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ABSTRACT

Models indicate a time-varying radiative response of the Earth system to CO; forcing (Andrews
et al. 2012; Zhou et al. 2016). This variation implies a significant uncertainty in the estimates of
climate sensitivity to increasing atmospheric CO, concentration (Hawkins and Sutton 2009; Grose
et al. 2018). In energy-balance models, the temporal variation is represented as an additional
feedback mechanism (Winton et al. 2010; Geoffroy et al. 2013a; Rohrschneider et al. 2019), which
also depends on the ocean temperature change. Models and observations also indicate that a
spatio-temporal pattern in surface warming controls this additional contribution to the radiative
response by modulating the tropospheric instability (Ceppi and Gregory 2017; Zhou et al. 2016).
Some authors focus on the atmospheric mechanisms that drive the feedback change (Stevens et al.
2016), reducing the role of the ocean’s energy uptake variations. For the first time, 1 derive,
using a linearized conceptual energy-balance model (Winton et al. 2010; Geoffroy et al. 2013a;
Rohrschneider et al. 2019), an explicit mathematical expression of the radiative response and its
temporal evolution. This expression connects the spatio-temporal warming pattern to a dynamical
thermal capacity, stemming from changes in the ocean energy uptake. In comparison with more
realistic energy-balance frameworks, and unlike the notion of additional feedback mechanisms,
I show that an expanded effective thermal capacity better explains the variation of the radiative
response, naturally connects with the spatio-temporal surface warming pattern and provides a

non-circular framework to explain the variation of the climate feedback parameter.
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Significance statement. Understanding the factors that change the Earth’s radiative response to
forcing is central to reduce the uncertainty in the climate sensitivity estimates. The current
atmospheric-only view on the problem of the time-varying climate feedback parameter unneces-
sarily hides the ocean’s role. This work shows a novel perspective for the problem, enabling the

development of a more general theory.

1. Introduction

Climate models show a wide range of temporal variation in their radiative response to CO, forcing
(Senior and Mitchell 2000; Andrews et al. 2012; Ceppi and Gregory 2017). This variation appears in
numerical experiments where the atmospheric CO; concentration is raised and maintained constant
afterwards. The rise in the atmospheric CO, concentration modifies the Earth’s emissivity to long-
wave radiation, resulting in surface warming. Surface warming modifies the radiative flux at the
top of the atmosphere (TOA). The modified flux tends to cancel the energy imbalance introduced
by the radiative forcing. Surface warming also changes other variables, such as the atmospheric
temperature and humidity, that further modify the radiative flux. These changes are the feedback
mechanisms on surface warming. The net rate at which the globally-averaged surface warming
reduces the globally-averaged TOA imbalance is known as the climate feedback parameter.

If the feedback mechanisms did not change with time, the climate feedback parameter would be
constant, and a diagram of globally-averaged TOA imbalance change N versus surface temperature
change T, (NT—diagram) would be linear. However, climate models present NT—diagrams with
different degrees of curvature, indicating a non-constant climate feedback parameter (presented in
Figure 1; Andrews et al. 2012; Ceppi and Gregory 2017). The degree of curvature is also modified
by forcing strength (Senior and Mitchell 2000; Meraner et al. 2013; Rohrschneider et al. 2019).

Temporal and state dependencies can be the root of climate feedback’s variation. Observations
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indicate that a spatio-temporal pattern of surface warming modifies cloud feedback in decadal
timescales by altering atmospheric stability, leading to feedback changes that depend not only
on surface warming (Zhou et al. 2016; Mauritsen 2016; Ceppi and Gregory 2017). The spatio-
temporal warming pattern should depend also on the state of the system leading to contributions
to the climate feedback’s temporal and state dependencies.

In a globally-averaged energy-balance framework, N should be equal to the forcing F plus the
radiative response of the system R, N = F + R. Following the classical picture of the linearized
feedback mechanisms depending only on the surface warming (Gregory et al. 2002) 7;,, we should
have R ~ AT, where A is a constant climate feedback parameter. Thus, if we consider a constant
forcing F, the slope of the NT—diagram would be constant and equal to A, in contradiction with
observations and complex models as discussed above. Thus, either the non-linear component plays
a more significant role, or the feedback mechanisms depend on more than the surface warming.

The problem cannot be solved by introducing more structure in the system. For instance, if
we introduce two coupled layers (Winton et al. 2010; Geoffroy et al. 2013b; Rohrschneider et al.
2019). One layer represents the atmosphere, land and the mixed upper ocean layer: the upper
layer. The deep layer corresponds to the deep ocean. Both layers have different thermal capacities.
The thermal capacities provide two timescales. One can show that these timescales only delay the
equilibrium but do not alter the climate feedback parameter A. For the upper layer, the energy
budget is Ny, = F + AT, — H, where H is the coupling between the upper and the deep layer: the
deep-ocean energy uptake. The deep layer budget is, therefore, Ny = H. The sum of both budgets
provides the planetary imbalance at the TOA N = F + AT,,. Thus, N has the same form as before.

Geoftroy et al. (2013a) introduced a perturbed deep-ocean energy uptake in the upper-layer
budget, H' := ¢H, where ¢ is the efficacy parameter. The deep-layer budget is still equal to

H, leading to a different energy imbalance at the TOA: N = F + AT, + (H — H’). Although the
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H — H'’ term appears to violate the energy conservation principle, it can be interpreted as additional
atmospheric feedbacks (e.g. Armour et al. 2013; Stevens et al. 2016) that depend on the deep
ocean’s temperature. However, this explanation seems to be ad-hoc.

One of the weakness of the classical approach is the linear approximation. The climate feedback
parameter A is defined in terms of the derivative of R evaluated at the initial state. In the same
manner, the deep-ocean energy uptake H is defined in terms of a derivative evaluated at the initial
state. Therefore, the seemingly ad-hoc term introduced by Geoffroy et al. (2013a) has a more
concrete interpretation: the difference between the actual H’ and the reference H results in a
surplus (1 —g)H. This surplus comes from a dynamically-expanded capacity of the deep ocean
to uptake energy: an effective thermal capacity. This effective thermal capacity influences the
flux between the upper and deep layers, modifying the surface temperature from below. Once the
surface temperature is modified, the usual atmospheric feedbacks change.

Considering the analytical solutions of the modified two-layer model, I derive for the first time
an explicit mathematical expression for the slope of the NT—diagrams, including the explicit time
evolution of this slope. At its core, this expression has the ratio of change of the energy stored
by the upper and deep layers and supports the more concrete interpretation that I presented above.
The interpretation of these results is that the atmosphere-ocean coupling sets the spatio-temporal
warming pattern. Afterwards, the atmosphere adjusts, leading to the changes in the feedback
mechanisms. [ first show the theory of this novel mathematical expression using the linearized
two-layer model. Afterwards, I take a step back away from the approximation to show why the

interpretation given above is more relevant.
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2. Theory

The following equations define the modified linearized two-layer model (Geoffroy et al. 2013a)
CuTy = F+AT,—ey (T, - Ty)

Caly = y(Tu—Ty)

where the first equation corresponds to the upper-layer budget and the second equation to the deep
layer. The parameters A and 7y are the climate feedback parameter and the rate of deep-ocean energy
uptake in the neighbourhood of the initial state. C, and Cy are respectively the thermal capacities
(per unit area) of the upper and deep layers. 7, and T4 are temperature anomalies referred to the
initial state and the dotted quantities are time total derivatives. The planetary imbalance is the sum
of both equations, resulting in N = F + AT, + (1 — &)y(T, — Tq). Nonetheless, it is better to write

these equations in the following fashion

To=F +2T,—ey (T, - Ty)
| (1)
Ty = Yoy(Tu—Ta)

where F’ := F/C, with units of Ks™! and, A’ := 1/C,, ¥’ := y/C, and Y, := v/Cq with units

of s71.

Equations (1) are a system of linear ordinary differential equations (Geoffroy et al.
2013a; Rohrschneider et al. 2019). Although the solutions are standard and widely discussed in
other articles (e.g. Geoffroy et al. 2013a; Rohrschneider et al. 2019), here I will use the normal
mode approach. In the following, I proceed by summarizing the relevant facts, leaving the full
mathematical discussion to the appendix A of this article.

The homogeneous (F’ = 0) version of the system (1) has two distinct eigenvalues j, := (1£«)/2,
where 1:= ' —gy’ — Y/, and k2= A%+ 41'y!,. These eigenvalues provide two distinct eigenvectors,
forming a basis in which the full system (1) is uncoupled and, therefore, has a straight-forward

solution. The eigensolutions 7, are the solutions associated with each eigenvalue. Afterwards,

one can return to the original representation, finding that 7;, and 7y are linear combinations of
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T.. These linear combinations are the normal modes: the symmetric mode 7§ := T + 7T_ and the
antisymmetric mode 7}, := T, —7_. The main result of this process is that T, = T and Ty = o T, + BT,
where @ and S are scalars that depend on the coefficients of the system (1). The normal-mode

representation makes explicit the coupling of the deep layer with the upper layer.

3. Results

(i) The explicit slope of the NT-diagram From the solutions to system (1) written in terms of the
normal modes, one can obtain an expression for the slope of the NT—diagram, N /T, of a system
under constant forcing. In the appendix, I derive the following closed expression for the slope
in terms of the derivatives of the normal modes and as a factor of the constant climate feedback

parameter A

N e+l e-1Ck|[ e 1 T,

ol el &
The main characteristic of equation (2) is the square-bracket term of its right-hand side. It contains
two parts. The first one sets a basic enhanced slope and contains the sum of the inverse of the
thermal capacities as if we had an electrical circuit with capacitors in series. The second part
provides the time evolution. It is a ratio of the changes in energy content. This ratio compares the
change in energy content of the deep layer with that of the upper layer. To confirm the importance

of the square-bracket term, one can take the limit as € — 1, where the pattern effect is cancelled in

equation (2)

The strong coupling between the upper and deep layers disappears. We end up with a constant

slope. However, if € # 1, the climate feedback parameter varies with the ratio of the changes in
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energy content from the deep to the upper layer around a basic value that depends on the thermal

capacities of the system, the square bracket term in equation (2).

(ii) Explicit expression for the ratio term  Using the full mathematical expressions for the solutions

T, and T, for constant forcing, I write the ratio term in equation (2) as

T,
T—a = tanh [g(t — o) + arctanh ( 3)

N

/i+2y;l)

The ratio (3) grows in a sigmoidal fashion from —1 to 1. This hyperbolic tangent has a scaling
factor (k/2) that sets the rate of change of the hyperbolic tangent between its extreme values. It also
has a shift (the arctanh term) that determines when the hyperbolic tangent crosses zero, governing
the contribution of the last term in equation (2). Both scaling and shift are in terms of Cy, Cy, €, v
and A.

The interpretation of equation (3) is that, after the initial forcing, the deep ocean warms up slower
than the upper layer, steepening the slope of the NT—diagram. Once the ratio reaches the sign-
reversal point, the last term’s contribution in equation (2) only flattens the slope of the NT—diagram.
The scaling factor and the shift of the ratio (3) set the timescale for the flattening. Equation (3)
expresses precisely the time evolution of the climate feedback parameter that others have only
approximated through numerical experiments with the modified two-layer model (Geoffroy et al.
2013a; Rohrschneider et al. 2019). Additionally, it establishes a third timescale in the Earth system,

related to the atmosphere-ocean coupling.

(iii) Explicit expression of the climate feedback parameter Using the explicit expressions, the

) ZENC)

equation (2) for the climate feedback parameter is

| A+2y
£ +— Y_ tanh 5(; — 1) + arctanh Ya
C, Ci«k 2 K

ﬂ._8+1 +8—1CuK
T, 2¢ e+1 |1
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The factor of A is composed of terms that are positive except for the ratio term coming from

equation (3). One can prove that at the start (¢ = #y) the slope is

N Y
T—u(f()) = (1 +(8— l)m) A

and from here up to the sign reversal of the ratio term, the slope flattens. The flattening is gentle
at first, but towards the sign reversal it accelerates.

At the time of sign reversal we have

N e+1 e-1{e¢ 1\ Gy
—(trey) = 1+ —+ = A
Tu(m) 2e ( e+1 (cu cd) 1] )

and from here and on, the ratio term becomes positive, leading to an even flatter slope. The flattening

decelerates and becomes gentle again. The asymptotic value of the slope of the NT—diagram is

N 1 -1C 1
lim =2 [ 22 )Y g )|a
t—eo T 2e e+1 |2 |[\Cy Cq) «

(iv) Numerical estimates of the atmosphere-ocean coupling By substituting in expression (4) the
parameter values found by Geoftroy et al. (2013a), I find the timescale for the sign reversal of the
T, /Ty ratio term. I use the multimodel mean values reported by Geoffroy et al. (2013a). For the
multimodel average values (C, = 8.2Wyrm2K™!, C4 = 109Wyrm2K~!, y =0.67Wm—2K"!,
A=-1.18Wm2K™! and & = 1.28) the sign reversal of the ratio term takes place after 18.3 years.
This timescale lies between the fast (4.2 years) and slow (290 years) timescales established in terms
of the thermal capacities alone (Geoffroy et al. 2013a). This timescale is when we are at one half
of the change between the initial and final values of the slope.

I calculate the time for sign reversal using the rest of values in the tables of Geoffroy et al. (2013a)
and obtain that the multimodel average is 18.8 years. The minimum value is 8.8 years for GISS-
E2-R, whereas the maximum is 25.1 years for CNRM-CM5.1. If I compare with their estimates

of the fast and the slow timescales, even the extreme values fit well between both. Enlightening is
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that the timescale of the sign reversal seems to fit with the de-facto 20-year standard to evaluate
the change in slope (e.g. Ceppi and Gregory 2017).

I also compare between the multimodel averages for all parameters and with the thermal ca-
pacities as calculated by Jiménez-de-la-Cuesta and Mauritsen (2019): C, = 7.2Wyrm 2K~ !,
Cq =367Wyrm 2K~!. The calculated deep-layer thermal capacity is larger than the CMIP5
multi-model average, whereas the calculated value for the upper layer is smaller than the CMIP5
average. From these differences, we can note changes in the slope evolution (figure 2). Although
the difference in final slopes is small, the calculated thermal capacities strongly shift the sign-
reversal timescale: a deeper deep ocean lengthens the sign-reversal timescale, whereas a shallower

upper layer shortens it.

4. Analysis and Discussion

(i) Consequences of the equation (4) 'We have two terms in the factor of equation (4): the identity
term and the (e — 1)—term. The second term is only active if € # 1, and has two contributions.
The first one is a constant contribution linked to the thermal capacities of the system. The second
contribution is time-varying and depends on the ratio 7,,/T. This ratio measures the proportion of
energy that goes into the deep ocean compared to that stored in the upper layer. Together, these
terms provide a physical picture in which the slope’s variation is determined by a basic thermal
capacity, which is expanded dynamically. The expansion stems from the changing energy fluxes
between the upper and deep layers that differ from the flux at the starting state represented by y. This
flux difference changes the surface temperature and connects with the evolving spatio-temporal
warming pattern in a more concrete fashion, given that the evolution and spatial distribution of the

sea surface temperature corresponds to changes in the energy fluxes.

10
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I showed above that the thermal capacities have a strong effect on the timescale at which the slope
of the NT—diagram changes (figure 2). Thermal capacities in complex models depend strongly on
the depth of the ocean mixed-layer and, therefore, on the atmosphere-ocean coupling, providing
diverse behaviors (figure 3)

The above interpretation of the two-layer model in the context of the real Earth System is the
following: The relative change in the energy fluxes due to the atmosphere-ocean coupling com-
pels the atmospheric feedbacks to adjust. Thus, the magnitude of the changes in the atmospheric
radiative response depend on the atmosphere-ocean coupling. One can argue that the non-local
free-tropospheric warming from the deep-convective warm regions is enough to explain the change
in feedbacks. However, for the pattern effect to act as proposed by Zhou et al. (2016); Mauritsen
(2016); Ceppi and Gregory (2017), one needs the surface temperature variation in the subsidence
areas. Here the atmosphere-ocean coupling and oceanic circulation enter to change the surface tem-
perature, determining the spatio-temporal warming pattern. Thus, the atmosphere-ocean coupling

can play a larger role than thought before (Kiehl 2007).

(ii) State and forcing dependence In this article, I ignored the dependence on the strength of
forcing (Senior and Mitchell 2000; Meraner et al. 2013; Rohrschneider et al. 2019). However, such
dependence should come from the reference values €, A and 7y that exist under a particular forcing.
Values of A and v are first-order derivatives in the neighbourhood of the starting states. Therefore,
we need to explore the physics behind the &€ parameter to understand how it can change depending
on forcing. The physics of € is the atmosphere-ocean coupling, including circulation. Therefore,
we should explore how forcing impacts the atmosphere-ocean coupling, resulting in changes in the

spatio-temporal warming pattern.

11
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There are versions of linearized energy balance models in which a simple non-linear term is
introduced (Rohrschneider et al. 2019). Although higher-order terms in the Taylor expansion of
either the radiative response R or the energy uptake H can provide additional information, the
dependencies arising from the atmosphere-ocean coupling, as shown in this article, are far more

important in light of the results presented above.

(iii) Non-linear planetary energy balance Above 1 presented evidence favouring the ocean’s
energy uptake central role in determining the spatio-temporal warming pattern and its effects on
the atmospheric feedback mechanisms. I test this idea in a more general theoretical framework by

writing the planetary energy budget in another widely-known representation
d 4
E(CTu) =(1-)S+G-€o(fT) (5)

where S := S(r) in Wm™2 is the incoming solar radiative flux at the TOA, « is the planetary
albedo, G := G(t) in Wm™2 represents the remaining inputs (natural and anthropogenic), and
the last term is the usual planetary long-wave emission, in Wm™2, as a grey-body of emissivity
€ and surface temperature 7, with f the lapse-rate scaling factor for the emission temperature.
At first inspection, we have the origin of the feedback mechanisms: the planetary albedo «, the
emissivity € and the scaling factor f. On the one hand, we have the short-wave strand, the planetary
albedo @ := (T, qcidw,- - -) that is a function of, e.g., the surface temperature (determining ice-
sheet and sea-ice area) and the amount of liquid water in the atmosphere forming clouds. On
the other hand, we have the long-wave thread, the emissivity and the lapse-rate scaling factor
€ f :=1t(Tuw,qv,qctdw- - - ), depending on, e.g. the surface temperature, and the amount of water
vapor and cloud liquid water in the atmosphere.

The atmospheric feedback mechanisms cannot rely on any temperature we define inside the

ocean. The ocean affects @, € and f only through changing 7;,. In equation (5), we cannot see such

12
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dependence. Therefore, here we would be tempted to artificially introduce it by saying that a, €
and f depend on another temperature in the ocean, as others have interpreted from the modified
two-layer model. In this work, I have shown that there is another more natural place where the
ocean enters into play: the energy imbalance at the TOA, N.

We usually picture N as N = (d/d¢)(CT,) = CT,. However, we can have processes that modify the
thermal capacity: For example, (a) if the mixed-layer depth varies, it modifies the amount of water
in contact with the atmosphere; (b) deep-water upwelling not only reduces the surface temperature
but increases the thermal capacity of the mixed layer; (c) a similar effect comes from water from
ice sheet melting. Therefore, the sea surface temperature is controlled by the oceanic circulation
and the ocean-atmosphere interaction, setting the warming pattern. Thus, a more proper definition
for N is N = (d/dt)(CT,)— CT, = CT,. The term CT, considers these processes that modify the sea
surface temperature and the ocean energy fluxes from below.

If we rewrite equation (5) using the corrected N:

N=(1-a)S+G-eo(fT,)*-CT, (6)

The last term of equation (6) is the representation of the effect of the spatio-temporal warming
pattern. The factor C needs a new differential equation that describes the temporal variations of
the energy uptake due to the ocean circulation and atmosphere-ocean interactions. If we want to
use this non-linear framework, we would also need additional differential equations or constitutive
relationships for @, € and f.

However, to look at the effect of this additional dynamical thermal capacity term on the atmo-

spheric feedbacks, let us consider the total derivative of N. In the appendix B, I present the details
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of this derivation. The expression for the total derivative of equation (6) divided by 7, is

S @ e mi ¢ roe 3
[1 Vi UL T, AT, T T deo fUTY deo T R /U@

The first term is the contribution from the forcing variation, whereas the second term is the
contribution of the radiative response. This last term is the analogue for the expression of the
square bracket term in equation (2). This last term has a non-dimensional factor multiplying
the product of Planck feedback. In the non-dimensional factor we have a sum of terms. Each
term represents the contributions of feedbacks and other processes to the radiative response in
comparison to the Planck feedback. The first term in this factor is one, for the Planck feedback.
The second term is the contribution of the planetary-albedo feedback, including surface albedo as
well as short-wave cloud feedback. The third term is the contribution of the emissivity feedback,
including water-vapor feedback. The fourth term is the lapse-rate feedback. The last two terms
are the contribution of the atmosphere-ocean interaction and ocean circulation to the radiative
response.

Equation (7) is the non-linear analogue of equation (2) if we consider that the forcing is stationary.
In a linearization, the first four terms would provide a term analogous to A. The last two terms,
considering that at least C # 0, would provide the analogue of the remaining terms corresponding
to a situation where € # 1. If € = 1, then C = 0 and the linearization of equation (7), would
provide a constant feedback parameter if we accept that «, € and f covary with T;, except for sign.
These facts provide more support for interpreting the modified two-layer model as introducing
a dynamical thermal capacity, turning the limelight to the role of the ocean circulation and the

atmosphere-ocean interactions in setting the sea surface temperature patterns.
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5. Conclusions

I presented for the first time an explicit mathematical expression of the slope of the NT —diagrams.
For that end, I used the linearized framework of the two-layer energy balance model. From the
analysis, I uncover another timescale in the Earth System: the timescale of the changes of the
climate feedback parameter. The timescale is related to the ratio of change in the energy content
between the deep- and the upper-layer (atmosphere, land and mixed upper ocean). In CMIP5
models this time scale is around 18 years, providing theoretical support to the 20-year standard
timescale used to study the change in the climate feedback parameter.

The mathematical expression and the analysis of the modified linearized two-layer model suggest
that the spatio-temporal warming pattern is a product of the atmosphere-ocean coupling (the H term
in equations). Linearization uses the value of the coupling at the starting state. When introducing
a modified coupling (H’) that represents departures from the starting state, the modified two-layer
model can represent the variation of the slope of the NT—diagrams. The found mathematical
expression suggest that the difference H — H’ acts as a dynamically-enlarged thermal capacity
that depends on the ratio of change in the energy content between layers, changing the surface
temperature. In the real Earth System, therefore, the atmosphere-ocean coupling and the circula-
tion produce the evolving spatio-temporal warming pattern, to which the atmospheric feedbacks
respond. I also shortly discussed this interpretation in terms of a non-linear framework, where
feedback mechanisms not depending on the surface temperature are complicated to introduce. In-
stead of introducing exogenous dependencies in the feedback terms, the solution is that the thermal
capacity of the system varies. The variation represents the atmosphere-ocean coupling and ocean
circulation and relates to the spatio-temporal surface warming pattern. Its effect on the surface

temperature then seamlessly translates to changes on the atmospheric feedback mechanisms.
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APPENDIX A

Mathematical analysis of the modified two-layer model

In Classical Mechanics, a very coarse thinking would be reducing the field to the task of solving
the equation p = F for any force term, either analytically or numerically. Going further leads to
conservation principles and formulations of Classical Mechanics that provide more information
without actually obtaining solutions, if that is possible at all. In this appendix, reduced to the scale
of a simplified framework, I show that by delving deep into the mathematics of a system of linear
ordinary differential equations, the structure of the solutions and its physical interpretation, one
can obtain a new view on an old problem.

The appendix is written in an exhaustive way and I leave few things without development. The
cases in which I do not show some algebraic step is because the necessary step has been already

done or is very simple.
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Matrix form of the equations

The equations of two-layer model Geoffroy et al. (2013a) are

Ny = C Ty = F+ AT —ey(T, - Ty)
(AD)
Ng = Cyly = y(Tu—Ty)
and the planetary imbalance is N = N, + Ny. I present another form of the equations, where I divide
by the thermal capacities.
Td = Cld(Tu - Td)
If [ define F” := F/Cy, A" := 1/ Cy, y" :=y/Cy, v}, := v/ Cy, one can write the equations in a lean

way

Tu=F +XT,—ey (T, -Ty)

(A2)
Ty = yid(Tu ~Ta)
I will put the system in matrix form. I define T := (T,7T4), F’ := (F”,0) and

r-ey v,
A= (A3)

ey -y

and the system can be written

T=F+TA (A4)

which is the representation of the system in the temperature basis.

Eigenvalues and eigenvectors

I want to analyse the normal modes of the system. For that end, I need the eigenvalues of the

homogeneous system obtained as the solutions of the characteristic equation

A =&y =)=y, —w)—€y'y,=0 (A5)
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376

377

379

380

382

@
%
b

385

386

387
388

389

390

391

392

—AYy Y Yy = vy u+pt—gy'y; =0
XYy = utey p+ =0
—Yy = (A —&y =Y+’ =0

The solutions of equation (AS) are

V4 / V4 ’ ’ / 1 2
W =&y =y = [V —ey =y +42y,]"

2

[ = (A6)

and, given that in the Earth C, < Cy4, one can prove that there are two real and different eigenval-
ues. One needs to check that the square root term is not complex or zero. This only happens if the

sum within the square root is negative or zero

(X —ey =y +41'y, <0

A —ey')? =201 - ey )y, + 7;2 +41'y, <0

22X ey +(ey' ) =21 - ey )y, + 7;12 +42y, <0

A2=20ey +(ey)* - 20y, +2ey'y), + yf +41'y, <0

1Y) =2 [y)e [vi) + & 7)) + 260y [vj) + 142X [v,) <O
X Jy) =2 [yplety' [yy) =11+ [v)) +28(y [v) +1 <0
X[y =2 1Yl [v,) = 11+ (e [¥)) + 1)* <0

(' Jyy)* +(e(Ca/Cu) +1)* <22 [y)[e(Ca/C) = 1]

In the last inequality, the left-hand side is always positive. The right-hand side depends on the
sign of the factors. The middle factor is negative since A’ is negative and y/, is positive. The third
factor is positive provided that € > C,/Cq. Given that € > 1 and C, < Cy, then the third factor

is positive in our case. Then the right-hand side is negative. Thus, we obtained a contradiction
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398
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408

409

410

412

413

414

by supposing that the square root term was negative or zero. Therefore, the conclusion is that
the eigenvalues are two real and distinct numbers. Some CMIP5 models show & < 1 according
to Geoflroy et al. (2013a). These also fit here. In the last condition of the above expression we
require that £(Cq/Cy)—1 > 0. If € > C/Cq this is fulfilled. C,/Cqy is a small quantity and, in the
models that have a lesser than one ¢, always the ¢ is larger than this small quantity by an order of
magnitude. Thus, what I had said until now and will be said afterwards applies to all cases.

I call the solutions 4 and u—, depending on the sign of the square root term. Let us rewrite their
expression in more lean fashion. I define 1:= ' —&y’ — y,, and we call k the square root term.

Then, I rewrite the solutions (A6) as

>
H
=

(AT)

[\S)

Now that I know the eigenvalues, one should get the eigenvectors of the system and solve it
easily. The eigenvectors are the generators of the kernel of the operators A — u..id. Let us write

the diagonal of the matrix A with the definition of A

/’l‘ +,y/ 7/
A= d d
ey’ A- A —¢gy’)

and then the matrices for each eigenvalue have the form

A+y)— pe Y.
ey’ A= —&Y')— pa
| =ty Yy
’

ey’ pz—(A'-¢gy)
Since eigenvalues are real and distinct, there should be two linearly-independent eigenvectors,

one for each eigenvalue. These vectors should fulfill that e.(A — u.id) = 0. Solving that linear
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426

427

428

429

430
431

433

435

436

438

system, I find the eigenvectors in temperature representation

Mzt
ey’

€d (A8)

ei:eu_

The procedure to get the result is to solve the system of homogeneous linear equations e.(A —

pxid) =0

(Uz+7Y))exu +&y'esq =0
Y,exutlpz— (' —ey)]erqa =0

I solve the first equation for the component e 4, and substitute this result on the second equation

Hx+7y
€xrd = — ;T €xu
ey
, s = —ey)(u=+7v))
Yai~— B e+, =0
gy
&Y'y — s — (' —&y)l(u=+7v))
d + ey’ * d iy = 0, (8,’)// + O)

{ev'v)— s — (X —ey)(us+7))} €20 =0
{ev' v, +[(X —ey) = pu=l(V) + ps)} ex =0

—{—ev'V,+ (X —&y) = pu=)(—v) — pz)} €24 =0

and in the last expression we have two options: either e, is zero or the term within curly braces is
zero. However, the expression in curly braces is the characteristic equation (A5) and then always
vanishes identically. This means that e, , = @ € R can be chosen arbitrarily. I plug in this result in

the expression for e, 4 and get that



«s Or as a vector in the temperature basis

440 e, = ei_’ueu + ei’ded
’
Het+Y,
441 €. =qae,— —/a’ed
442 &y

« and since « is arbitrary this means we are in front of a subspace of vectors. I choose a basis by

«  selecting @ = 1.

’
446 2 y

« which is the same as the equation (AS).
«  Now, I can derive the expressions of the temperature basis vectors in terms of the two eigenvectors.

« If one solves for e, in equation (A8)

450 (S -,
451 &Yy

= but we have here two expressions in a condensed way. Therefore,

He+Y) H-+7y

453 e.+—e =€, +——e¢y4

ey’ gy’

HetYy p-t7,
454 * d— d ed—e+—e_
gy’ gy’
(ur +v)) = (pu-+v))
455 ; € =¢€e,L—¢€_
294

456 L:u_ed = e+ —€e_

gy

ey’

457 €y = (e+ - e_)
458 /.l+ — /.l_

s Thus, I have expressed e, in terms of the eigenvectors.

21



460

461

463

465

467

468

469

470

474

478

479

480
481

Now, I substitute the last result on one of the expressions for e,.

M-+
e, +———e;=¢,
gy
H-+Yy &y
e+ ,d 14 (ex—e_)=e,
gy My — -
p-+7,
e, + —d(e+ —e_)=¢,
My — H-
pu-+7, pu-+7v,
(1+ d)e+— de_:eu
My — i My — i
Mo —H-FH-+Y,  p-tYy
e, — e_=¢e,
My — H- My — M-
pe 7, pu-+7,
T de —e¢,
M+ — M- M+ — M-

and the temperature basis vectors in the eigenvector representation are

M+, H-+y!
e, = ! de+— e
My — H- My — K-
8 ’
ed:—y(e+—e—)
My — H—

Matrix in the eigenvector representation. Solutions

(A9)

With these results, I can write the matrix A (A3) in the eigenvector basis and it should be the

following diagonal matrix

uy 0

0 pu-

(A10)

I show how to get to this result. Let subscripts represent rows and superscripts represent columns.

I define that latin indices (i, ],k,...) have the possible values u,d; and greek indices («,5,¢...)

have possible values +,—. Also, repeated indices in expressions mean summation over the set of

possible values. With these considerations, equation (A9) is

(07
e =A'e,
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495

496
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498

499

500

where the rows of matrix A contain the coordinates of each of the vectors of the temperature basis

in the eigenvector representation. Analogously, equation (AS8) is

i
e, =0,¢

where matrix ® has in its rows the coordinates the eigenvector basis in the temperature represen-

tation. This means that

e, =0 e = ®fXAfe/3

which is only possible if the matrices A and © are inverse of each other

ey = 5geﬁ =e,

Thus, we write @ = A~

Now, matrix A is the temperature representation of a linear operator f. If v=1v/e ; is a vector in
the temperature representation, then the action of the linear operator f should be f(v) = f(v/e;) =
v/ f(e ;). Then the action of f on a vector expressed in a given basis only depends on the action
of the operator on the basis: f(v) = f(v/e;) = v/ f(e i) = v/ A?ek. Thus, the matrix A has in its
rows the coordinates in the temperature representation of the action of f over each basis vector.
Once one understands what is happening under the hood, what we want is the matrix B, which
is the representation of f in the eigenvector basis. Therefore, I begin with the basic relationship

in the temperature representation and introduce the change of representation using the alternative
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=2 representation of equations (A8) and (A9)

503 f(ei) = Al]AJ(eé’
504 f(Alaea,) = A:Afeé‘
AYf(eq) = A/ Ajf e;
A—l iA(l' — A—l lAJA(
06 ( )ﬁ i flea)=( )ﬁ i 2 ;€7
fleg) = (A—l)gA{Ajf e, f(eg) := Bée;
NS N VIS
o Bﬁ =(A ),lBAi A].

s Or in matrix notation B = A"'AA. Then, I multiply the matrices

H-tYg Y, / ety pety
-1 1 - gy’ A+Yy Vg He—po e
511 A = 5 A = 5 A =
ﬂ++7:1 ’ , ey’ ey’
1 gy’ gy Ya He—p— He—p—

s First, note that u, —u_ = k. One also looks at the following quantities that will help in the
s« process: iy +p-=Aand pypu_ = A—It(/Al2 —k%) = A—It(/Al2 - A2 —4A'y) = =A"y),. I proceed with the first

«s product, A7!A.

H-tY, ALy ’
-1 T ey /l—l—’yd Ya
516 A A:
/J++’)’:1 /7 ’
1 - = ey =Y,

A “=+Ya\ s
A+y,—p-—v, (1+ Sy’d)yd

S fyty!
A+y,— e = (1+ W")“y;

A ey'+u-+y, ,
A=y ==y

518 —_
i ey'+pustyl
+ ey’ d

ey'tu-+y, ,

H+ ey’ d

ey’ +ustyl,
ey’ d

520
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521

522

523

524

526

527

528

532

534
535

536

and multiply the result by A

ey'+u-+y, , HetYy BtV

A—IAA — He ey’ d H+—H— H+—H-
ey’ +utyl, ey’ &y

- gy’ d He—p- Hy—H-

G+ Yy 8Y Y Yy Y] e = Y = 8Y Y~ UV =Y

T T R R T R I e TR R O R I R U

L mr@rey )y = Atey Yy,
K Y ’ !\, 1 / Yy’
i +(A+ey +v))y, —pr—(A+ey +Y)Yy
U Himpepe Ay | 1 ek 0 [ 0O
N vy vy, 2 vpens | 00 pk 0w

the last line is the result that we wanted to check.

In the eigenvector representation the system (A4) has the following form

T=F+TB (A11)

and, therefore, is decoupled. Therefore, I can solve each equation separately. I only need to
transform the forcing vector to the eigenvector representation.

The equations are
Ti = F; + /-liTi
and the solutions of a generic initial value problem are
t
T, = (Ti,o + / F;e—ﬂi“—mdr) eh(=10) (A12)
To

where the initial values in the eigenvector representation in terms of the initial values in the
temperature representation are

1 /7 ’
Tip== [(us + v )Tuo +&y Tyo]
My — H-
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544

545

546

547

548

549

550

551

5562

553

554

555

556

557

562

the forcing components are

M+,
My — M-

Fl=x F’

and the solutions in the temperature representation are

T.=T,+T_
_+v +v
Td:_ﬂ YdT+_,U+ ydT_
ey’ ey’

If I further expand the Ty solution, the form of the solutions is more elegant

T,=T, +T.
A Al
A+2y), K (AL3)
Td = = (T++T_)+ (T+_T_)
2ey’ 2ey’

since it shows that the solutions in the temperature space are in a sort of symmetric and antisymmet-
ric combinations of the solutions in the eigenvector representation. These are the normal modes.
One thing to note is that the upper temperature is the symmetric mode and the deep temperature is
a mixture of symmetric and antisymmetric modes.

I show how I got the solutions (A13). Just expand the T4 equation.

_+Y +y
_H VdT_,U+ ydT_

d= ’ + ’
gy ey
1 /i—K+ v /i+/<+ Nr
&y’ 3 Yali+ ) Yal|t-
1 [[A1+2y A+2y
=- Ya _X T, + 7d+5 T
ey’ 2 2 2 2
1 7 ’
=5 [+ 2T +T) = k(T ~T)]
ey

From now on, I write Ty :=T, +T_and T, :=T, - T_.
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s Planetary imbalance

s« Now, [ will find an expression for the planetary imbalance in terms of the equations (A13). The

s mathematical expression that I should expand is N = Ny + Ny = CuTy + C4Ty

566 CuTu = CuTs
. 27:1 . K .
567 Caly =—-C4 Yo T, +Cq4 2e ,Ta J
. +2y, . .
568 N — CLITS - Cd 26')// TS + Cd2 /Ta
27’21 K
569 C.-C T+ C, T,
u d 28’)// s d28)// a
570 = CSTS +CaTa
572 NOW, Ti = Fi + ,uiTi9 then
Ty=psTo +pu T+ (F.+F)= u, Ty +(uy — )T+ (F, +F")
/4 /4 K 7 ’

57 =uTs—kT_+(F +F)= /,1+TS—§(TS—Ta)+(F++F_)

A« . A«
- = ETS+§TQ+(F++F_) = ETS+§TL,+F’
76 To=pTy—p T+ (F) = F') = u, Ty — (uy — )T+ (F{ = F')

’ 7 K /4 /4

577 =us T+ kT +(F. - F)) :/1+Ta+§(Ts—Ta)+(F+—F_)

K /l’\ 4 ’ K /,i /’i+2’y; /4
578 = ETS+§TQ+(F+—F_): ETS+§TQ+ B F .

1/ 1. A+2y,\
N=3 (/ICS+KCa)Ts+§ (/lCa+KCs)Ta+ C,+C, F
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588

589

590

591

592

594

597

599
600

601

602

603

Further expanding the coefficients
A A Cq A A Cq A A
AC+kCy = AC, - =L (2 42y, A= 2) = ACy - == (P2 + 2y, 1 - 2 =4y )
2ey’ 2ey’
oG (/l’+ 8_12)
e 2

A C A A C C
AC, + kCy = kCy — ?;(K/l +2y/k—kd) = kCy — ?uK = K;u(s— 1)

_1/\ _1
eF' + (/l’+ £ /l) Ts+/<82 Ta] (Al4)

From here, I derive the slope of a NT—diagram. In such a diagram, N is plotted versus T,. If we
naively take the partial derivative of equation (A14) with respect to 7,,, we will arrive to a constant
slope. This is contrary to the evidence that it will change with time. An NT-diagram is one
projection of the phase space of the system. Then, the NT—diagram slope does not only depend on
how N varies with 7. It is a comparison of how the changes of 7, are expressed in changes of N.
Then, the slope is the total derivative dN/dT,. By virtue of the chain rule, dN/dT, = N(dt/dT,).
In a neighborhood where Ty (¢) is injective, dt /dT, = 1/T,. Therefore, the slope dN/dT,, is the ratio
of two total derivatives: N and T,.

We know that 7, = T, then T}, = T,. Therefore, the total derivative of the planetary imbalance is
N = (9;N) + (37, N)Ty + (37, N)T,

that is a change depending only on time, a second change depending only on changes of 7 and a
third depending on changes of 7,. Therefore, the ratio of total derivative of planetary imbalance

and total derivative of Ty is

N 1 T,
-— = O:N — + or N)+ (0 N)—
7. (0 )Ts (Or,N) + (0r, )Ts
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606 As one can see in the above expression, the ratio includes the derivative of the imbalance with
« respect to 7, but is not the only contribution. One contribution comes from the explicit dependence
« on time of N and how it compares with the dependency of 7,,. The other contribution comes
« from the antisymmetric mode and how it changes in relation to the symmetric one. From equation
«0  (Al4), I can write the precise expression of the slope as a factor of A.

«+ 1 multiply equation (A14) by 1/4 and reorganise.
F’ -1 -17,] 4
612 . — | E— + /l/+8 A +K8 _a:|_
T, ¢ p 2 2 Tyl A
CoFF (X e-12) e-1«T,
——+ + — |+ ——
AT, \el 28 2e VT,

N G

613 _

«s then we will expand the terms to separate the terms that vanish when € = 1

N {CUF’ 1 e-1(A—-¢&y—v, ] e-1 KTa}
616 — =y{———+|—+ + e
T, AT, |e 2 A’ 2e VT,
3 C, F 2 +g—1 1 vy Cuvy e—-1Cuk T, 1
AT, |28 26 1 Cga 26 A T,
CoF' e+1 e-1 +cu y e-1Cuw«T,
618 -_— _— —_ 8 — —_ —_—
AT, 2 2e G 2 A T,
_ ﬁi+g+1_g—1 G Z+a—1cu/<§ 1
AT, 2 2e Ci)]A 26 AT,
GF e+l e-1[( C, T,
620 = _— —_ —_ — A
{a T, 2 2ed ,(“cd)y Cuk
621 = gz 8+1—8_1CUK (2","|'ﬁ Y —& A
A T 2e 2el Cia) Cuk T,
N _ ﬁi+8+1_8—lcuk PSS B _& 1
A T, 2e 2e A Cq) Cuk T,
623 = —ﬁi+8+1+8_1CUK 84‘ﬂ Y —Q A
624 | |Ts 28 28 |/l| d CLIK s

625

626 —_

{CUF’ s+1( e—1Cyk
627 Tll

— + +
|| T 2¢e e+1 |1

(uﬁ) L4 —&])}/1 (A15)
Cq/ Cuk T

« The term in square brackets in equation (A15) is the key term that provides a NT—diagram with

= evolving slope when the forcing is constant. The second part of this term provides the temporal
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« evolution, whereas the first part is a constant term that sets the base enhancement of the slope.
« Interestingly, this first part contains in particular the thermal capacities of the system.

«  If I rewrite this first part of the square-brackets term, the terms are shown clearly

N CoF' e+1 e-1C 1 T,
633 _:{__u_+8 +8 uk |:(i+_)Z——:|}/l (A16)
T, A T, 2e 2e |A] |\Cu C4) k T,

o Now in the first part it is the sum of the inverse of the thermal capacities as if we have an electrical
e circuit with capacitors in series. Having such a term in the equation for the slope favors the physical
« interpretation in terms of thermal capacities, instead of variable feedback mechanisms. The time-
«s evolving ratio term in the second part, that represents the dynamics of the atmosphere-ocean
< coupling, only strengthens this interpretation.

«0  Asacorollary, if the forcing is constant and € — 1, then we recover the classical linear dependence

« of the imbalance on Ty

N
o lim — = A, F = const
643 8_)1 Tu

« Symmetric and antisymmetric modes

«s  From equations (A13), we see that the symmetric and antisymmetric modes are the basis for
« the description of the solutions. Thus, let us give some explicit expression for the symmetric and

«r antisymmetric modes.
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From equation (A12) and the equations for the initial values and the forcing, I can write more

explicitly the solution

t
T, = (Ti0+ / Fie—#r(f—fo)dT) et (t=10)

To

1 lu_ + f)/’ t
(i [t + )T + £y Tag] £ —— / F 'e_“i(f‘fo)dT) et=(t=10)
#+ B #_ l’l+ - l’l_ I

SA/2-10)

+

t
| (us + Y )Tuo + &Y Tao + (us +7,) / F ’e'“*(T"O)dT] et /2)(i=10)
M+ — H- to

/i 2)(t—t, h) / ’ 1 ’ t
. e( / )( 0) /l + K+ 27d TuO n 28')/ Tdo + /l + K+ 27d / F,e_ﬂi(T_IO)dT ei(K/Z)(l—l‘o)
M — p— 2 S22 2 1o
eA/2=10) [ R t )
=t—— [(A+2y))Too+ 2y Tao £ kT + (A +2y, K)/ F’e““i(T_IO)dT] K/ 2)i=t0)
2(/'t+ - ﬂ—) to

Now that I have a more explicit expression, I write the modes

T+ + T_ =
S0 | A : 2
————— [(A+2y))Tuo + 2y Tao + kTyo + (A + 2y, + K)/ F'e_”*(T_tO)dT] /D10
2(py —p-) fo
JAD10) [ ) r .
F—— (A +2y))Tuo + 28y Tao — KTy + (1 + 2y, — k) / F'e #-(T=l)qr | o= (6/2)t=t0)
2(/1+ - lu—) I00)
(A/2)(t~t0) . (k/2)(t—t0) = o~ (x/2)(t=10)
= e— { [(/l + 2’)/:1)Tu,() + 28)//Td’0] ¢ re
My — p— 2
D (K12)(1=10) 4 p=(k/2)1=10)
+KTu,0
2
1 ’ t t
A2 [e(K/zxz_to) / Fr o1 T-10) g 5 o~ (K/2)e~10) / Fre-i-(-0) 47
2 fo fo
t t
o / et g 4. = 612)1-10) / F/e—u(r—de] }
fo fo

The last two terms inside the curly brackets have a similar form as the combinations of exponential
functions in the first two terms. These combinations of exponential functions are hyperbolic
functions which can simplify the expressions of the solutions. I would want such a representation
but a problem is there: the integrals are not the same, therefore I cannot factorise them together.

Notwithstanding, from the definition of hyperbolic sine and cosine functions, I can write e** =
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e coshx +sinhx. The factors within square brackets in the last two terms can be thought as e/, +
e e *I_, where I, are the corresponding integrals. Using the expression of the exponential function in
= terms of the hyperbolic functions, I expand e*1, + ¢™*I_ = (cosh x + sinh x)/, + (coshx —sinh x)/_ =
e (I £1-)coshx+ (I, ¥ 1-)sinhx. Then, I overcome the limitation and now the two terms are written
& with hyperbolic functions. The coefficients of the hyperbolic functions are simple combinations

s of the integrals which can be also expanded easily. I do that now

t t
- L+1_= /F’e “+(T't°)d7'+/ F'e'“‘(T'tO)def F'[e#(T710) 4 pmr-(r=10)]qr

I00) To

677

/ Fr D10 ~612)T10) | oK/ 21004
678 = 2/ F,e_(/i/z)(T_tO) cosh [g(T - IO)] dr

t t
oo -] = / F’ o H+(T=10) 41 _/ Flo H-(T=10) 41 = / F’[e—/l+(7—t0) _ e—#—(T—fo)]dT
fo fo

Fl oW p=k/2)x10) _ (/2700147

680

o1 = —2/ Fe~/2@=10) ginh [g(‘r - to)] dr

682 o

« 1f one collects terms corresponding to each hyperbolic function in the former expressions for the

& normal modes, obtains the following

oA/2)(t-10)
685 TS = {

C, cosh [g(t - ro)] +Cysinh [g(r - to)] } (A17)

686 Ta =

687

M {02 cosh [g(t—to)] +Cy sinh [g(t—to)” (A18)
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& where

689 C] = KTu’()

t . t o
6% -1+ 2)/;)/ Fe~ W21 ginp [g(T - to)] dr+ K/ F'e~ W21 cogh [g(‘l’ - to)] dr
fo

0]

691 Cz = (//i + 2’}/;)Tu’0 + 28’)/,de70

t . t «
o0z +(1+ 2721)/ F'e~A20=10) cogh [g(r - to)] dr - K/ F’e~A/2010) ginh [g(r - to)] dr
To

fo
e«  These expressions for the normal modes are quite elegant, and the coefficients C; summarize
s all the information from the initial conditions and the forcing. The initial condition terms in the

C; correspond to the non-forced response of the system, while the part that is forcing-dependent

6!

3
-3

e corresponds to the forced response of the system.

« Forced response to constant forcing

o If F' = F/#0fort >ty with F/ constant and 70,740 = O for 7 = 1, then

t N t n
w Ci=F, {—(/i + 2)/:1)/ e~ W2 sinh [g(T ~ to)] dr+ K/ e~ W/2T=10) ¢o5h [g(r - to)] dT}
To

o

t R t A
wm  Cy=F, {(2 + 27/:1)/ e~ W2(T=10) cogh [g(r — to)] dr - K/ e~ W2T=10) ¢inh [g(T - to)] dT}
o

To

»s where the integrals are easily computed

/ZO " D-0) o [g(r _ ;0)] dr = # {g cosh [g(z - to)] + g sinh [g(r - ro)]} - M’fy&
z:: ./tot o~ (A/D(T=10) Loch [g(T - to)] dr = #}Z—to) {/% cosh [g(r - to)] + g sinh [g(r - to)] } - 2/1:7/&
» and, upon reduction, the C; are

- C = Z—f,e_(j/z)“_t") {—K cosh [g(t — to)] +(22 = A)sinh [g(t — to)] + Ke(;l/z)(t_"))}

- C = I;—f’e‘a/ 2(r-t0) {—(u’ — Dcosh [g(t - to)] + ksinh [g(t - to)] ey /i)e(;l/z)(’_t")}
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~ with these expressions is easy to evaluate the terms inside the curly brackets in equations (A17)

7 and (A18) and the symmetric and antisymmetric modes are (for ¢ > #g)

F.( 20 -1
T, = =< | fUD010) (o [5(t—zo)] + sinh [f(t—to)] 1 (A19)
A 2 K 2
Fo( iy (247 =1 20 -1
T, = ¢ { (/2-10) —cosh[f(t—to)] +smh[f(t—to)] - (A20)
e A K 2 2 K

= where F! := F./C,. I can also obtain the explicit time derivatives of both modes. We take the time

7= derivative both equations (A19) and (A20)

e Ty = Ij{ (A/2)(t=10) {/21 (cosh [ (t—to)] + il sinh [g(r—to)])
o (2/1, /icosh [2(t—t0)] +sinh [2(t—t0)])}

NA+2y" X
720 e A/ t=10) {/1 cosh (t - to)] —yd sinh [f(t — to)]}
K 2
A+2y
721 = C (/1/2)(1 f0) {COSh (t - tO) yd sinh I:E(t - tO)]}
K 2
r = Fe i) 2 h [ X
T, = 08— cosh [ (t— to)] + sinh [E(t — to)]
20 -1
728 cosh [ (- to)] sinh [f(t - to)]
2 K 2
F. & VA+290
724 = —£/2)t=10) il cosh [E(I - to)] + A’ sinh [f(t - to)]
A K 2 2
F A+2y
- = —C (A/2)t=10) 2T cosh [f(t - to)] +sinh [f(t - to)]
Cu K 2 2

= | present both results jointly to show the simplicity of the derivatives

728

. F. s !
T = 2 o/20-10) | cosh [2@_ to)]

C. { A+2y 4 sinh [2(t—to)]}
{2

) F. + 2y’
T, = ée(ﬂ/z)(’_m) il ] cosh [Z(t - to)] +sinh [Z(t — to)] }
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With these derivatives, 1 can calculate the ratio of the antisymmetric mode derivative to the

symmetric one that appears in equation (A15)

- /i+f7‘,1 cosh [%(Z — lo)] + sinh [%(l‘ - to)]

T cosh [ 51-10)] + 2% sinh 50 -0
3 ;Hiyé’ + tanh [%(t - to)]
1+ ify;’ tanh [5(r —19)]

Formally, above result have the alternative form

T,
T_a = tanh [g(r —1p) + arctanh (

N

/i+2y;)

This is possible only if |(/i +2y))/ K| < 1. Let us prove that in our case this follows

/i+2)/:l

<1

K

22 3 2

AT +4y A+4y; -
= =<
A2 +4yiA

P +ay A+4y? < P+ay, X
A+y, <A

-y’ <0

the last inequality is always true, since &,y’ are positive constants. Thus,

T,
T_a = tanh [g(r —10) + arctanh ( (A21)

N

/i+2y;)

Equation (A21) is an hyperbolic tangent that grows from -1 to 1 in a sigmoidal fashion. It has a
scaling factor that determines how fast it goes from -1 to 1. It also has a shift that sets where the
hyperbolic tangent will cross zero. Both the scaling and shift depend on the thermal and radiative
parameters of the system. Since the shift is negative, after the initial forcing the deep ocean (that

depends on the antisymmetric mode) warms up slower than the upper ocean. At a latter time, the
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ratio becomes positive and the contrary happens. The time at which the sign reverses is

/i+2y;,

2
t] = tp + —arctanh
K K

Variation of the climate feedback parameter

With the solution shown before, the NT—diagram has a slope

C, A+2y
e+ 22| X _tanh E(t —1p) + arctanh Ya A (A22)
Cq) Cuk 2 K

The factor is composed of terms that are positive except for the ratio term coming from equation

N_8+1( e—1Cyk

- +
T, 2¢e e+1 |1

(A21). The negative ratio for ¢ € [fo,1) clearly generates a more negative slope, whereas for
t € (t,00) makes it less negative. At the start one can get the slope

N
— = (1+(8—1)l)/l,l:to
Ty |4

and at the time of sign reversal

N - u
. 8+1(1+8 1(8+C)y
T, 2e

= — | = A t=t
e+1\7" Cq ) :

After the sign reversal the factor of A will only decrease up to

N +1 -1G C
lim == =~ (142 “K[s+—“ ’ —1} p
t—oo T 2e e+1 |1 Cq) Cuk

Equation (A22) shows the importance of the ratio of the symmetric and antisymmetric modes. Its
physical meaning, the relationship between the upper- and deep-ocean warming, sets the strength
of the variation of the climate feedback, whereas the constant term sets a base enhancement around

which the feedback evolves. The thermal capacities of the system determine this constant term.

APPENDIX B

Feedbacks and pattern effect in a non-linear planetary budget
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I start with a planetary imbalance considering a variation of the planetary thermal capacity
=(1-a)S+G—-eo(fT)*-CT, (B1)

where § is the incoming solar short-wave flux at the TOA, « is the planetary albedo, G are the
remaining natural and anthropogenic energy fluxes, and the last two terms are the planetary long-
wave response and the contribution to the radiative response of a varying thermal capacity. As said
in the main text, the ocean circulation and the atmosphere-ocean coupling provide the dynamical
component of the thermal capacity.

If I compute the total derivative of N then
= [(1-)S+G| - Sa—o(fT) ¢ —dea(fT.)(fT, + fT.) - CT, - TuC
=[1-a)S+G]-R

Here we can see the first term is the change from a time-evolving forcing. The rest of the terms,
R, are atmospheric feedbacks or the effects of ocean circulation and ocean-atmosphere interaction.
The fourth term contains the Planck feedback. Let us compare all the terms of R in comparison to
the Planck feedback term 4€ fo (fT,)°T,
R = Sc+ o (fT) e +4ea(fT) (fT, + fTu) +CT,+T,C

S @ LJf C T, ¢
—_— + —+1+ + —
defo(fTu) T, 46 T 3 T, defo(fTu)  Aefo(fTu) T,

By inserting former expression of R in the total derivative of the planetary imbalance, reordering

= defo(fTu)’T,

and dividing by T, we get the analogous expression for the slope of the NT—diagrams

N _ S G

T R

iy S @ me nj, ¢ n e 3
[+45f0'(fTu)3Tu+4€Tu+fTu+4ef0'(fTu)3 defo([TR T, defo(fT,)

The first contribution in the R/T, term is 1, representing the Planck feedback. The second

contribution is the planetary albedo feedback. It includes the surface albedo feedback as well as
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the short-wave cloud feedback. The third contribution is the emissivity feedback, to which mainly
contributes the traditional water-vapor feedback. The fourth contribution is a representation of the
lapse-rate feedback. The fifth and sixth contributions are not atmospheric feedbacks but the effect
of the evolving planetary thermal capacity provided by the atmosphere-ocean interaction and the
ocean circulation.

Both the fifth and sixth contributions measure the effect of a changing planetary thermal capacity.
The fifth term should be positive but reduces its contribution towards the equilibrium in view of
the modified two-layer model results. In the same context, the sixth contribution should change

sign, in analogy to the linearized model results.
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Fig. 1.

Fig. 2.

Fig. 3.

Schematic representation of an N7—diagram for constant forcing due to a doubling of the
atmospheric carbon dioxide concentration (F>x). Magenta line represents the relationship
between the TOA net radiatiave flux change with the surface temperature change if the
feedback mechanisms on surface warming were constant (constant slope). Green line shows
the case found in most models, where the slope varies throughout the process. Given that most
models are not run until equilibrium, the evolving slope introduces considerable uncertainty
in the equilibrium climate sensitivity (ECS) estimates

Evolution of the slope of an NT—diagram. Blue solid line, with the average parameters
from CMIP5 models obtained by Geoffroy et al. (2013a). Red solid line, with the thermal
capacities as calculated by Jiménez-de-la-Cuesta and Mauritsen (2019). Red dashed line,
with Cq as in Jiménez-de-la-Cuesta and Mauritsen (2019). Red dash-dotted line, with C, as
in Jiménez-de-la-Cuesta and Mauritsen (2019). Dots represent the slope values when the
ratio term 7}, /T has the sign reversal. Thin black line is the constant A = ~1.18Wm™—2K™.

Evolution of the slope of the NT—diagram. CMIP5 model behaviour using the fitted pa-
rameters presented by Geoffroy et al. (2013a). Dots indicate the time of the sign reversal.
Note that three models (CNRM-CMS5.1, BNU-ESM and INM-CM4) show a steepening slope
instead of flattening. For these models, the fitted ¢ is lesser than one.
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Fic. 1. Schematic representation of an N7T—diagram for constant forcing due to a doubling of the atmospheric
carbon dioxide concentration (F,x). Magenta line represents the relationship between the TOA net radiatiave
flux change with the surface temperature change if the feedback mechanisms on surface warming were constant
(constant slope). Green line shows the case found in most models, where the slope varies throughout the process.
Given that most models are not run until equilibrium, the evolving slope introduces considerable uncertainty in

the equilibrium climate sensitivity (ECS) estimates
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Fic. 2. Evolution of the slope of an NT—diagram. Blue solid line, with the average parameters from CMIP5
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when the ratio term 7, /T has the sign reversal. Thin black line is the constant 4 = —1 A8Wm 2K,
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