms depending only on the surface warming54

(Gregory et al. 2002)Tu, we should have R ∼ λTu, where λ is a constant climate feedback parameter.55

Thus, if we consider a constant forcing F, the slope of the NT−diagram would be constant and56

equal to λ, in contradiction with observations and complex models as discussed above. Thus,57

either the non-linear component plays a more significant role, or the feedback mechanisms depend58

on more than the surface warming.59

This problem is not resolved if we consider the structure of the system as two coupled layers60

of different thermal capacities: the atmosphere + land + upper ocean layer or upper layer, and61

the deep ocean or deep layer (Winton et al. 2010; Geoffroy et al. 2013b; Rohrschneider et al.62

2019). The timescales provided by the two thermal capacities and the layers’ coupling only provide63

a longer equilibration period and do not alter the climate feedback parameter. The upper-layer64

budget including a deep-ocean enthalpy uptake term is Nu = F +λTu−H. The deep-layer budget65

is equal to the deep-ocean enthalpy uptake: Nd = H. Thus, the energy imbalance at the TOA is66

N = Nu+Nd = F +λTu. Therefore, the radiative response is identical to the classical approach.67

If we reflect on the dichotomy of the constant λ and the varying slope seen in complex models, we68

should note that the constant λ is a reference value of the climate feedback parameter. This reference69

value is associated with the linear approximation of the radiative response R in the neighbourhood70
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of the initial state. In the same manner, the deep-ocean enthalpy uptake H represents a reference71

value around the initial state (Winton et al. 2010; Geoffroy et al. 2013a). The difference between72

the transient and the reference H dynamically enlarges the deep-ocean thermal capacity (Geoffroy73

et al. 2013b), providing a effective deep-ocean thermal capacity. As this effective thermal capacity74

affects the flux between the upper and deep layers, it will also modify the surface temperature,75

connecting the notion of a spatio-temporal warming pattern with changes in the ocean’s energy76

content.77

Geoffroy et al. (2013a) introduced a perturbed deep-ocean enthalpy uptake in the upper-layer78

budget, H′ := εH, where ε is the efficacy parameter. The efficacy parameter represents the effect79

of the spatio-temporal warming pattern on the effective deep-ocean energy uptake. The deep-layer80

budget is still equal toH, leading to a different energy imbalance at the TOA: N = F+λTu+(H−H′).81

The H −H′ term seems to break the energy conservation principle. Instead, it suggests some new82

deep-ocean-driven ”feedback mechanisms” or, as discussed before, an expanded effective thermal83

capacity. Held et al. (2010); Geoffroy et al. (2013a) briefly showed the point of view of the84

thermal capacity. However, the focus of their studies did not allow further exploration along this85

path. Others (e.g. Armour et al. 2013; Stevens et al. 2016) explicitly favour the deep-ocean-driven86

”feedback mechanisms”, deeming the oceanic point-of-view as artificial. Choosing the ”feedback”87

interpretation, however, presents the H−H′ term as an ad-hocmodification, leaving undefined the88

origin of the spatio-temporal warming pattern, and obscuring the relationship with the feedback89

mechanisms.90

Considering the analytical solutions of the modified two-layer model, I derive for the first time91

an explicit mathematical expression for the slope of the NT−diagrams, including the explicit time92

evolution of this slope. At its core, this expression has the ratio of change of the energy stored93

by the upper and deep layers. Its physical interpretation shifts the attention from the deep-ocean-94
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driven ”feedback mechanisms” to the atmosphere-ocean coupling in the variation of the climate95

feedback parameter. The interpretation of these results is that the atmosphere-ocean coupling sets96

the spatio-temporal warming pattern. Afterwards, the atmosphere adjusts, leading to the changes97

in the feedback mechanisms.98

2. Theory99

The following equations define the modified linearised two-layer model (Geoffroy et al. 2013a)100 
Cu ÛTu = F+λTu−εγ(Tu−Td)

Cd ÛTd = γ(Tu−Td)

101

102

where the first equation corresponds to the upper-layer budget and the second equation to the deep103

layer. The constant λ and γ are the climate feedback parameter and the rate of deep-ocean enthalpy104

uptake in the neighbourhood of the initial state. Cu and Cd are respectively the thermal capacities105

(per unit area) of the upper and deep layers. Tu and Td are temperature anomalies referred to the106

initial state and the dotted quantities are time total derivatives. The planetary imbalance is the sum107

of both equations, resulting in N = F + λTu + (1− ε)γ(Tu −Td). Nonetheless, it is better to write108

these equations in the following fashion109 
ÛTu = F′+λ′Tu−εγ

′(Tu−Td)

ÛTd = γ′d(Tu−Td)

(1)110

111

where F′ := F/Cu with units of Ks−1 and, λ′ := λ/Cu, γ′ := γ/Cu and γ′d := γ/Cd with units of112

s−1. Equations (1) are a system of linear ordinary differential equations (Geoffroy et al. 2013a;113

Rohrschneider et al. 2019). Although the solutions are standard and widely discussed in other114

articles (e.g. Geoffroy et al. 2013a; Rohrschneider et al. 2019), their analyses are not sufficient115

for my purpose. In the following, I proceed by summarising the relevant facts, leaving the full116

mathematical discussion to the appendix of this article.117
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The homogeneous (F′ ≡ 0) version of the system (1) has two distinct eigenvalues µ± := (λ̂± κ)/2,118

where λ̂ := λ′−εγ′−γ′d and κ
2 := λ̂2+4λ′γ′d . These eigenvalues provide two distinct eigenvectors,119

forming a basis in which the full system (1) is uncoupled and, therefore, has a straight-forward120

solution. The eigensolutions T± are the solutions associated with each eigenvalue. Afterwards,121

one can return to the original representation, finding that Tu and Td are linear combinations of122

T±. These linear combinations are the normal modes: the symmetric mode Ts := T++T− and the123

antisymmetric modeTa :=T+−T−. Themain result of this process is thatTu =Ts andTd = αTs+ βTa,124

where α and β are scalars that depend on the coefficients of the system (1). The normal-mode125

representation again reveals the intricate coupling of the deep layer with the upper layer. Despite126

Geoffroy et al. (2013a); Rohrschneider et al. (2019) discuss the solutions extensively, they do not127

put them in terms of the normal modes. They did not overlooked this form of the solutions but128

was not necessary for their research questions. Nonetheless, for this work, the normal modes are129

fundamental.130

3. Results131

(i) The explicit slope of the NT−diagram From the solutions to system (1) written in terms of the132

normal modes, one can obtain an expression for the slope of the NT−diagram, ÛN/ ÛTu, of a system133

under constant forcing. In the appendix, I derive the following closed expression for the slope134

in terms of the derivatives of the normal modes and as a factor of the constant climate feedback135

parameter λ136

ÛN
ÛTu
=

{
ε+1
2ε
+
ε−1
2ε

Cuκ

|λ |

[(
ε

Cu
+

1
Cd

)
γ

κ
−
ÛTa

ÛTs

]}
λ (2)137

138

The main characteristic of equation (2) is the square-bracket term of its right-hand side. It contains139

two parts. The first one sets a basic enhanced slope and contains the sum of the inverse of the140
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thermal capacities as if we had an electrical circuit with capacitors in series. The second part141

provides the time evolution. It is a ratio of the changes in energy content. This ratio compares the142

change in energy content of the deep layer with that of the upper layer. To confirm the importance143

of the square-bracket term, one can take the limit as ε→ 1, where the pattern effect is cancelled in144

equation (2)145

lim
ε→1

ÛN
ÛTu
= λ146

147

The strong coupling between the upper and deep layers disappears. We end up with a constant148

slope. However, if ε , 1, the climate feedback parameter varies with the ratio of the changes in149

energy content from the deep to the upper layer around a basic value that depends on the thermal150

capacities of the system, the square bracket term in equation (2).151

(ii) Explicit expression for the ratio term Using explicit expressions forTs andTa of an experiment152

with constant forcing, I write the ratio term in equation (2) as153

ÛTa

ÛTs
= tanh

[
κ

2
(t − t0)+ arctanh

(
λ̂+2γ′d

κ

)]
(3)154

155

The ratio (3) grows in a sigmoidal fashion from −1 to 1. This hyperbolic tangent has a scaling156

factor (κ/2) that sets the rate of change of the hyperbolic tangent between its extreme values. It also157

has a shift (the arctanh term) that determines when the hyperbolic tangent crosses zero, governing158

the contribution of the last term in equation (2). Both scaling and shift are in terms of the thermal159

capacities, the reference rate of deep-ocean enthalpy uptake γ and the reference climate feedback160

parameter λ.161

The interpretation of equation (3) is that, after the initial forcing, the deep ocean warms up162

slower than the upper layer, steepening the slope of the NT−diagram. Once the ratio reaches163

the sign-reversal point, the last term’s contribution in equation (2) only flattens the slope of the164

NT−diagram. The scaling factor and the shift of the ratio (3) set the timescale for the flattening.165
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Equation (3) expresses precisely the time evolution of the climate feedback parameter that others166

have only guessed through numerical experiments with the modified two-layer model (Geoffroy167

et al. 2013a; Rohrschneider et al. 2019). Additionally, it establishes a third timescale in the Earth168

system, related to the atmosphere-ocean coupling.169

(iii) Explicit expression of the climate feedback parameter With the explicit expressions, I present170

you equation (2) for the climate feedback parameter171

ÛN
ÛTu
=
ε+1
2ε

(
1+

ε−1
ε+1

Cuκ

|λ |

[(
ε

Cu
+

1
Cd

)
γ

κ
− tanh

(
κ

2
(t − t0)+ arctanh

(
λ̂+2γ′d

κ

))])
λ (4)172

173

The factor of the constant λ is composed of terms that are positive except for the ratio term174

coming from equation (3). One can prove that at the start (t = t0) the slope is175

ÛN
ÛTu
(t0) =

(
1+ (ε−1)

γ

|λ |

)
λ176

177

and from here up to the sign reversal of the ratio term, the slope flattens. The flattening is gentle178

at first, but towards the sign reversal it accelerates.179

At the time of sign reversal we have180

ÛN
ÛTu
(trev) =

ε+1
2ε

(
1+

ε−1
ε+1

(
ε

Cu
+

1
Cd

)
Cuγ

|λ |

)
λ181

182

and fromhere and on, the ratio termbecomes positive, leading to an even flatter slope. The flattening183

decelerates and becomes gentle again. The asymptotic value of the slope of the NT−diagram is184

lim
t→∞

ÛN
ÛTu
=
ε+1
2ε

(
1+

ε−1
ε+1

Cuκ

|λ |

[(
ε

Cu
+

1
Cd

)
γ

κ
−1

] )
λ185

186

(iv) Numerical estimates of the atmosphere-ocean coupling By substituting in expression (4)187

the parameter values found by Geoffroy et al. (2013a), I find the timescale for the sign reversal188

of the ÛTa/ ÛTs ratio term. This timescale is important because it determines the middle of the189

transition between the initial and final values of the slope. I use the multimodel mean values190
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reported by Geoffroy et al. (2013a). For the multimodel average values (Cu = 8.2Wyrm−2 K−1,191

Cd = 109Wyrm−2 K−1, γ = 0.67Wm−2 K−1, λ = −1.18Wm−2 K−1 and ε = 1.28) the sign reversal192

of the ratio term takes place after 18.3 years. This timescale lies between the fast (4.2 years) and193

slow (290 years) timescales established in terms of the thermal capacities alone (Geoffroy et al.194

2013a).195

I calculate the time for sign reversal using the rest of values in the tables of Geoffroy et al. (2013a)196

and obtain that the multimodel average is 18.8 years. The minimum value is 8.8 years for GISS-197

E2-R, whereas the maximum is 25.1 years for CNRM-CM5.1. If I compare with their estimates198

of the fast and the slow timescales, even the extreme values fit well between both. Enlightening is199

that the timescale of the sign reversal seems to fit with the de-facto 20-year standard to evaluate200

the change in slope (e.g. Ceppi and Gregory 2017).201

I also compare between the multimodel averages for all parameters and with the thermal ca-202

pacities as calculated by Jiménez-de-la-Cuesta and Mauritsen (2019): Cu = 7.2Wyrm−2 K−1,203

Cd = 367Wyrm−2 K−1. The calculated deep-layer thermal capacity is larger than the CMIP5204

multi-model average, whereas the calculated value for the upper layer is smaller than the CMIP5205

average. From these differences, we can note changes in the slope evolution (figure 2). Although206

the difference in final slopes is small, the calculated thermal capacities strongly shift the sign-207

reversal timescale: a deeper deep ocean lengthens the sign-reversal timescale, whereas a shallower208

upper layer shortens it.209

4. Analysis and Discussion210

(i) Consequences of an enthalpy-uptake interpretation Wehave two terms in the factor of equation211

(4): the identity term and the (ε−1)−term. The second term is only active if ε , 1, and has two212

contributions. The first one is a constant contribution linked to the thermal capacities of the system.213
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The second contribution is time-varying and depends on the ratio ÛTa/ ÛTs. This ratio measures the214

proportion of energy that goes into the deep ocean compared to that stored in the upper layer.215

Together, these terms provide a physical picture in which the slope’s variation is determined by a216

basic thermal capacity, which is expanded. The expansion stems from the enthalpy fluxes of the217

upper and deep layers, which is better connected with the spatio-temporal warming pattern than218

with the atmospheric feedbacks, given that the evolution and spatial distribution of the sea surface219

temperature corresponds to changes in the enthalpy fluxes.220

Precisely, I showed above that the thermal capacities have a strong effect on the timescale at221

which the slope of the NT−diagram changes (figure 2). Thermal capacities in complex models222

depend strongly on the depth of the ocean mixed-layer and, therefore, on the atmosphere-ocean223

coupling, providing diverse behaviours (figure 3)224

The consequences in the real Earth System of what I presented above are that the relative change225

in the energy fluxes due to the atmosphere-ocean coupling compels the atmospheric feedbacks to226

adjust. Thus, the magnitude of the changes in the atmospheric radiative response needs knowledge227

of the physics of the atmosphere-ocean coupling. In summary, the prevailing interpretation of the228

effect of the spatio-temporal warming pattern as additional ficticious ”deep-ocean-driven” feedback229

mechanisms depending on Td is artificial. Then, uncertainties in our knowledge about the nature230

of the atmosphere-ocean coupling can play a larger role than thought before (Kiehl 2007).231

When comparing prescribed-sea-surface-temperature with fully-coupled numerical experiments232

in complex climate models, there are striking differences in radiation and precipitation related to233

differing sea surface temperature patterns between both settings. Therefore, in the light of the234

results that I presented, the ocean circulation and the enthalpy transport representations in the235

fully-coupled complex models could be key factors impacting the radiative response.236
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(ii) State and forcing dependence In this article, I ignored the dependence on the strength of237

forcing (Senior and Mitchell 2000; Meraner et al. 2013; Rohrschneider et al. 2019). However, such238

dependence should come from the reference values ε, λ and γ that are particular to a given forcing.239

Values of λ and γ are first-order derivatives in the neighbourhood of the starting states. The same240

goes for ε. Therefore, we need to connect ε to the physics of the real atmospheric-oceanic coupling,241

possibly circulation, to understand its effect in the variation of the slope of the NT−diagrams under242

different forcings. We need to answer how the forcing impacts the atmosphere-ocean coupling243

resulting in another spatio-temporal warming pattern.244

There are versions of linearised energy balance models in which a simple non-linear term is245

introduced (Rohrschneider et al. 2019). Although higher-order terms in the Taylor expansion of246

either the radiative response R or the enthalpy uptake H can provide additional information on state247

dependence, the temporal dependencies arising from the atmosphere-ocean coupling, as shown in248

this article, are far more important in light of the results presented above. These results shift the249

limelight to the physics of the atmosphere-ocean coupling.250

(iii) Non-linear planetary energy balance Above I presented evidence favouring the ocean’s251

enthalpy uptake central role in determining the spatio-temporal warming pattern and its effects on252

the atmospheric feedback mechanisms. I test this idea in a more general theoretical framework by253

writing the planetary energy budget in another widely-known incarnation254

N = (1−α)S+G− εσ( f Tu)
4 (5)255

256

where S := S(t) in Wm−2 is the incoming solar radiative flux at the TOA, α is the planetary albedo,257

G := G(t) in Wm−2 represents the remaining inputs (natural and anthropogenic), and the last term258

is the usual planetary longwave emission, in Wm−2, as a grey-body of emissivity ε and surface259

temperatureTu with f the lapse-rate scaling factor for the emission temperature. At first inspection,260
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we have the origin of the feedback mechanisms: the planetary albedo α, the emissivity ε and the261

scaling factor f . On the one hand, we have the shortwave strand, the albedo α := α(Tu,qcld,w, . . . )262

that is a function of, e.g., the surface temperature and the amount of liquid water in the atmosphere263

forming clouds. On the other hand, we have the longwave thread, the emissivity and the lapse-264

rate scaling factor ε, f := f(Tu,qv,qcld,w, . . . ), depending on, e.g. the surface temperature, and the265

amount of water vapour and cloud liquid water in the atmosphere.266

The atmospheric feedback mechanisms cannot rely on any temperature we define inside the267

ocean. The ocean affects α, ε and f only through changing Tu. In equation (5), we cannot see such268

dependence. Therefore, here we would be tempted to artificially introduce it by saying that α, ε269

and f depend on another temperature in the ocean, as others have interpreted from the modified270

two-layer model. In this work, I have shown that there is another more natural place where the271

ocean enters into play: the energy imbalance at the TOA, N . Some would naïvely say that N =C ÛTu272

only, with C the planetary thermal capacity per unit area. My results suggest a more precise273

incarnation of this term: N = (d/dt)(CTu), because we do not know if C varies with time. We274

have no a priori basis to say that it is constant. It depends on, e.g., the thickness of the ocean’s275

mixed-layer, the depth of the thermally-active deep-ocean or the melted volume of the ice sheet.276

The spatio-temporal warming pattern may also depend on these variables. Thus, how does the277

term N look like? N = C ÛTu+ ÛCTu. If we rewrite the equation (5) with this new information278

C ÛTu = (1−α)S+G− εσ( f Tu)
4− ÛCTu (6)279

280

where the term C ÛTu is an effective N . The last term of equation (6) is the representation of the281

effect of the spatio-temporal warming pattern. The factor ÛC needs a new differential equation282

that describes the temporal variations of the enthalpy uptake due to the ocean and the melting283

ice sheets. When linearising, this term will be transformed in the (1− ε)H term of the planetary284
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energy imbalance of system (1). In other words, the ÛCTu term embodies the radiative effect of the285

atmosphere-ocean coupling.286

5. Conclusions287

I presented for the first time an explicit mathematical expression for the slope of the NT−diagrams288

using the linearised framework of the modified two-layer energy balance model. In particular, I289

presented an expression applicable to the case of experiments in which we increment the atmo-290

spheric carbon dioxide concentration up to n times the pre-industrial levels. From the analysis of291

the solutions of the modified two-layer energy balance model and the mathematical expression for292

the slope, I concluded that the evolution of the climate feedback parameter comes from a ratio293

that compares the changes in the energy content of the deep ocean in relation to those of the294

upper layer. This ratio modulates the slope change around a basic state. The thermal capacities295

and the efficacy parameter determine this basic state, shifting away from the usual focus on the296

atmospheric feedback mechanisms and their dependence on another temperature in the ocean (Td).297

Thus, in the context of complex climate models and observations, I show that the variation of the298

climate feedback parameter is a direct consequence of the atmosphere-ocean coupling that gives299

rise to the spatio-temporal warming pattern. The spatio-temporal warming pattern shows how the300

enthalpy is exchanged between the atmosphere and the ocean. The atmosphere-ocean coupling301

modifies the surface temperature, and the feedback mechanisms adjust to this external change.302

Therefore, the variation of the feedback mechanisms provides partial and indirect information on303

the spatio-temporal warming pattern. To fill the gap, we need information on the physics of the304

atmosphere-ocean coupling: its relation to circulation and the generation of the spatio-temporal305

warming pattern.306
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APPENDIX315

In Classical Mechanics, a very coarse thinking would be reducing the field to the task of solving316

the equation Ûp = F for any force term, either analytically or numerically. Going further leads to317

conservation principles and formulations of Classical Mechanics that provide more information318

without actually obtaining solutions, if that is possible at all. In this appendix, reduced to the scale319

of a simplified framework, I show that by delving deep into the mathematics of a system of linear320

ordinary differential equations, the structure of the solutions and the its physical interpretation, one321

can obtain a new view on an old problem.322

The appendix is written in an exhaustive way and I leave few things without development. The323

cases in which I do not show some algebraic step is because the necessary step has been already324

done or is very simple.325
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Matrix form of the equations326

The equations of two-layer model Geoffroy et al. (2013a) are327

Nu = Cu ÛTu = F+λTu−εγ(Tu−Td)

Nd = Cd ÛTd = γ(Tu−Td)

(A1)328

329

and the planetary imbalance is N = Nu+Nd. I present another form of the equations, where I divide330

by the thermal capacities.331

ÛTu =
F
Cu
+ λ

Cu
Tu−ε

γ
Cu
(Tu−Td)

ÛTd =
γ

Cd
(Tu−Td)

332

333

If I define F′ := F/Cu, λ
′ := λ/Cu, γ

′ := γ/Cu, γ
′
d := γ/Cd, one can write the equations in a lean334

way335

ÛTu = F′+λ′Tu−εγ
′(Tu−Td)

ÛTd = γ′d(Tu−Td)

(A2)336

337

I will put the system in matrix form. I define T := (Tu,Td),F′ := (F′,0) and338

A :=
©­­«
λ′− εγ′ γ′d

εγ′ −γ′d

ª®®®¬ (A3)339

340

and the system can be written341

ÛT = F′+TA (A4)342

343

which is the representation of the system in the temperature basis.344

Eigenvalues and eigenvectors345

I want to analyse the normal modes of the system. For that end, I need the eigenvalues of the346

homogeneous system obtained as the solutions of the characteristic equation347

(λ′− εγ′− µ)(−γ′d − µ)− εγ
′γ′d = 0 (A5)348

349
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350

−λ′γ′d + εγ
′γ′d + µγ

′
d −λ

′µ+ εγ′µ+ µ2− εγ′γ′d = 0351

−λ′γ′d + µγ
′
d −λ

′µ+ εγ′µ+ µ2 = 0352

−λ′γ′d −(λ
′− εγ′−γ′d)µ+ µ

2 = 0353

354

The solutions of equation (A5) are355

µ =
(λ′− εγ′−γ′d)±

[
(λ′− εγ′−γ′d)

2+4λ′γ′d
]1/2

2
(A6)356

357

and, given that in the Earth Cu < Cd, one can prove that there are two real and different eigenval-358

ues. One needs to check that the square root term is not complex or zero. This only happens if the359

sum within the square root is negative or zero360

(λ′− εγ′−γ′d)
2+4λ′γ′d ≤ 0361

(λ′− εγ′)2−2(λ′− εγ′)γ′d +γ
′2
d +4λ′γ′d ≤ 0362

λ
′2−2λ′εγ′+ (εγ′)2−2(λ′− εγ′)γ′d +γ

′2
d +4λ′γ′d ≤ 0363

λ
′2−2λ′εγ′+ (εγ′)2−2λ′γ′d +2εγ′γ′d +γ

′2
d +4λ′γ′d ≤ 0364

(λ′/γ′d)
2−2(λ′/γ′d)ε(γ

′/γ′d)+ (ε(γ
′/γ′d))

2+2ε(γ′/γ′d)+1+2(λ′/γ′d) ≤ 0365

(λ′/γ′d)
2−2(λ′/γ′d)[ε(γ

′/γ′d)−1]+ (ε(γ′/γ′d))
2+2ε(γ′/γ′d)+1 ≤ 0366

(λ′/γ′d)
2−2(λ′/γ′d)[ε(γ

′/γ′d)−1]+ (ε(γ′/γ′d)+1)2 ≤ 0367

(λ′/γ′d)
2+ (ε(Cd/Cu)+1)2 ≤ 2(λ′/γ′d)[ε(Cd/Cu)−1]368

369

In the last inequality, the left-hand side is always positive. The right-hand side depends on the370

sign of the factors. The middle factor is negative since λ′ is negative and γ′d is positive. The third371

factor is positive provided that ε > Cu/Cd. Given that ε ≥ 1 and Cu < Cd, then the third factor is372

positive in our case. Then the right-hand side is negative. Thus, we obtained a contradiction by373
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supposing that the square root term was negative or zero. Therefore, the conclusion is that the374

eigenvalues are two real and distinct numbers.375

I call the solutions µ+ and µ−, depending on the sign of the square root term. Let us rewrite their376

expression in more lean fashion. I define λ̂ := λ′− εγ′− γ′d and we call κ the square root term.377

Then, I rewrite the solutions (A6) as378

µ± =
λ̂± κ

2
(A7)379

380

Now that I know the eigenvalues, one should get the eigenvectors of the system and solve it381

easily. The eigenvectors are the generators of the kernel of the operators A− µ± id. Let us write382

the diagonal of the matrix A with the definition of λ̂383

A =
©­­«
λ̂+γ′d γ′d

εγ′ λ̂−(λ′− εγ′)

ª®®®¬384

385

and then the matrices for each eigenvalue have the form386

A− µ± id =
©­­«
λ̂+γ′d − µ± γ′d

εγ′ λ̂−(λ′− εγ′)− µ±

ª®®®¬387

=
©­­«
µ∓+γ

′
d γ′d

εγ′ µ∓−(λ
′− εγ′)

ª®®®¬388

389

Since eigenvalues are real and distinct, there should be two linearly-independent eigenvectors,390

one for each eigenvalue. These vectors should fulfill that e±(A− µ± id) = 0. Solving that linear391

system, I find the eigenvectors in temperature representation392

e± = eu −
µ∓+γ

′
d

εγ′
ed (A8)393

394
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The procedure to get the result is to solve the system of homogeneous linear equations e±(A−395

µ± id) = 0396 
(µ∓+γ

′
d)e±,u +εγ′e±,d = 0

γ′de±,u+[µ∓−(λ′− εγ′)]e±,d = 0
397

398

I solve the first equation for the component e±,d , and substitute this result on the second equation399

e±,d = −
µ∓+γ

′
d

εγ′
e±,u −→400 (

γ′d −
[µ∓−(λ

′− εγ′)](µ∓+γ
′
d)

εγ′

)
e±,u = 0401

εγ′γ′d −[µ∓−(λ
′− εγ′)](µ∓+γ

′
d)

εγ′
e±,u = 0, (ε,γ′ , 0) ∴402

403

404 {
εγ′γ′d −[µ∓−(λ

′− εγ′)](µ∓+γ
′
d)

}
e±,u = 0405 {

εγ′γ′d + [(λ
′− εγ′)− µ∓](γ

′
d + µ∓)

}
e±,u = 0406

−
{
−εγ′γ′d + [(λ

′− εγ′)− µ∓](−γ
′
d − µ∓)

}
e±,u = 0407

408

and in the last expression we have two options: either e±,u is zero or the term within curly braces is409

zero. However, the expression in curly braces is the characteristic equation (A5) and then always410

vanishes identically. This means that e±,u = α ∈ R can be chosen arbitrarily. I plug in this result in411

the expression for e±,d and get that412

e±,u = α413

e±,d = −
µ∓+γ

′
d

εγ′
α414

415

or as a vector in the temperature basis416

e± = e±,ueu + e±,ded417

e± = αeu −
µ∓+γ

′
d

εγ′
αed418

419
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and since α is arbitrary this means we are in front of a subspace of vectors. I choose a basis by420

selecting α = 1.421

e± = eu −
µ∓+γ

′
d

εγ′
ed422

423

which is the same as the equation (A8).424

Now, I can derive the expressions of the temperature basis vectors in terms of the two eigenvectors.425

If one solves for eu in equation (A8)426

e±+
µ∓+γ

′
d

εγ′
ed = eu427

428

but we have here two expressions in a condensed way. Therefore,429

e−+
µ++γ

′
d

εγ′
ed = e++

µ−+γ
′
d

εγ′
ed430 (

µ++γ
′
d

εγ′
−
µ−+γ

′
d

εγ′

)
ed = e+− e−431

(µ++γ
′
d)− (µ−+γ

′
d)

εγ′
ed = e+− e−432

µ+− µ−
εγ′

ed = e+− e−433

ed =
εγ′

µ+− µ−
(e+− e−)434

435

Thus, I have expressed ed in terms of the eigenvectors.436
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Now, I substitute the last result on one of the expressions for eu.437

e++
µ−+γ

′
d

εγ′
ed = eu438

e++
µ−+γ

′
d

εγ′
εγ′

µ+− µ−
(e+− e−) = eu439

e++
µ−+γ

′
d

µ+− µ−
(e+− e−) = eu440 (

1+
µ−+γ

′
d

µ+− µ−

)
e+−

µ−+γ
′
d

µ+− µ−
e− = eu441

µ+− µ−+ µ−+γ
′
d

µ+− µ−
e+−

µ−+γ
′
d

µ+− µ−
e− = eu442

µ++γ
′
d

µ+− µ−
e+−

µ−+γ
′
d

µ+− µ−
e− = eu443

444

and the temperature basis vectors in the eigenvector representation are445

eu =
µ++γ

′
d

µ+− µ−
e+−

µ−+γ
′
d

µ+− µ−
e−

ed =
εγ′

µ+− µ−
(e+− e−)

(A9)446

447

Matrix in the eigenvector representation. Solutions448

With these results, I can write the matrix A (A3) in the eigenvector basis and it should be the449

following diagonal matrix450

B =
©­­«
µ+ 0

0 µ−

ª®®®¬ (A10)451

452

I show how to get to this result. Let subscripts represent rows and superscripts represent columns.453

I define that latin indices (i, j,k, . . . ) have the possible values u,d; and greek indices (α,β,ζ . . . )454

have possible values +,−. Also, repeated indices in expressions mean summation over the set of455

possible values. With these considerations, equation (A9) is456

ei = Λ
α
i eα457

458
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where the rows of matrix Λ contain the coordinates of each of the vectors of the temperature basis459

in the eigenvector representation. Analogously, equation (A8) is460

eα = Θi
αei461

462

where matrix Θ has in its rows the coordinates the eigenvector basis in the temperature represen-463

tation. This means that464

eα = Θi
αei = Θ

i
αΛ

β
i eβ465

466

which is only possible if the matrices Λ and Θ are inverse of each other467

eα = δβαeβ = eα468

469

Thus, we write Θ = Λ−1.470

Now, matrix A is a representation of a linear operator f in the temperature representation. If471

v = v je j is a vector in the temperature representation, then the action of the linear operator f should472

be f (v) = f (v je j) = v
j f (e j). Then the action of f on a vector expressed in a given basis depends473

only on the action of the operator on the basis. Thus, f (v) = f (v je j) = v j f (e j) = v jAk
j ek . Thus474

the matrix A has in its rows the coordinates in the temperature representation of the action of f475

over each basis vector. Once one understands what is happening under the hood, what we want476

is the matrix B, which is the representation of f in the eigenvector basis. Therefore, I begin with477

the basic relationship in the temperature representation and introduce the change of representation478
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using the alternative representation of equations (A8) and (A9)479

f (ei) = A j
iΛ

ζ
j eζ480

f (Λαi eα) = A j
iΛ

ζ
j eζ481

Λ
α
i f (eα) = A j

iΛ
ζ
j eζ482

(Λ−1)iβΛ
α
i f (eα) = (Λ−1)iβA j

iΛ
ζ
j eζ483

f (eβ) = (Λ−1)iβA j
iΛ

ζ
j eζ, f (eβ) := Bζ

βeζ484

Bζ
β = (Λ

−1)iβA j
iΛ

ζ
j485

486

or in matrix notation B = Λ−1AΛ. Then, I multiply the matrices487

Λ
−1 =

©­­«
1 − µ−+γ

′
d

εγ′

1 − µ++γ
′
d

εγ′

ª®®®¬,A =
©­­«
λ̂+γ′d γ′d

εγ′ −γ′d

ª®®®¬,Λ =
©­­«

µ++γ
′
d

µ+−µ−
−
µ−+γ

′
d

µ+−µ−

εγ′

µ+−µ−
−

εγ′

µ+−µ−

ª®®®¬488

489

First, note that µ+ − µ− = κ. One also looks at the following quantities that will help in the490

process: µ++ µ− = λ̂ and µ+µ− = 1
4 (λ̂

2− κ2) = 1
4 (λ̂

2− λ̂2−4λ′γ′d) = −λ
′γ′d . I proceed with the first491

product, Λ−1 A.492

Λ
−1A =

©­­«
1 − µ−+γ

′
d

εγ′

1 − µ++γ
′
d

εγ′

ª®®®¬
©­­«
λ̂+γ′d γ′d

εγ′ −γ′d

ª®®®¬493

=
©­­«
λ̂+γ′d − µ−−γ

′
d

(
1+ µ−+γ

′
d

εγ′

)
γ′d

λ̂+γ′d − µ+−γ
′
d

(
1+ µ++γ

′
d

εγ′

)
γ′d

ª®®®¬494

=
©­­«
λ̂− µ−

εγ′+µ−+γ
′
d

εγ′ γ′d

λ̂− µ+
εγ′+µ++γ

′
d

εγ′ γ′d

ª®®®¬495

=
©­­«
µ+

εγ′+µ−+γ
′
d

εγ′ γ′d

µ−
εγ′+µ++γ

′
d

εγ′ γ′d

ª®®®¬496

497
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and multiply the result by Λ498

Λ
−1AΛ =

©­­«
µ+

εγ′+µ−+γ
′
d

εγ′ γ′d

µ−
εγ′+µ++γ

′
d

εγ′ γ′d

ª®®®¬
©­­«

µ++γ
′
d

µ+−µ−
−
µ−+γ

′
d

µ+−µ−

εγ′

µ+−µ−
−

εγ′

µ+−µ−

ª®®®¬499

=
1
κ

©­­«
µ2
++ µ+γ

′
d + εγ

′γ′d + µ−γ
′
d +γ

′2
d −µ+µ−− µ+γ

′
d − εγ

′γ′d − µ−γ
′
d −γ

′2
d

µ−µ++ µ−γ
′
d + εγ

′γ′d + µ+γ
′
d +γ

′2
d −µ2

−− µ−γ
′
d − εγ

′γ′d − µ+γ
′
d −γ

′2
d

ª®®®¬500

=
1
κ

©­­«
µ2
++ (λ̂+ εγ

′+γ′d)γ
′
d −µ+µ−−(λ̂+ εγ

′+γ′d)γ
′
d

µ−µ++ (λ̂+ εγ
′+γ′d)γ

′
d −µ2

−−(λ̂+ εγ
′+γ′d)γ

′
d

ª®®®¬501

=
1
κ

©­­«
µ2
+− µ+µ− λ′γ′d −λ

′γ′d

−λ′γ′d +λ
′γ′d −µ

2
−+ µ+µ−

ª®®®¬ =
1
κ

©­­«
µ+κ 0

0 µ−κ

ª®®®¬ =
©­­«
µ+ 0

0 µ−

ª®®®¬502

503

the last line is the result that we wanted to check.504

In the eigenvector representation the system (A4) has the following form505

ÛT = F′+TB (A11)506

507

and, therefore, is decoupled. Therefore, I can solve each equation separately. I need only to508

transform the forcing vector to the eigenvector representation.509

The equations are510

ÛT± = F′±+ µ±T±511

512

and the solutions of a generic initial value problem are513

T± =
(
T±,0+

∫ t

t0
F′±e−µ±(τ−t0)dτ

)
eµ±(t−t0) (A12)514

515

where the initial values in the eigenvector representation in terms of the initial values in the516

temperature representation are517

T±,0 = ±
1

µ+− µ−
[(µ±+γ

′
d)Tu,0+ εγ

′Td,0]518

519
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the forcing components are520

F′± = ±
µ±+γ

′
d

µ+− µ−
F′521

522

and the solutions in the temperature representation are523

Tu = T++T−

Td = −
µ−+γ

′
d

εγ′
T+−

µ++γ
′
d

εγ′
T−

524

525

If I further expand the Td solution, the form of the solutions is more elegant526

Tu = T++T−

Td = −
λ̂+2γ′d
2εγ′

(T++T−)+
κ

2εγ′
(T+−T−)

(A13)527

528

since it shows that the solutions in the temperature space are in a sort of symmetric and antisymmet-529

ric combinations of the solutions in the eigenvector representation. These are the normal modes.530

One thing to note is that the upper temperature is the symmetric mode and the deep temperature is531

a mixture of symmetric and antisymmetric modes.532

I show how I got the solutions (A13). Just expand the Td equation.533

Td = −
µ−+γ

′
d

εγ′
T+−

µ++γ
′
d

εγ′
T−534

= −
1
εγ′

[(
λ̂− κ

2
+γ′d

)
T++

(
λ̂+ κ

2
+γ′d

)
T−

]
535

= −
1
εγ′

[(
λ̂+2γ′d

2
−
κ

2

)
T++

(
λ̂+2γ′d

2
+
κ

2

)
T−

]
536

= −
1

2εγ′
[
(λ̂+2γ′d)(T++T−)− κ(T+−T−)

]
537

538

From now on, I write Ts := T++T− and Ta := T+−T−.539
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Planetary imbalance540

Now, I will find an expression for the planetary imbalance in terms of the equations (A13). The541

mathematical expression that I should expand is N = Nu+Nd = Cu ÛTu+Cd ÛTd542

Cu ÛTu = Cu ÛTs543

Cd ÛTd = −Cd
λ̂+2γ′d
2εγ′

ÛTs +Cd
κ

2εγ′
ÛTa ∴544

N = Cu ÛTs −Cd
λ̂+2γ′d
2εγ′

ÛTs +Cd
κ

2εγ′
ÛTa545

=

(
Cu−Cd

λ̂+2γ′d
2εγ′

)
ÛTs +Cd

κ

2εγ′
ÛTa546

= Cs ÛTs +Ca ÛTa547

548

Now, ÛT± = F′±+ µ±T±, then549

ÛTs = µ+T++ µ−T−+ (F′++F′−) = µ+T++ (µ+− κ)T−+ (F
′
++F′−)550

= µ+Ts − κT−+ (F′++F′−) = µ+Ts −
κ

2
(Ts −Ta)+ (F′++F′−)551

=
λ̂

2
Ts +

κ

2
Ta + (F′++F′−) =

λ̂

2
Ts +

κ

2
Ta +F′552

ÛTa = µ+T+− µ−T−+ (F′+−F′−) = µ+T+−(µ+− κ)T−+ (F
′
+−F′−)553

= µ+Ta + κT−+ (F′+−F′−) = µ+Ta +
κ

2
(Ts −Ta)+ (F′+−F′−)554

=
κ

2
Ts +

λ̂

2
Ta + (F′+−F′−) =

κ

2
Ts +

λ̂

2
Ta +

λ̂+2γ′d
κ

F′ ∴555

N =
1
2

(
λ̂Cs + κCa

)
Ts +

1
2

(
λ̂Ca + κCs

)
Ta +

(
Cs +Ca

λ̂+2γ′d
κ

)
F′556

557

26



Further expanding the coefficients558

λ̂Cs + κCa = λ̂Cu−
Cd

2εγ′
(λ̂2+2γ′d λ̂− κ

2) = λ̂Cu−
Cd

2εγ′
(λ̂2+2γ′d λ̂− λ̂

2−4γ′dλ
′)559

= 2
Cu
ε

(
λ′+

ε−1
2

λ̂

)
560

λ̂Ca + κCs = κCu−
Cd

2εγ′
(κλ̂+2γ′dκ− κλ̂) = κCu−

Cu
ε
κ = κ

Cu
ε
(ε−1)561

Cs +Ca
λ̂+2γ′d

κ
= Cu−

Cd
2εγ′
(λ̂+2γ′d − λ̂−2γ′d) = Cu562

563

then the imbalance is564

N =
Cu
ε

[
εF′+

(
λ′+

ε−1
2

λ̂

)
Ts + κ

ε−1
2

Ta

]
(A14)565

566

From here, I derive the slope of a NT−diagram. In such a diagram, N is plotted versus Tu. If we567

naïvely take the partial derivative of equation (A14) with respect to Tu, we will arrive to a constant568

slope. This is contrary to the evidence that it will change with time. An NT−diagram is one569

projection of the phase space of the system. Then, the NT−diagram slope does not only depend on570

how N varies with Tu. It is a comparison of how the changes of Tu are expressed in changes of N .571

Then, the slope is the total derivative dN/dTu. By virtue of the chain rule, dN/dTu = ÛN(dt/dTu).572

In a neighborhood where Tu(t) is injective, dt/dTu = 1/ ÛTu. Therefore, the slope dN/dTu is the ratio573

of two total derivatives: ÛN and ÛTu.574

We know that Tu = Ts, then ÛTu = ÛTs. Therefore, the total derivative of the planetary imbalance is575

ÛN = (∂t N)+ (∂Ts N) ÛTs + (∂Ta N) ÛTa576

577

that is a change depending only on time, a second change depending only on changes of Ts and a578

third depending on changes of Ta. Therefore, the ratio of total derivative of planetary imbalance579

and total derivative of Tu is580

ÛN
ÛTu
= (∂t N)

1
ÛTs
+ (∂Ts N)+ (∂Ta N)

ÛTa

ÛTs
581

582
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As one can see in the above expression, the ratio includes the derivative of the imbalance with583

respect to Tu but is not the only contribution. One contribution comes from the explicit dependence584

on time of N and how it compares with the dependency of Tu. The other contribution comes585

from the antisymmetric mode and how it changes in relation to the symmetric one. From equation586

(A14), I can write the precise expression of the slope as a factor of λ.587

I multiply equation (A14) by λ/λ and reorganise.588

ÛN
ÛTu
=

Cu
ε

[
ε
ÛF′

ÛTs
+

(
λ′+

ε−1
2

λ̂

)
+ κ

ε−1
2
ÛTa

ÛTs

]
λ

λ
589

=

[
Cu
λ

ÛF′

ÛTs
+

(
λ′

ελ′
+
ε−1
2ε

λ̂

λ′

)
+
ε−1
2ε

κ

λ′

ÛTa

ÛTs

]
λ590

591

then we will expand the terms to separate the terms that vanish when ε = 1592

ÛN
ÛTu
=

{
Cu
λ

ÛF′

ÛTs
+

[
1
ε
+
ε−1
2ε

(
λ′− εγ′−γ′d

λ′

)]
+
ε−1
2ε

κ

λ′

ÛTa

ÛTs

}
λ593

=

{
Cu
λ

ÛF′

ÛTs
+

[
2
2ε
+
ε−1
2ε

(
1− ε

γ

λ
−

Cu
Cd

γ

λ

)]
+
ε−1
2ε

Cuκ

λ

ÛTa

ÛTs

}
λ594

=

[
Cu
λ

ÛF′

ÛTs
+
ε+1
2ε
−
ε−1
2ε

(
ε+

Cu
Cd

)
γ

λ
+
ε−1
2ε

Cuκ

λ

ÛTa

ÛTs

]
λ595

=

[
Cu
λ

ÛF′

ÛTs
+
ε+1
2ε
−
ε−1
2ε

(
ε+

Cu
Cd

)
γ

λ
+
ε−1
2ε

Cuκ

λ

ÛTa

ÛTs

]
λ596

=

{
Cu
λ

ÛF′

ÛTs
+
ε+1
2ε
−
ε−1
2ελ

[(
ε+

Cu
Cd

)
γ−Cuκ

ÛTa

ÛTs

]}
λ597

=

{
Cu
λ

ÛF′

ÛTs
+
ε+1
2ε
−
ε−1
2ελ

Cuκ

[(
ε+

Cu
Cd

)
γ

Cuκ
−
ÛTa

ÛTs

]}
λ598

=

{
Cu
λ

ÛF′

ÛTs
+
ε+1
2ε
−
ε−1
2ε

Cuκ

λ

[(
ε+

Cu
Cd

)
γ

Cuκ
−
ÛTa

ÛTs

]}
λ599

=

{
−

Cu
|λ |

ÛF′

ÛTs
+
ε+1
2ε
+
ε−1
2ε

Cuκ

|λ |

[(
ε+

Cu
Cd

)
γ

Cuκ
−
ÛTa

ÛTs

]}
λ600

601
602

ÛN
ÛTu
=

{
−

Cu
|λ |

ÛF′

ÛTs
+
ε+1
2ε

(
1+

ε−1
ε+1

Cuκ

|λ |

[(
ε+

Cu
Cd

)
γ

Cuκ
−
ÛTa

ÛTs

] )}
λ (A15)603

604

The term in square brackets in equation (A15) is the key term that provides a NT−diagram with605

evolving slope when the forcing is constant. The second part of this term provides the temporal606
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evolution, whereas the first part is a constant term that sets the base enhancement of the slope.607

Interestingly, this first part contains in particular the thermal capacities of the system.608

If I rewrite this first part of the square-brackets term, the terms are shown clearly609

ÛN
ÛTu
=

{
−

Cu
|λ |

ÛF′

ÛTs
+
ε+1
2ε
+
ε−1
2ε

Cuκ

|λ |

[(
ε

Cu
+

1
Cd

)
γ

κ
−
ÛTa

ÛTs

]}
λ (A16)610

611

Now in the first part it is the sum of the inverse of the thermal capacities as if we have an electrical612

circuit with capacitors in series. Having such a term in the equation for the slope favors the physical613

interpretation in terms of thermal capacities, instead of variable feedback mechanisms. The time-614

evolving ratio term in the second part, that represents the dynamics of the atmosphere-ocean615

coupling, only strengthens this interpretation.616

As a corollary, if the forcing is constant and ε→ 1, thenwe recover the classical linear dependence617

of the imbalance on Tu618

lim
ε→1

ÛN
ÛTu
= λ, F = const619

620

Symmetric and antisymmetric modes621

From equations (A13), we see that the symmetric and antisymmetric modes are the basis for622

the description of the solutions. Thus, let us give some explicit expression for the symmetric and623

antisymmetric modes.624
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From equation (A12) and the equations for the initial values and the forcing, I can write more625

explicitly the solution626

T± =
(
T±,0+

∫ t

t0
F′±e−µ±(τ−t0)dτ

)
eµ±(t−t0)

627

=

(
±

1
µ+− µ−

[(µ±+γ
′
d)Tu,0+ εγ

′Td,0]±
µ±+γ

′
d

µ+− µ−

∫ t

t0
F′e−µ±(τ−t0)dτ

)
eµ±(t−t0)

628

= ±
e(λ̂/2)(t−t0)

µ+− µ−

[
(µ±+γ

′
d)Tu,0+ εγ

′Td,0+ (µ±+γ
′
d)

∫ t

t0
F′e−µ±(τ−t0)dτ

]
e±(κ/2)(t−t0)

629

= ±
e(λ̂/2)(t−t0)

µ+− µ−

[
λ̂± κ+2γ′d

2
Tu,0+

2εγ′

2
Td,0+

λ̂± κ+2γ′d
2

∫ t

t0
F′e−µ±(τ−t0)dτ

]
e±(κ/2)(t−t0)

630

= ±
e(λ̂/2)(t−t0)

2(µ+− µ−)

[
(λ̂+2γ′d)Tu,0+2εγ′Td,0± κTu,0+ (λ̂+2γ′d ± κ)

∫ t

t0
F′e−µ±(τ−t0)dτ

]
e±(κ/2)(t−t0)

631

632

Now that I have a more explicit expression, I write the modes633

T+±T− =634

e(λ̂/2)(t−t0)

2(µ+− µ−)

[
(λ̂+2γ′d)Tu,0+2εγ′Td,0+ κTu,0+ (λ̂+2γ′d + κ)

∫ t

t0
F′e−µ+(τ−t0)dτ

]
e(κ/2)(t−t0)

635

∓
e(λ̂/2)(t−t0)

2(µ+− µ−)

[
(λ̂+2γ′d)Tu,0+2εγ′Td,0− κTu,0+ (λ̂+2γ′d − κ)

∫ t

t0
F′e−µ−(τ−t0)dτ

]
e−(κ/2)(t−t0)

636

=
e(λ̂/2)(t−t0)

µ+− µ−

{[
(λ̂+2γ′d)Tu,0+2εγ′Td,0

] e(κ/2)(t−t0)∓ e−(κ/2)(t−t0)

2
637

+κTu,0
e(κ/2)(t−t0)± e−(κ/2)(t−t0)

2
638

+
λ̂+2γ′d

2

[
e(κ/2)(t−t0)

∫ t

t0
F′e−µ+(τ−t0)dτ∓ e−(κ/2)(t−t0)

∫ t

t0
F′e−µ−(τ−t0)dτ

]
639

+
κ

2

[
e(κ/2)(t−t0)

∫ t

t0
F′e−µ+(τ−t0)dτ± e−(κ/2)(t−t0)

∫ t

t0
F′e−µ−(τ−t0)dτ

]}
640

641

The last two terms inside the curly brackets have a similar form as the combinations of exponential642

functions in the first two terms. These combinations of exponential functions are hyperbolic643

functions which can simplify the expressions of the solutions. I would want such a representation644

but a problem is there: the integrals are not the same, therefore I cannot factorise them together.645

Notwithstanding, from the definition of hyperbolic sine and cosine functions, I can write e±x =646
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cosh x ± sinh x. The factors within square brackets in the last two terms can be thought as ex I+±647

e−x I−, where I± are the corresponding integrals. Using the expression of the exponential function in648

terms of the hyperbolic functions, I expand ex I+±e−x I− = (cosh x+sinh x)I+±(cosh x−sinh x)I− =649

(I+± I−)cosh x+ (I+∓ I−)sinh x. Then, I overcome the limitation and now the two terms are written650

with hyperbolic functions. The coefficients of the hyperbolic functions are simple combinations651

of the integrals which can be also expanded easily. I do that now652

I++ I− =
∫ t

t0
F′e−µ+(τ−t0)dτ+

∫ t

t0
F′e−µ−(τ−t0)dτ =

∫ t

t0
F′[e−µ+(τ−t0)+ e−µ−(τ−t0)]dτ653

=

∫ t

t0
F′e−(λ̂/2)(τ−t0)[e−(κ/2)(τ−t0)+ e(κ/2)(τ−t0)]dτ654

= 2
∫ t

t0
F′e−(λ̂/2)(τ−t0) cosh

[ κ
2
(τ− t0)

]
dτ655

I+− I− =
∫ t

t0
F′e−µ+(τ−t0)dτ−

∫ t

t0
F′e−µ−(τ−t0)dτ =

∫ t

t0
F′[e−µ+(τ−t0)− e−µ−(τ−t0)]dτ656

=

∫ t

t0
F′e−(λ̂/2)(τ−t0)[e−(κ/2)(τ−t0)− e(κ/2)(τ−t0)]dτ657

= −2
∫ t

t0
F′e−(λ̂/2)(τ−t0) sinh

[ κ
2
(τ− t0)

]
dτ658

659

If one collects terms corresponding to each hyperbolic function in the former expressions for the660

normal modes, obtains the following661

Ts =
e(λ̂/2)(t−t0)

κ

{
C1 cosh

[ κ
2
(t − t0)

]
+C2 sinh

[ κ
2
(t − t0)

]}
(A17)662

Ta =
e(λ̂/2)(t−t0)

κ

{
C2 cosh

[ κ
2
(t − t0)

]
+C1 sinh

[ κ
2
(t − t0)

]}
(A18)663

664
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where665

C1 = κTu,0666

−(λ̂+2γ′d)
∫ t

t0
F′e−(λ̂/2)(τ−t0) sinh

[ κ
2
(τ− t0)

]
dτ+ κ

∫ t

t0
F′e−(λ̂/2)(τ−t0) cosh

[ κ
2
(τ− t0)

]
dτ667

C2 = (λ̂+2γ′d)Tu,0+2εγ′dTd,0668

+ (λ̂+2γ′d)
∫ t

t0
F′e−(λ̂/2)(τ−t0) cosh

[ κ
2
(τ− t0)

]
dτ− κ

∫ t

t0
F′e−(λ̂/2)(τ−t0) sinh

[ κ
2
(τ− t0)

]
dτ669

670

These expressions for the normal modes are quite elegant, and the coefficients Ci summarize671

all the information from the initial conditions and the forcing. The initial condition terms in the672

Ci correspond to the non-forced response of the system, while the part that is forcing-dependent673

corresponds to the forced response of the system.674

Forced response to constant forcing675

If F′ = F′c , 0 for t > t0 with F′c constant and Tu,0,Td,0 = 0 for t = t0, then676

C1 = F′c

{
−(λ̂+2γ′d)

∫ t

t0
e−(λ̂/2)(τ−t0) sinh

[ κ
2
(τ− t0)

]
dτ+ κ

∫ t

t0
e−(λ̂/2)(τ−t0) cosh

[ κ
2
(τ− t0)

]
dτ

}
677

C2 = F′c

{
(λ̂+2γ′d)

∫ t

t0
e−(λ̂/2)(τ−t0) cosh

[ κ
2
(τ− t0)

]
dτ− κ

∫ t

t0
e−(λ̂/2)(τ−t0) sinh

[ κ
2
(τ− t0)

]
dτ

}
678

679

where the integrals are easily computed680 ∫ t

t0
e−(λ̂/2)(τ−t0) sinh

[ κ
2
(τ− t0)

]
dτ =

e−(λ̂/2)(t−t0)

λ′γ′d

{
κ

2
cosh

[ κ
2
(t − t0)

]
+
λ̂

2
sinh

[ κ
2
(t − t0)

]}
−

κ

2λ′γ′d
681 ∫ t

t0
e−(λ̂/2)(τ−t0) cosh

[ κ
2
(τ− t0)

]
dτ =

e−(λ̂/2)(t−t0)

λ′γ′d

{
λ̂

2
cosh

[ κ
2
(t − t0)

]
+
κ

2
sinh

[ κ
2
(t − t0)

]}
−

λ̂

2λ′γ′d
682

683

and, upon reduction, the Ci are684

C1 =
F′c
λ′

e−(λ̂/2)(τ−t0)
{
−κ cosh

[ κ
2
(t − t0)

]
+ (2λ′− λ̂)sinh

[ κ
2
(t − t0)

]
+ κe(λ̂/2)(t−t0)

}
685

C2 =
F′c
λ′

e−(λ̂/2)(τ−t0)
{
−(2λ′− λ̂)cosh

[ κ
2
(t − t0)

]
+ κ sinh

[ κ
2
(t − t0)

]
+ (2λ′− λ̂)e(λ̂/2)(t−t0)

}
686

687
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with these expressions is easy to evaluate the terms inside the curly brackets in equations (A17)688

and (A18) and the symmetric and antisymmetric modes are (for t ≥ t0)689

Ts =
Fc

λ

{
e(λ̂/2)(t−t0)

(
cosh

[ κ
2
(t − t0)

]
+

2λ′− λ̂
κ

sinh
[ κ
2
(t − t0)

] )
−1

}
(A19)690

Ta =
Fc

λ

{
e(λ̂/2)(t−t0)

(
2λ′− λ̂
κ

cosh
[ κ
2
(t − t0)

]
+ sinh

[ κ
2
(t − t0)

] )
−

2λ′− λ̂
κ

}
(A20)691

692

where F′c := Fc/Cu. I can also obtain the explicit time derivatives of both modes. We take the time693

derivative both equations (A19) and (A20)694

ÛTs =
Fc

λ
e(λ̂/2)(t−t0)

{
λ̂

2

(
cosh

[ κ
2
(t − t0)

]
+

2λ′− λ̂
κ

sinh
[ κ
2
(t − t0)

] )
695

+
κ

2

(
2λ′− λ̂
κ

cosh
[ κ
2
(t − t0)

]
+ sinh

[ κ
2
(t − t0)

] )}
696

=
Fc

λ
e(λ̂/2)(t−t0)

{
λ′cosh

[ κ
2
(t − t0)

]
+
λ′λ̂+2γ′dλ

′

κ
sinh

[ κ
2
(t − t0)

]}
697

=
Fc

Cu
e(λ̂/2)(t−t0)

{
cosh

[ κ
2
(t − t0)

]
+
λ̂+2γ′d

κ
sinh

[ κ
2
(t − t0)

]}
698

ÛTa =
Fc

λ
e(λ̂/2)(t−t0)

{
λ̂

2

(
2λ′− λ̂
κ

cosh
[ κ
2
(t − t0)

]
+ sinh

[ κ
2
(t − t0)

] )
699

+
κ

2

(
cosh

[ κ
2
(t − t0)

]
+

2λ′− λ̂
κ

sinh
[ κ
2
(t − t0)

] )}
700

=
Fc

λ
e(λ̂/2)(t−t0)

{
λ′λ̂+2γ′dλ

′

κ
cosh

[ κ
2
(t − t0)

]
+λ′ sinh

[ κ
2
(t − t0)

]}
701

=
Fc

Cu
e(λ̂/2)(t−t0)

{
λ̂+2γ′d

κ
cosh

[ κ
2
(t − t0)

]
+ sinh

[ κ
2
(t − t0)

]}
702

703

I present both results jointly to show the simplicity of the derivatives704

ÛTs =
Fc

Cu
e(λ̂/2)(t−t0)

{
cosh

[ κ
2
(t − t0)

]
+
λ̂+2γ′d

κ
sinh

[ κ
2
(t − t0)

]}
705

ÛTa =
Fc

Cu
e(λ̂/2)(t−t0)

{
λ̂+2γ′d

κ
cosh

[ κ
2
(t − t0)

]
+ sinh

[ κ
2
(t − t0)

]}
706

707
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With these derivatives, I can calculate the ratio of the antisymmetric mode derivative to the708

symmetric one that appears in equation (A15)709

ÛTa

ÛTs
=

λ̂+2γ′
d

κ cosh
[
κ
2 (t − t0)

]
+ sinh

[
κ
2 (t − t0)

]
cosh

[
κ
2 (t − t0)

]
+
λ̂+2γ′

d

κ sinh
[
κ
2 (t − t0)

]710

=

λ̂+2γ′
d

κ + tanh
[
κ
2 (t − t0)

]
1+ λ̂+2γ′

d

κ tanh
[
κ
2 (t − t0)

]711

712

Formally, above result have the alternative form713

ÛTa

ÛTs
= tanh

[
κ

2
(t − t0)+ arctanh

(
λ̂+2γ′d

κ

)]
714

715

This is possible only if
��(λ̂+2γ′d)/κ

�� ≤ 1. Let us prove that in our case this follows716 ����� λ̂+2γ′d
κ

����� ≤ 1717

λ̂2+4γ′d λ̂+4γ ′2d
λ̂2+4γ′dλ′

≤ 1718

λ̂2+4γ′d λ̂+4γ
′2
d ≤ λ̂

2+4γ′dλ
′

719

λ̂+γ′d ≤ λ
′

720

−εγ′ ≤ 0721

722

the last inequality is always true, since ε,γ′ are positive constants. Thus,723

ÛTa

ÛTs
= tanh

[
κ

2
(t − t0)+ arctanh

(
λ̂+2γ′d

κ

)]
(A21)724

725

Equation (A21) is an hyperbolic tangent that grows from -1 to 1 in a sigmoidal fashion. It has a726

scaling factor that determines how fast it goes from -1 to 1. It also has a shift that sets where the727

hyperbolic tangent will cross zero. Both the scaling and shift depend on the thermal and radiative728

parameters of the system. Since the shift is negative, after the initial forcing the deep ocean (that729

depends on the antisymmetric mode) warms up slower than the upper ocean. At a latter time, the730
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ratio becomes positive and the contrary happens. The time at which the sign reverses is731

t1 = t0+
2
κ

arctanh

����� λ̂+2γ′d
κ

�����732

733

Variation of the climate feedback parameter734

With the solution shown before, the NT−diagram has a slope735

ÛN
ÛTu
=
ε+1
2ε

(
1+

ε−1
ε+1

Cuκ

|λ |

[(
ε+

Cu
Cd

)
γ

Cuκ
− tanh

(
κ

2
(t − t0)+ arctanh

(
λ̂+2γ′d

κ

))])
λ (A22)736

737

The factor is composed of terms that are positive except for the ratio term coming from equation738

(A21). The negative ratio for t ∈ [t0,t1) clearly generates a more negative slope, whereas for739

t ∈ (t1,∞) makes it less negative. At the start one can get the slope740

ÛN
ÛTu
=

(
1+ (ε−1)

γ

|λ |

)
λ, t = t0741

742

and at the time of sign reversal743

ÛN
ÛTu
=
ε+1
2ε

(
1+

ε−1
ε+1

(
ε+

Cu
Cd

)
γ

|λ |

)
λ, t = t1744

745

After the sign reversal the factor of λ will only decrease up to746

lim
t→∞

ÛN
ÛTu
=
ε+1
2ε

(
1+

ε−1
ε+1

Cuκ

|λ |

[(
ε+

Cu
Cd

)
γ

Cuκ
−1

] )
λ747

748

Equation (A22) shows the importance of the ratio of the symmetric and antisymmetric modes. Its749

physical meaning, the relationship between the upper- and deep-ocean warming, sets the strength750

of the variation of the climate feedback, whereas the constant term sets a base enhancement around751

which the feedback evolves. The thermal capacities of the system determine this constant term.752
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Fig. 1. Schematic representation of an NT−diagram for constant forcing due to a doubling of the803

atmospheric carbon dioxide concentration (F2x). Magenta line represents the relationship804

between the TOA net radiatiave flux change with the surface temperature change if the805

feedback mechanisms on surface warming were constant (constant slope). Green line shows806

the case found inmostmodels, where the slope varies throughout the process. Given thatmost807
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in the equilibrium climate sensitivity (ECS) estimates . . . . . . . . . . . . 40809

Fig. 2. Evolution of the slope of an NT−diagram. Blue solid line, with the average parameters810

from CMIP5 models obtained by Geoffroy et al. (2013a). Red solid line, with the thermal811

capacities as calculated by Jiménez-de-la-Cuesta and Mauritsen (2019). Red dashed line,812

with Cd as in Jiménez-de-la-Cuesta and Mauritsen (2019). Red dash-dotted line, with Cu as813

in Jiménez-de-la-Cuesta and Mauritsen (2019). Dots represent the slope values when the814

ratio term ÛTa/ ÛTs has the sign reversal. Thin black line is the constant λ = −1.18Wm−2 K−1. . . 41815

Fig. 3. Evolution of the slope of the NT−diagram. CMIP5 model behaviour using the fitted pa-816

rameters presented by Geoffroy et al. (2013a). Dots indicate the time of the sign reversal.817

Note that three models (CNRM-CM5.1, BNU-ESM and INM-CM4) show a steepening slope818
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de-la-Cuesta and Mauritsen (2019). Red dashed line, with Cd as in Jiménez-de-la-Cuesta and Mauritsen (2019).

Red dash-dotted line, with Cu as in Jiménez-de-la-Cuesta and Mauritsen (2019). Dots represent the slope values

when the ratio term ÛTa/ ÛTs has the sign reversal. Thin black line is the constant λ = −1.18Wm−2 K−1.
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Fig. 3. Evolution of the slope of the NT−diagram. CMIP5 model behaviour using the fitted parameters

presented by Geoffroy et al. (2013a). Dots indicate the time of the sign reversal. Note that three models (CNRM-

CM5.1, BNU-ESM and INM-CM4) show a steepening slope instead of flattening. For these models, the fitted ε

is lesser than one.
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