
Harnessing Large Language Models for Research Institutions:
an example based on NASA / JPL use-cases
Ste�en Mauceri1, Asitang Mishra1, Ryan M. McGranaghan1, Ashish A. Mahabal2, Lukas Mandrake1, Benjamin Smith1,
Dustin J. Graf1, Benjamin Nuerenberger1, Alice R. Yepremyan1, Brian Wilson1, Amanda Towler1, Kay Y. Pak1,
Miles B. Pellazar1, Daniel J. Crichton1
1 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
2 California Institute of Technology, Pasadena, CA, USA

Abstract:
In the era of information overload, how can research institutions e�ectively manage
and utilize the wealth of data at their disposal? State-of-the-art Large Language
Models (LLMs) could hold the key. These models have the potential to revolutionize
work processes at research institutions, aiding tasks such as ideation, summarizing
text, generating code, and question answering. These applications could signi�cant-
ly enhance scienti�c research and knowledge discovery in earth and space science,
aid decision making, and enable better alignment of challenges with the right ex-
perts.

We conducted a survey of current thrusts and use cases from diverse user groups
across the Jet Propulsion Laboratory (JPL), using a comprehensive approach that
combines quantitative and qualitative research methods. Focusing on both avail-
able capabilities from industry providers and custom-built solutions, we'll share
strategic recommendations for harnessing LLM capabilities and discuss their impli-
cations for governance work�ows.

We also explored how LLMs can enhance knowledge management and discovery
by making complex scienti�c information more accessible and easier to analyze. By
leveraging the unique capabilities of LLMs, JPL and other research institutions can
accelerate scienti�c discovery and technology development in earth and space sci-
ence.

What are Large Language Models?
Machine Learning Models trained on huge amounts of
text with a simple objective: predict the next word in a
sentence or paragraph.
Examples include ChatGPT (OpenAI), Bard (Google)

What Large Language Models currently can
and can not do:
Possible:
• Extract information from one or multiple documents (and provide references)
• Help with coding: Explain complex code. Autocomplete a few lines of code. Add

comments to code
• Summarize / Polish: text, emails
• Brainstorming: next steps, introduction, suggest title, pros / cons, alternate views

Not Possible:
• Reason over a large catalogue of documents and return well researched answers.
• Automate research; write a complete paper
• Always provide the correct answer

Use-cases:
Using an online spreadsheet, employees
across JPL self reported how they cur-
rently use ChatGPT like tools:

• Software Coding (explain code, write
tests, translate languages, identify gaps,
�nd best practice violations)

• Analysis (logs, text, extract insights)
• Draw/Design (schemadraw, programat-

ic drawing of �gures, artists renditions)
• Brainstorming (options, intros, �ow, re-

quirements, vendors, targets)
• Re�ne/Meta (polishing, prompting)
• Summarize (text, tables, videos, video

call transcripts, emails, action items)

Addionally we conducted 1:1 interviews
with selected user groups at JPL to un-
derstand other possible impactful Large
Language Model use-cases and needs.

Solutions:
What follows is a list of currently available and
future solutions to address the extracted LLM
needs:

Coding Assistant: Aamazon CodeWhisperer,
GitHub Copilot: A Simple assistant that everyone
who codes should use. Write code faster, spend
less time looking up syntax. Leads to well comment-
ed code.

Research Assistant: Many Companies popping up
with big promises, but most are in early beta: e.g.
Elicit (https://elicit.org/), ResearchAIde (https://ww-
w.researchaide.org/), SemanticScholar (https://ww-
w.semanticscholar.org).
What works / is missing:
• Gain understanding of general scientific concepts /

methods. Improve scientific writing
• Perform analysis over large corpus of documents to understand state of the

art, other possible approaches, pros and cons for an argument
• Answers are always trustworthy

Search for Information:
Find information across un-
structured data (Pdf, Word,
Ppt - text rich documents
etc.). Can be accomplished
with Retrieval Augmented
Generation based pipelines.
What works / is missing:
• Answers grounded in your data (little hallucination).
• Can provide Sources.
• Fast: can search over millions of documents in seconds.
• No training/fine-tuning needed.
• Great for finding factual answers present in your data, but Not recommended

for aggregative question answering!

Discovering People Based on Expertise, Project
Teaming, and Connecting People to Opportuni-
ties:
What JPL already has:
Various internal semantic technologies.
However, tools are challenging to use / query by av-
erage user (LLMs could provide more userfriendly
interface). Unstructered data currently not integrated
(could be done with LLMs)

General Question Answering: ChatGPT, Bard AI:
The corpus in connection with language itself is ex-
cellent. Typical failures are when few sources are
available, and where “understanding” of “concepts”
rather than language is required (e.g. math, and
anagram making)

Education office:
• Overwhelmed with number of ap-

plicants for summer internship op-
portunities. Need help matching
opportutnies to candidates

• Get a lot of questions about how
to set up internship opportunites,
other process details from within
JPL. Provide a chatbot that leads
prospective mentors through the
process and answers most ques-
tions.

Scientist / Data Scientist:
• Answer basic science questions.
• Gap analysis of reports like decadal

survey
• Find and digest relevant papers in

context
• Polish raw text
• Write / understand / document

code.

Management:
• Summarize, categorize email
• Provide a knowledge source for de-

cision making. Needs access to rel-
evant information across the insti-
tution (e.g. Q&A over data bases)

• Finding experts in certain �elds to
build teams, ask for advice, ...

• Quick learning about new topics
adaptable to current level of
knowledge to make informed deci-
sion

Hardware / Software Engineer:
• Error analysis (lessons learned)

from problem/error reports for
hardware engineering

• System engineering, work�ow,
testing procedures

• Coding assistant: help with syntax,
autocomplete code, explain unfa-
milar code, add unit tests, �nd vul-
nerabilities, best practice violations

Formulation:
• Propose future mission based on

opportunities, science needs, con-
straints, newly developed technol-
ogy, JPL goals

• Help with costing future missions
(understand constraints, decisions,
based on past missions): need
framework for discussion not $$

• Knowledge transfer between em-
ployees and domains (science to
engineers and engineering to sci-
entists)

A common request was to provide
more education about LLMs:
understand possibilities, shortfalls,
what’s next, prevent misuse

