Ana-Catalina Plesa

and 15 more

The InSight mission [1] landed in November 2018 in the Elysium Planitia region [2] bringing the first geophysical observatory to Mars. Since February 2019 the seismometer SEIS [3] has continuously recorded Mars’ seismic activity, and a list of the seismic events is available in the InSight Marsquake Service catalog [4]. In this study, we predict present-day seismic velocities in the Martian interior using the 3D thermal evolution models of [5]. We then use the 3D velocity distributions to interpret seismic observations recorded by InSight. Our analysis is focused on the two high quality events S0173a and S0235b. Both have distinguishable P- and S-wave arrivals and are thought to originate in Cerberus Fossae [6], a potentially active fault system [7]. Our results show that models with a crust containing more than half of the total amount of heat producing elements (HPE) of the bulk of Mars lead to large variations of the seismic velocities in the lithosphere. A seismic velocity pattern similar to the crustal thickness structure is observed at depths larger than 400 km for cases with cold and thick lithospheres. Models, with less than 20% of the total HPE in the crust have thinner lithospheres with shallower but more prominent low velocity zones. The latter, lead to shadow zones that are incompatible with the observed P- and S-wave arrivals of seismic events occurring in Cerberus Fossae, in 20° - 40° epicentral distance. We therefore expect that future high-quality seismic events have the potential to further constrain the amount of HPE in the Martian crust. Future work will combine the seismic velocities distribution calculated in this study with modeling of seismic wave propagation [8, 9]. This will help to assess the effects of a 3D thermal structure on the waveforms and provide a powerful framework for the interpretation of InSight’s seismic data. [1] Banerdt et al., Nat. Geo. 2020; [2] Golombek et al., Nat. Comm. 2020, [3] Lognnoné et al., Nat. Geo. 2020, [4] InSight MQS, Mars Seismic Catalogue, InSight Mission V3, 2020, https://doi.org/10.12686/A8, [5] Plesa et al., GRL 2018, [6] Giardini et al., Nat. Geo. 2020, [7] Taylor et al., JGR 2013, [8] Bozdag et al., SSR 2017, [9] Komatitsch & Tromp, GJI 2002.

Max Collinet

and 4 more

The martian surface is predominantly covered by FeO-rich basalts and their alteration products. Several samples, either analyzed in situ by rovers or recovered as meteorites, might represent primitive (i.e. near-primary) basaltic melts that can shed light on the mineralogy, the bulk composition, and the temperature of their mantle sources. We recently developed a new melting model, called MAGMARS, that can predict the melt compositions of FeO-rich mantles and the martian mantle in particular (Collinet et al., submitted to JGR:P). It represents a more accurate alternative to pMELTS (Ghiorso et al., 2002, G3), which systematically overestimates the FeO and MgO content of martian melts and underestimates the SiO2 content (by up to 8 wt.%). MAGMARS can simulate near-fractional and batch melting of various mantle compositions. For example, MAGMARS can produce melts identical to the Adirondack-class basalts by near-fractional melting, between 2.3 and 1.7 GPa, of a depleted mantle with a potential temperature (Tp) of 1390°C (~7 wt.% melt fraction). For this study, MAGMARS is applied to all other martian basalts from which the primary melt compositions can be inferred in order to constrain their mantle sources: the Columbia hills basalts, igneous rocks from Gale crater, shergottites, nakhlites and Northwest Africa (NWA) 7034/7533. We find that a few basaltic clasts in the pre-Noachian polymict regolith breccia NWA 7034/7533 are the only samples with bulk compositions that could represent melts derived from a primitive mantle. The Columbia hills basalts (Gusev crater), alkali-rich rocks from Gale crater, nakhlites and enriched shergottites are most easily reproduced by melting depleted mantle reservoirs that were re-fertilized to different degrees in alkalis by fluids or melts (i.e. metasomatized sources). Most martian basalts, with the exception of depleted shergottites, can be produced from martian mantle reservoirs with Mg# comprised between 75 and 81. From this sample set, the melting conditions of the martian mantle seem to remain relatively stable through time (Tp = 1400 ± 100 ºC and P = 2 ± 0.5 GPa) but the depleted nature of all mantle sources sampled after the pre-Noachian points towards an early crust-mantle differentiation.