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Abstract10

A contemporary and decisive optimization algorithm is developed for inverting gravity11

anomalies due to listric faults. The cross-section of listric faults are generally concave up,12

and the dip of the fault plane gradually decreases with depth. Quadratic Bezier curves are13

utilized to represent the curvature of the fault plane. The densities of sediment deposition14

are assumed to be known and can take any functional form of depth. By constraining the15

density, a global optimization algorithm is adopted to estimate the fault structure by in-16

verting control point parameters of Bezier curves. The presented algorithm is implemented17

in two different synthetic models having fixed and depth varying density contrasts. The18

robustness of the algorithm is authenticated by incorporating white Gaussian noise into19

synthetic gravity anomalies. A detailed uncertainty appraisal is also performed to justify20

the reliability of the algorithm. Finally, a real structure is reconstructed using observed21

gravity anomalies, and the estimated structure is verified with the structure obtained in22

previously published literature. Furthermore, a Matlab based GUI is developed such that23

any user can estimate real listric fault structure without any computational difficulties.24

1 Introduction25

Listric faults were first introduced by Suess (1909) for describing faults in coal mines in26

northern France. The fault planes of listric faults are generally upward concave in nature,27

and the dip decreases with depth (Shelton, 1984). Listric faults have particular importance28

in the formation of sedimentary basins. Most of the listric faults are generally occurs29

during the formation of rift or formation of passive continental margins (Bally et al., 1981).30

The curvature occurred due to the thick sediment depositions in case of boundary faults31

(Chakravarthi, 2011). Listric fault can produce structural trap by relative displacement of32

strata to create a barrier to petroleum migration (Sheth, 1998; Yamada & McClay, 2003).33

It also has structural importance for mineral explorations (Song et al., 2012). The gravity34

method is one of the oldest geophysical approaches for subsurface imaging. In general,35

gravity inversion for subsurface parameter estimation is non-unique but by incorporating36

proper constraints (Y. Li & Oldenburg, 1996; Portniaguine & Zhdanov, 2002) a stable37

and converging parameter optimization can be achieved. In our present study, the density38

contrast is assumed to be known from borehole logging and used as a constraint for fault39

structure estimation. Furthermore, an uncertainty appraisal provides a reliable solution for40

any ill-posed problem.41

The gravity method is one of the passive geophysical techniques to study the interior of42

the Earth. The ground gravity survey is very fast, inexpensive, and can cover a large study43

area via non-destructive measurements. The gravity method plays a vital role in geologi-44

cal structure estimation and exploration purposes. There are numerous implementations,45

such as, structure estimation of sedimentary basins (Silva et al., 2006; Zhou, 2013; Pallero46

et al., 2015; A. Roy et al., 2021b), faults and folds (L. Roy et al., 2000; Chakravarthi &47

Sundararajan, 2004, 2007b; A. Roy & Kumar, 2021) due to crustal deformations, glaciol-48

ogy (Crossley & Clarke, 1970; Tinto & Bell, 2011) and hydro-geology (Alatorre-Zamora &49

Campos-Enriquez, 1991; Güntner et al., 2007) etc. The exploration study includes mining50

(Jaffal et al., 2010; Veiga & Gunson, 2020), hydrocarbon exploration (Rose et al., 2006;51

W. Li et al., 2016), cavity detection etc. The gravitational inversion is a useful tool to52

interpret the gravity data for subsurface imaging. Density and corresponding geometries of53

the subsurface structure are the two parameters for geophysical optimization using gravity54

anomalies. Optimization algorithms are referred to a mathematical procedure for finding55

parameters by minimizing the objective function. As per the algorithms’ demand, one can56

categorize optimization algorithms as (1) algorithms that use derivative information, (2)57

algorithms that do not require derivative information of objective function. Here are a58

few examples of optimization algorithms that require derivative information for gravity in-59

version. Chakravarthi and Sundararajan (2007a, 2007b) used Marquardt optimization for60

structure estimation using gravity anomalies, Silva et al. (2014) developed a fast inversion61
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technique using Gauss-Newton optimization for inverting basement relief. Florio (2020) used62

iterative rescaling approach for evaluating 3D basement depth. Qin et al. (2016) inverted63

3D gravity anomalies using a non-linear conjugate gradient optimization algorithm. X. Feng64

et al. (2018) derived a combined multinorm and normalized vertical derivative technique for65

3D gravity inversion of basement relief. Most of the global optimization algorithm does not66

require any derivative information as well as any pre-requisite models. Such algorithms are67

mainly population-based and use iterative schemes for optimization. Some of the exam-68

ples of population-based algorithms that used in gravity inversion are differential evolution69

(Ekinci et al., 2016; A. Roy et al., 2021a), genetic algorithm (Zhang et al., 2004; Mon-70

tesinos et al., 2005), very fast simulated annealing (Nagihara & Hall, 2001; Biswas, 2015),71

ant colony optimization (Srivastava et al., 2014), particle swarm optimization (Pallero et72

al., 2015; Essa & Munschy, 2019) etc. Particle swarm optimization is one of the most pop-73

ular global optimization schemes due to its simple architecture, easy implementation and74

computational efficiency. Here we adapted PSO for optimizing listric fault structures from75

observed gravity anomalies.76

Several authors performed an extensive study for inverting planner faults by different77

optimization techniques. Due to the fault structure’s geological importance, a continuous78

improvement of optimization algorithms is carried out for an accurate and fast converging79

structure estimation. In this direction Chakravarthi and Sundararajan (2004) derived an an-80

alytic ridge regression optimization technique for inclined fault inversion. Abdelrahman and81

Essa (2015) developed a least-square optimization, Essa (2013) performed a variance analy-82

sis method, Toushmalani (2013); Elhussein (2021) adopted PSO for dipping fault structure83

estimation having constant densities. In general, density can vary with depth for differ-84

ent types of sediment depositions, and incorporating variable density contrasts into models85

can provide accurate estimations. Minimal studies have been performed for inverting the86

listric fault plane from observed gravity anomalies. An automatic 2.5D listric fault inversion87

technique was developed by (Chakravarthi, 2011) for prescribed depth varying density con-88

trasts. Further (Chakravarthi, 2010; Chakravarthi et al., 2017) characterized the fault plane89

in terms of higher-order polynomials for depth varying density distributions. In our present90

study, the listric fault planes are expressed using a quadratic Bezier curve for inverting91

gravity anomalies and estimating the underneath fault structure. The new algorithm can92

invert the listric fault plane for any depth varying density distributions without any prior93

initial model requirements. It is the first time developing such an algorithm for optimizing94

the listric fault plane using a quadratic Bezier curve with fewer parameter requirements.95

2 Materials and Methods96

This section illustrates the mathematical formulation for evaluating gravity anomalies97

due to any irregular inhomogeneous 2D structures. The Newtonian potential is the foun-98

dation for any potential theories, and we consider it for estimating gravity anomalies due99

to underneath anomalous densities. Various analytical simplifications and numerical tech-100

niques were developed for the faster and accurate computations of the potential field for101

irregular geometries. Finally, we implement it for forward modelling of listric faults having102

depth varying density distribution.103

2.1 Forward Modelling104

Forward modelling is the nitty-gritty for any global optimization problem. A forward105

model needs to be evaluated repeatedly during the inversion process for parameter esti-106

mation. Hence an inexpensive and less complex but meticulous forward model is always107

desirable for any faster converging optimization problem. In figure 1, a 2D irregular geom-108

etry having anomalous density is shown, for which the gravity anomaly has to be obtained109

at any observation point P �xi, zi�. A convex polygon can approximate any irregular 2D110

shape (Talwani et al., 1959; Zhou, 2008, 2009; Wan & Zhang, 2019), and by increasing111
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the vertices of the polygon, it can more accurately mimic the original shape. Further, the112

vertical component of gravity anomaly (gz) due to this strike infinite (y directional infinite113

extension) approximated 2D polygonal shape having density contrast ∆ρ can be estimated114

as a surface integral (Talwani et al., 1959) form115

gz�xi, zi� � 2GU
S

∆ρ � �z � zi�
�x � xi�2 � �z � zi�2 dxdz, (1)

Where G is the universal gravitational constant. The density can vary anomalously116

in the horizontal and vertical directions. However, in our present study, we consider only117

depth varying density distribution ∆ρ�z�, having any functional form of z. Using Stokes’118

theorem, the 2D area integral of irregular shape having depth varying density contrast can119

be converted into a line integral as120

gz�xi, zi� � �2Gg ∆ρ � arctan�x � xi

z � zi
�dz (2)

Observation point

i iP(x , z )

(0, 0) X

Z (x, z)

k+1 k+1

(x , z )

(xk , zk )

O

Figure 1. Polygon approximation of 2D irregular structure. The solid line represents the real

mass source, and the dotted line represents approximated model.

The line integral can be numerically evaluated using Gauss Legendre quadrature for-121

mulation (Winckel, 2004). Let us assume the 2D irregular structure is approximated using122

a polygon (Figure 1) having N vertices, where (xk, zk) and (xk�1, zk�1) are two consecutive123

vertices. Hence the vertical component of gravity anomaly at any surface point P �xi, zi�124

due to the anomalous contrast ∆ρ�z� is expressed as125

gz�xi, zi� � �2G
N�1

Q
k�1
S

zk�1

zk
∆ρ�z� � arctan�x � xi

z � zi
�dz (3)

In our present study, the prime objective is to invert gravity anomalies for inverting126

listric fault structure, and forward modelling of listric fault is an essential step for optimiza-127

tion. In figure 2, a generic architecture of the listric fault is shown, and the structure can128

be expressed by a polygon having four vertex points. In table 1, the locations of vertex129
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Figure 2. Generic representation of listric fault structure. AB represents the fault plane, and P

is the observation point for estimating gravity anomalies.

points are given as per the orientation of the fault plane. Finally, the curvature of the listric130

fault plane is obtained using the quadratic Bezier curve. Hence, with the help of those four131

vertex points and locations of the fault plane from the Bezier curve, the forward model of132

any listric fault can be approximated. The vertical component of gravity anomaly can be133

estimated from the numerical line integral formulation using Gauss Legendre quadrature.134

Table 1. Vertex locations for any generalized listric fault plane.

Vertex count Left side oriented Right side oriented

1st (Point A) (xs, zs) (xs, zs)

2nd (Point B) (xd, zd) (xd, zd)

3rd (�ª, zd) (ª, zd)

4th (�ª, zs) (ª, zs)

2.2 Inverse Modelling135

Inverse modelling in geophysics is an optimization process for estimating geophysical136

parameters of underneath geological structures by minimizing misfit error between observed137

and estimated field data. Various optimization algorithms can invert such geophysical data138

in a more or less intelligent and efficient way. In general, geophysical inverse problems139

are non-unique, i.e. minimum misfit error can be found for different sets of optimizing140

parameters. In other words, different geological structures can provide the same observed141

field data. By incorporating any prior information about the parameters can reduce such142

non-uniqueness. The apriori pieces of information are fused into optimization algorithms as143

a constraint to invert the observed data for getting unique structures.144
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In our present study, the aim is to optimize listric fault structure by inverting observed145

gravity anomalies. The curvature of the listric fault plane can be expressed using quadratic146

Bezier curves. The weights of control points are the only parameters to represent the147

curved fault plane. There are six control points required to parametrize a 2D listric fault148

plane, and the corresponding weights are used as a model parameter in our optimization149

problems. By further constraining one control point, five model parameters are sufficient to150

invert the observed gravity anomalies to optimize any listric fault structure. The details of151

implementing constraints are discussed in the preceding section.152

Optimization algorithms are the main building blocks for an inverse problem. Nowa-153

days, swarm-based algorithms are popular in various science and engineering disciplines154

due to their robustness and flexibility. These are mainly global optimization algorithms in-155

spired by the mass behaviour of social animals, suitable for a multi-dimensional real-valued156

optimization problem. PSO is one of the most potent meta-heuristic numerical global op-157

timization algorithms applied in many fields due to its flexibility and simplicity. PSO was158

first introduced by Eberhart and Kennedy (1995), and it is inspired by the cumulative social159

behaviour of animals like a school of fishes or flock of birds. Our present study uses PSO160

as an optimization algorithm for inverting observed gravity anomalies for estimating listric161

fault structures. PSO is straightforward to implement, and it is independent of initial pa-162

rameter selection. A detailed scheme (Marini & Walczak, 2015) of the basic PSO algorithm163

is shown in figure 3.164

desired 

Figure 3. Scheme of the basic PSO algorithm.
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Let us assume fz�xj , zj� is the observed gravity anomaly and gz�xj , zj� is the predicted165

gravity anomaly at any observed point �xj , zj� due to some model parameter Xi. Then the166

objective function can be written as167

Q �

k

Q
i�1

�fz�xj , zj� � gz�xj , zj��2. (4)

Where k is the number of observation points, let us assume S is a D-dimensional search168

space for optimizing the objective function. In PSO, each candidate solution is known as169

‘particle’, and each particle consists of D number of parameters that have to be optimized.170

At any time step t, the ith particle can be represented as a vector Xi�t� in the search space171

as172

Xi�t� � �xi1, xi2, xi3, . . . , xiD�, where i > �1,2,3, . . . ,N� (5)

and the swarm consist of N particles having dimension D. During the optimization173

process, the position of each particle updates for two consecutive time steps and follows the174

relation175

Xi�t � 1� � Xi�t� �Vi�t � 1�. (6)

Where Vi�t � 1� is the velocity component of ith particle at time step t � 1. The velocity176

component also updates as follow177

Vi�t � 1� � wVi�t� � c1r1�Pbest
i �t� �Vi�t�� � c2r2�gbest�t� �Vi�t��. (7)

Where c1, c2 are real valued constant term named acceleration coefficients and r1, r2178

are uniformly distributed random numbers having range [0,1]. Pbest
i �t� is the parameters179

of best solution ever obtained by ith particle termed as personal best and gbest�t� is the180

parameters of best solution obtained by entire swarm as known as global best. The term181

wVi�t� is named inertia term and c1r1�Pbest
i �t��Vi�t��, c2r2�gbest�t��Vi�t�� are termed as182

cognitive component and social component respectively. Usually the range for c1, c2 varies183

from �0 @ c1, c2 @ 2� during the selection and a detailed parameter tuning is required for184

faster convergence of model parameters. A criterion for stable convergence developed by185

Perez and Behdinan (2007) are as follows186

0 @ c1 � c2 @ 4, (8)

�c1 � c2
2

� 1� @ w @ 1. (9)

The inertia coefficient (w) plays an important role to bypass uncontrolled velocity that187

can cause the divergence of the optimization problem. A perfect balance between explo-188

ration and exploitation is much needed for any global optimization problem. By tuning the189

inertia term, velocity modulation can be controlled. For larger inertia weight, it facilitates190

global search that covers the entire search space, where smaller inertia weight assists local191

exploitation. A higher value of inertia weight is always desirable during initial iterations,192
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followed by smaller inertia weight at maximum iterations. An effective arrangement for the193

steady reduction of inertia weight is desirable for optimization. In this direction Shi and194

Eberhart (1998) used random inertia weight, Arumugam and Rao (2006) used global-local195

best inertial weight, Y. Feng et al. (2007) developed chaotic descendent inertia weight, etc.196

In our present study, a linearly decreasing inertia weight proposed by Xin et al. (2009) is197

used for the optimization problem. The dynamic adjustment strategies become198

wt � wmax � �wmax �wmin

tmax
� � t, (10)

where w�t� is the inertia weight at tth time step. wmax and wmin are the maximum and199

minimum range of w that can be obtained from acceleration coefficients shown in equation200

9. tmax is the maximum time step for the optimization algorithm.201

2.3 Bezier curves and cost function202

Bezier curve was first introduced by French engineer Pierre Bezier for designing the203

bodywork of automobiles. Bezier curves have many applications in science, engineering204

designing, computer-aided design systems, animation, robotics, networks, etc. The main205

advantage of Bezier curves is that they are computationally simple and stable. The math-206

ematical descriptions are compact, intuitive and elegant. It is easy to compute and able to207

represent any shape of a curve. The mathematical basis for Bezier curves is the Bernstein208

polynomials. The basis vectors are summed up with the help of some set of control points209

to represent any curve. The Bezier curve can be expressed mathematically as210

z�t� � n

Q
i�0

PiB
n
i �t�, (11)

where Pi are the set of control points and Bn
i �t� are the Bernstein polynomials. The

Bernstein polynomials are represented as

Bn
i �t� � �n

i
��1 � t�n�iti, for 0 @ t @ 1. (12)

Where n is the degree of the polynomial. For any quadratic Bezier curve, three control211

points are required, and the path traced by the function Z�t� can be written as212

Z�t� � �1 � t���1 � t�P0 � tP1� � t��1 � t�P1 � tP2�, for 0 @ t @ 1. (13)

In our present study, the listric fault plane can be represented by a quadratic Bezier213

curve for lessening the parameters for optimization. The listric fault lies in a 2D plane;214

hence, each control point’s dimension is also two for representing the fault plane. That215

implies, in total, six parameters are required to be optimized. The first and last control216

points are always the endpoints of the curve for any Bezier curves. As the shallower vertex217

of the fault is lying on the surface, we can be constraining the vertical position of the first218

point that can reduce one parameter. Hence the number of actual parameters is five to219

optimize the fault plane. The gravity anomaly due to the parametrized fault plane can be220

obtained from the line integral (equation 3). Let us assume the operator χ̂ can evaluate the221

gravity anomaly due to the fault plane parametrized by the Bezier curve. Hence the cost222

function for the optimization problem can be written as223
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Q �

n

Q
i�1

�fz�xj , zj� � gz�xj , zj��2

�

n

Q
i�1

�fz�xj , zj� � χ̂�Z�ti���2

�

n

Q
i�1

�fz�xj , zj� � χ̂� k

Q
j�0

PjB
k
j �ti���2. (14)

Hence the cost function only depends on control point parameters Pj of the quadratic224

Bezier curve. PSO is used here for optimizing the cost function, and the optimized pa-225

rameters are further used to reconstruct the listric fault plane. Few synthetic models, a226

detailed uncertainty appraisal and application of real listric fault is discussed in detail in227

the preceding section.228

0 2000 4000 6000 8000 10000 12000

Horizontal distance (m)

-100

-50

0

A
n

o
m

a
ly

 (
m

G
a
l)

Synthetic data

Optimized data

0 2000 4000 6000 8000 10000 12000

Horizontal distance (m)

0

2000

4000

D
e
p

th
 (

m
)

Synthetic Model

Optimized Model

(a)

0 2000 4000 6000 8000 10000 12000

Horizontal distance (m)

-100

-50

0

A
n

o
m

a
ly

 (
m

G
a
l)

Synthetic data

Optimized data

0 2000 4000 6000 8000 10000 12000

Horizontal distance (m)

0

2000

4000

D
e
p

th
 (

m
)

Synthetic Model

Optimized Model

(c)

0 2000 4000 6000 8000 10000 12000

Horizontal distance (m)

-100

-50

0

A
n

o
m

a
ly

 (
m

G
a

l)

Synthetic data

Optimized data

0 2000 4000 6000 8000 10000 12000

Horizontal distance (m)

0

2000

4000

D
e
p

th
 (

m
)

Synthetic Model

Optimized Model

(b)

0 2000 4000 6000 8000 10000 12000

Horizontal distance (m)

-100

-50

0

A
n

o
m

a
ly

 (
m

G
a

l)

Synthetic data

Optimized data

0 2000 4000 6000 8000 10000 12000

Horizontal distance (m)

0

2000

4000

D
e
p

th
 (

m
)

Synthetic Model

Optimized Model

(d)

-1000 -900 -800 -700 -600 -500 -400

Density (kg/m
3
)

Figure 4. Inverted listric fault structure from synthetic gravity anomalies for (a) Model 1 without

noise, (b) Model 1 with noise, (c) Model 2 without noise, and (d) Model 2 with noise. The synthetic

gravity anomalies are denoted with the red dotted curve, and the optimized anomalies are shown

in the upper panel denoted as the solid blue line. The inverted fault structures are represented as

filled regions, and the actual structures are denoted by the black dashed line.
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3 Results229

In this section, the application of the developed algorithm is performed for various230

synthetic and real models. PSO is used here as an optimization algorithm, and all control231

parameters of PSO are tunned for faster convergence of model parameters. Two different232

types of density distributions, (1) uniform density contrast and (2) depth varying density233

contrast, are applied to evaluate the versatility of the algorithm. Further, all synthetic234

models are contaminated with white Gaussian noise to check the algorithm robustness.235

3.1 Synthetic Models236

Gravity anomalies for two different synthetic fault structures are inverted using the237

developed algorithms having predefined density distributions. A normal listric fault with238

fixed density distribution is defined as model 1, and model 2 consists of reverse listric fault239

with exponential density distributions shown in figure 4. The gravity anomalies for models 1240

and 2 are further contaminated with Gaussian noise having a mean of 0 mGal and a standard241

deviation of 1.5 mGal. The profile length for gravity anomalies for both the models is around242

12 km long with a maximum depth of 3.9 km for model 1 and 3.8 km for model 2. In total,243

50 equidistant data points are considered for the inversion of gravity anomalies. We have244

considered a uniform density distribution for model 1, with a density contrast of �650 kg/m3
245

and exponential depth varying density distribution for model 2. The density contrast for246

model 2 is247

∆ρ�z� � ��0.40 � 0.5 � exp��0.5 � z � 10�3�� � 1000 kg/m3. (15)

Our algorithm is versatile enough to invert any mathematical form of depth varying248

density distribution regardless of uniform and exponential density contrast.249

Table 2. Comparison for both the models in terms of depth, Frechet distance and rms error of

gravity anomaly.

Model type Depth (m) Frechet distance (m) rms error (mGal)

Model 1 true 3912.10 - -

Model 1 inverted noise free 3911.72 66.99 2.81 � 10�3

Model 1 inverted with noise 3898.80 360.92 1.98 � 100

Model 2 true 3891.02 - -

Model 2 inverted noise free 3891.41 69.51 9.57 � 10�3

Model 2 inverted with noise 3890.65 550.60 3.03 � 100

In PSO algorithm, the control parameters are acceleration coefficients (c1, c2), total250

population of the swarm (nPoP) and inertia weight(w). The inertia weights are dynamically251

adjustable and linearly varying as shown in equation 10. The swarm population plays a252

pivotal role in the convergence speed. By increasing the swarm population, convergence is253

achieved in lesser iterations by broadening the computational time. Hence a perfect balance254

between convergence speed and iteration counts are required for an inexpensive model.255

Similarly, the acceleration coefficients are also varying from a range [0, 2]. A detailed256

parameter tuning is required for faster converging and accurate parameter optimization. In257

this direction, both the models run for a nPoP range [0, 100], acceleration coefficient range258

of [0, 2] with a maximum time step of 1000 and relative misfit cut-off of an order of 10�3. In259
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(a) (b)

200 400 600 800 1000

Number of time steps

Figure 5. Parameter tuning for acceleration coefficients �c1, c2� and swarm population (nPoP) in

terms of time steps for (a) Model-1 and (b) Model-2.

figure 5, a detailed stack plot for number of iteration count for various range of nPoP, c1 and260

c2 are shown. It can be observed that for nPoP greater 20, and acceleration coefficient range261

1.4 @ c1 @ 2.0 and 0.2 @ c2 @ 2.0, both the models converge with minimum iteration count.262

The time range also varies for [10, 20] seconds by increasing the population count. Hence in263

our presented algorithm we choose the nPoP =40, c1=1.4 and c2=1.7 as an optimal choice264

of control parameter for any synthetic and real data inversion.265
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Figure 6. rms error plot of actual and inverted gravity anomalies with respect to time steps for

(a) Model-1 and (b) Model-2.

After selecting the control parameters for PSO, the gravity anomalies for both the266

models are inverted and compare with the true structures of synthetic listric faults as shown267

in figure 4. Both the gravity anomalies are incorporated with noise, and the noisy data are268

inverted to check the robustness of the presented scheme. A detailed comparison for true269

model and inverted model for both noisy and noise-free data are shown in table 2. Here270
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we use Frechet distance to measure the deviation of fault planes from true models and271

inverted models. Frechet distances are utilized for the measuring of similarities between272

irregular curves. It is generally used to measure the similarities between trajectories of273

moving objects. Here we have used it as a performance parameter of our model to check the274

algorithm’s accuracy. The higher value of Frechet distance indicating more dissimilarities275

of the model and vice versa. In the optimization process for each model, five independent276

model runs are performed for maximum time steps of 500. The minimum misfit error out277

of all independent runs is considered the best-inverted model, and the corresponding model278

parameters are used to reconstruct the fault plane. Finally, the rms error in each time step279

is plotted for noisy and noise-free models as shown in figure 6. It can be observed that280

the minimum misfit error for noise-free models are the order of 10�7 and for noisy data is281

10�2 for both the model configurations. The convergence achieves before the maximum time282

step. Unlike the inversion of any other potential field problem, gravity inversion is also non-283

unique, and data acquisition is erroneous due to noise incorporation. Here we incorporated284

density distribution as a constraint to get a unique, optimized structure. However, a proper285

uncertainty appraisal is a pivotal step to access the reliability of the inverted structures.286

Fernández-Mart́ınez et al. (2013); Pallero et al. (2015) applied an equivalent region approach287

using cost function topography in a 2D PCA plane to evaluate the uncertainty analysis. We288

also adopted the same technique for the uncertainty appraisal for both models. The misfit289

error between observed and inverted anomalies gradually decreases during the optimisation290

process, and the optimizing parameters converge to the true solution. An equivalent region291

is a 2D space where all solutions below some predefined relative misfit cutoff are preserved.292

The relative misfit between observed and inverted gravity anomaly can be defined as293

ϕrel �
Yfz � gzY2

YfzY2 � 100. (16)

(a)

(b)

(c)

(d)

Figure 7. Equivalence function topography in 2D PCA plane for (a) Model 1 noise-free data, (b)

Model 1 noise incorporated data, (c) Model 2 noise-free data, (d) Model 2 noise incorporated data.

In general, the cut off for relative misfit is 2-5 times the noise incorporation. Here for294

both the models, the minimum noise is around 5%, and the cutoff is considered as 25%. Let295

us assume X � �S1, S2, . . . Sq� are the solution set that satisfies the cutoff criterion. Each296

solution set consists of five parameters of Bezier curves control points that represent the297

listric fault plane. In the next step, a covariance matrix is constructed using the matrix298

formed by the solution set. Here X represents a matrix whose column vectors are the299

solution set, the covariance matrix having the form300
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C � �X � µ�T � �X � µ�, (17)

where µ is the mean of the solution set, the primary purpose of the covariance matrix is301

to find the eigenvectors and construct a PCA space to project all solutions and get a better302

visual representation. The first two eigenvectors corresponding to leading eigenvalues are303

known as principal components that form a 2D PCA space to represent the misfit error as304

a contour plot which is shown in figure 7 for both the models. All models are converged305

within a maximum iteration of 500. The parameters achieved in the last iteration of the306

algorithm are known as the best model, and the parameters for the actual synthetic model307

are known as the true model. When the gravity anomaly for all synthetic models are not308

contaminated with noise, the true model and best model coincides in the 2D PCA plane and309

located at the lowest misfit region. The true and best models are not coinciding for noisy310

data but are situated at the lowest misfit region. The relative misfit error for the true model311

is greater than the best-optimized model. These are the primary outcomes of uncertainty312

appraisal for the reliability of the inverted model.313

Figure 8. Geology map for Pranhita-Godavari valley obtained from Amarasinghe et al. (2014)

3.2 Real Model314

In the previous section, different combinations of synthetic fault structures are in-315

verted, providing an accurate, robust, and reliable solution from observed gravity anoma-316

lies. Here the optimization technique is applied to invert real gravity anomalies due to317

listric fault having depth varying density distribution from Godavari sub-basin. The se-318

quences of Gondwana are obtained in the southern part of the Indian subcontinent. The319

NW-SE trending Pranhita-Godavari valley is one of the major repositories of the Gond-320

wana successions. Pranhita-Godavari valley is further divided into four sub-basins such as321

Krishna-Godavari, Godavari, Chintalpudi and Kothagudem based on the nature of lithologic322
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sequences (Ramanamurthy & Parthasarathy, 1988). A detailed geology map is shown in323

figure 8. The northeastern side of the Godavari sub-basin is characterized by a half-graben324

structure named as Ahiri-Cherla master fault (Qureshy et al., 1968). Chakravarthi and325

Sundararajan (2004) inverted gravity anomalies to estimate a planner fault structure due326

to parabolic density distribution. Further Chakravarthi et al. (2017) inverted the observed327

gravity anomalies to estimate the listric fault plane using higher-order polynomials.328
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Figure 9. Inverted structure for Ahiri-Cherla master fault. The observed gravity anomalies are

denoted with the red dotted curve, and the optimized anomalies are shown in the upper panel

denoted as the solid blue line. The inverted fault structures are represented as filled regions, and

the structure obtained by (Chakravarthi et al., 2017) are denoted by the black dashed line.

In our present study, the Bouguer anomaly throughout the Ahiri-Cherla master fault329

is inverted using the Bezier curve and compared the result obtained by Chakravarthi et al.330

(2017). The density contrast is obtained from borehole logging and fitted exponentially as331

follows332

∆ρ�z� � ��0.4554 � exp��0.3929 � z � 10�3�� � 1000 kg/m3. (18)

A rigorous gravity survey throughout the Godavari sub-basin was performed by Mishra333

et al. (1989). A 13 km long gravity anomaly profile was digitized from Chakravarthi and334

Sundararajan (2004); Chakravarthi et al. (2017) along the fault plane. The residual gravity335

anomaly is inverted using the presented algorithm, and the estimated structure is shown in336

figure 9. The Frechet distance between the inverted fault plane using the Bezier curve and337

using higher-order polynomial by Chakravarthi et al. (2017) are around 272.63 m. which338

indicates the good agreement with the structure estimation with the earlier work. The max-339

imum depth is about 4404.85 m, and the rms error between observed and estimated gravity340

anomalies is 0.3705 mGal. Hence, the Bezier curve optimized model is less parametrized341

and accurately estimates the listric fault plane for a real scenario.342
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4 Graphical User Interface343

A compact and user-friendly Matlab based graphical user interface named ‘ListricFault-344

Inv’ is developed to estimate the underneath listric fault structure due to any depth varying345

density distribution from observed gravity anomalies. Any prerequisite knowledge of pro-346

gramming language or detailed understanding of the present algorithm is not needed to347

estimate fault structure from observed gravity anomalies. The GUI popped up by running348

the Matlab file ‘ListricFaultInv.m’, and it is auto adjustable as per the screen resolution349

shown in figure 10. Two ASCII text files containing the gravity anomaly and corresponding350

observation points are required for the optimization. Gravity anomalies must have to be in351

the mGal unit, and observation points are in meters. Two dedicated browser buttons are352

provided for importing the data. The functional form of depth varying density distribution353

are also required as model input parameters.354

Figure 10. The user interface of ListricFaultInv GUI.

Although the control parameters of PSO algorithm are tuned initially, in this GUI, any355

user can change the control parameters as per their choice. Finally, a push-button named356

‘load data’ is provided for showcasing the observed anomalies at different observation points357

in a separate tabular format. Only this information is needed to run the model for structural358

estimation. Finally, by clicking the ‘run model’ button, four plots are generated at the end359

of the optimization problem. The plots are listric fault structure, observed and inverted360

gravity anomaly, objective function value after each iteration and the depth varying density361

contrast plot. All optimized data and plots can be exported in any existing file format. The362

location of the shallower and the deeper vertex of the fault plane, the rms error of observed,363

and inverted gravity anomalies can be shown in the result section.364

5 Conclusion365

In this paper, our primary motivation is to provide some insight to develop a unified366

algorithm for inverting gravity anomalies due to any listric fault structures. A detailed367

uncertainty appraisal is performed in different synthetic models for the reliability of the al-368

gorithm. The versatility of the algorithm is that it can invert gravity anomalies due to any369

depth varying density distributions. Furthermore, no prior model selection is required due370

to the usage of global optimization. It is the first time representing the fault plane in terms371
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of the Bezier curve by adjusting the control points. It also required a fixed number of model372

parameters to reconstruct any complicated structures. Finally, a graphical user interface is373

designed to visualize any fault structure reconstruction without any computational difficul-374

ties. The presented algorithm is demonstrated for real fault structure estimation from the375

Godavari sub-basin, and the obtained structure provides good agreement with previously376

published literature.377

6 Data Availability Statement378

All computational codes and synthetic data can be obtained from Github public repos-379

itory link https://github.com/ArkaRoy-Matlab/ListricFault . The observed gravity380

anomaly data for real listric fault structure is digitized from the paper [Chakravarthi, V.,381

Kumar, M. P., Ramamma, B., & Sastry, S. R. (2017). Gravity anomaly interpretation of382

2D fault morphologies by means of nonplanar fault planes and exponential density contrast383

model: a space domain technique. Arabian Journal of Geosciences, 10(3), 64].384
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