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Introduction

In this Supporting Information, we investigate the stability issues with a simpler model

than the eL63 toy model described in the main text. The use of this simple model

supports the results obtained in the main text. The state vector of this simple dynamical

system belongs to R
3, allowing a simple graphical representation and thus facilitating

interpretation of stability issues discussed in the main text. Text S1 describes the simpler

model and additional figures (Figures S1-S3) provide more information about the stability

issues encountered by neural networks.
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Text S1.

The numerical instability issue is investigated by using a very simple model. Instead of

the Lorenz’63 model we assume a rotation along a circular path. As the embedded L63

model, the model is defined in two steps.

In a first step, we define the time evolution of the state vector z = (z1, z2, z3) ∈ R
3 by :

ż1 = −ωz2,

ż2 = ωz1,

ż3 = −κz3.

(1)

The first two equations describe a simple rotation along a circle of radius R (we will

set R = 1) with a constant rotational speed, ω = 2π
T

= θ̇. T is the rotation period

and (z1(t), z2(t)) = (cos θ(t), sin θ(t)), with θ(t) = ωt. The third additional equation is a

simple restoring force (we fix κ = 1).

In a second step, we apply a random rotation (consistent with eL63) to derive the state

vector of the system, x = (x1, x2, ..., xd):

x(t) = Pz(t), (2)

where P ∈ R
3×3 is the rotation matrix (P does not depend on time).

This system of equations can be formally rewritten ẋ(t) = f(x(t)). To replace the ’true’

function f , we fit an approximate function with neural networks trained on a single orbit

of the dynamical model, f̂orb. We choose T = 100 ; the learning orbit is obtained by

integrating Eqs. (1) and (2) with a time-step of ∆t = 1. The numerical integration is

performed over 5 periods, corresponding to 500 model time units (MTU, where 1 MTU

= 1 ∆t).
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Figure S1 compares the value of f , f̂orb in the plane {−2 ≤ z1 ≤ 2,−2 ≤ z2 ≤ 2, z3 = 0}

and over the cylinder {0 ≤ arctan(z2/z1) ≤ 2π,−1 ≤ z3 ≤ 1}. In the plane z = 0,

errors are very small but no restoring force is learnt by f̂orb (as one might expect given

the learning sample). So, as soon as the trajectory deviates from the z = 0 plane, errors

can grow and bring the predicted state vector in out-of-sample regions, where prediction

errors are larger. This is illustrated in Figures S2 and S3. Figure S2 shows the orbit of the

dynamical system driven by a typical f̂orb, from an initial condition : z = (1, 0, 0). The

trajectory of (z1(t), z2(t)) is illustrated in Figure S2(a) and the time evolution of the third

component (z3(t)) is plotted in Figure S2(b). After about 2 periods of rotation (t1 = 1.5T

= 150 MTUs), the trajectory remains relatively close to the true orbit, but z3(t1) > 0 and

z3(t) is raising slowly. The vector fields in the corresponding z3 = z3(t1)-plane are shown

in Figure S3(a) and (d). In this plane, (ż1, ż2) predicted by f̂orb are less accurate than in

the initial (and learning) z3 = 0 plane. As time goes on, the error on the z3 component

increases and the vector field (ż1, ż2) no longer accurately reproduces the rotation along

the circle. This leads to an orbit that deviates from the original circle and an exponential

growth of error on the third component (see Figures S3(b), (c), (e) and (f)).

This remarkably simple model is a perfectly periodic and predictable system. Various

statistical techniques could successfully forecast the state of this system at a given lead-

time. However, learning the derivative of this system (as done in climate modeling) can

cause stability issues.
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(a) ż1 = f(z1, z2, 0) (b) ż2 = f(z1, z2, 0) (c) ż3 = f(cos θ, sin θ, z3)
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(d) ż1 = ̂forb(z1, z2, 0) (e) ż2 = ̂forb(z1, z2, 0) (f) ż3 = ̂forb(cos θ, sin θ, z3)
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Figure S1. Values of ż1, ż2 and ż3 obtained with f (top) and f̂orb (bottom). The values of ż

are computed in the plane {−2 ≤ z1 ≤ 2,−2 ≤ z2 ≤ 2, z3 = 0} on panels (a), (b), (d) and (e),

and over the cylinder {0 ≤ θ = arctan(z2/z1) ≤ 2π,−1 ≤ z3 ≤ 1} on panels (c) and (f).
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(a) (b)
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Figure S2. Temporal evolution of (a) the state vector (z1(t), z2(t)) and (b) the third component

z3(t) for an orbit driven by f̂orb (grey lines) and for the true orbit driven by f (black lines). The

initial condition is z = (1, 0, 0) and the orbits are plotted for the first 1000 MTUs. The state of

the vector z at t = {150, 400, 800} is highlighted by a colored empty circle.
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(a) t=150 (b) t=400 (c) t=800
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(d) t=150 (e) t=400 (f) t=800

ż
=

̂ f o
r
b
(z
)
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̇ż

-2.0 -1.0 0.0 1.0 2.0
z1

-2.0

-1.0

0.0

1.0

2.0

z 2

−0.20

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

0.20
̇ż

Figure S3. Snapshots at t = {150, 400, 800} of the vector fields ż(t) predicted by f (top

panels) and by f̂orb (bottom panels). (ż1, ż2) are plotted using vectors and ż3 is displayed by

filled circles. The state of (z1(t), z2(t)) at t = {150, 400, 800} is represented by a colored empty

circle (same color convention as Figure S2).
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