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Key Points: 24 

• Satellite soil moisture data is used to calibrate two major soil texture datasets at the global 25 
scale. 26 

• Soil moisture simulations using the updated soil maps outperform those using the baseline 27 
soil texture products. 28 

• Soil moisture improvement is more significant in simulations considering soil organic 29 
carbon. 30 
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Abstract 32 

Soil moisture (SM) plays an important role in regulating regional weather and climate. However, 33 
the simulations of SM in current land surface models (LSMs) contain large biases and model 34 
spreads. One primary reason contributing to such model biases could be the misrepresentation of 35 
soil texture in LSMs, since current available large-scale soil texture data are often generated from 36 
extrapolation algorithm based on a scarce number of in-situ geological measurements. Fortunately, 37 
recent advancements in satellite technology provide a unique opportunity to constrain the soil 38 
texture datasets by introducing observed information at large spatial scales. Here, two major soil 39 
texture baseline datasets (Global Soil Datasets for Earth system science, GSDE and Harmonized 40 
World Soil Data from Food and Agriculture Organization, HWSD) are optimized with satellite-41 
estimated soil hydraulic parameters. The optimized soil maps show increased (decreased) sand 42 
(clay) content over arid regions. The soil organic carbon content increases globally especially over 43 
regions with dense vegetation cover. The optimized soil texture datasets are then used to run 44 
simulations in one example LSM, i.e., Noah LSM with Multiple Parameters. Results show that the 45 
simulated SM with satellite-optimized soil texture maps is improved at both grid and in-situ scales. 46 
Intercase comparison analyses show the SM improvement differs between simulations using 47 
different soil maps and soil hydraulic schemes. Our results highlight the importance of 48 
incorporating observation-oriented calibration on soil texture in current LSMs. This study also 49 
joins the call for a better soil profile representation in the next generation of Earth System Models. 50 

 51 

Plain Language Summary 52 

Soil moisture (SM) is important for weather and climate but is often poorly simulated by Land 53 
Surface Models (LSMs). One possible reason could be the inappropriate representation of soil 54 
texture maps utilized in LSMs since current gridded soil texture maps are often derived from a 55 
limited number of in-situ measurements. In this study, we leverage the benefits of modern satellite 56 
products and land surface theories to improve sever major global soil texture maps, and use the 57 
calibrated soil maps to improve soil moisture simulation in one example LSM. Results show 58 
increased sand content over arid areas while the results for clay content show the opposite pattern. 59 
The soil organic carbon (SOC) result shows an overall increase over the entire globe but is more 60 
evident in dense vegetation land covers. The model simulated SM using the calibrated soil maps 61 
generally outperforms those with the baseline soil maps. The improvement is more significant in 62 
the experiment with soil maps considering SOC. Our results here provide successful evidence for 63 
constraining soil texture data from large-scale observations. We also show that observation-64 
oriented calibration on soil texture maps is necessary for a better land surface simulation, which is 65 
critically important for the development of Earth System Models.  66 
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1 Introduction 67 

Soil moisture (SM) is a crucial component in terrestrial water cycles (Oki and Kanae, 68 
2006). It can have substantial influence on regional weather and climate through its role as the 69 
intermediate medium for land-atmosphere water and energy flux exchanges (Seneviratne et al., 70 
2010). Persistent negative anomaly in SM could induce severe droughts, causing great loss in 71 
agriculture production and socio-economic activities (Miralles et al., 2019; Mukherjee et al., 72 
2018). It can also cause hazardous extreme events that threaten human life (Miralles et al., 2014; 73 
Seneviratne et al., 2010; Zhou et al., 2019). Accurate predictions of SM is thus essentially useful 74 
for decision-makers to take prevention and mitigation measures for such natural disasters in time. 75 

SM is usually simulated by land surface models (LSMs) and contributes to the boundary 76 
layer condition in Earth System Models (ESMs) through regulations on surface water flux 77 
exchanges. However, evaluation studies have shown that the soil moisture simulation in current 78 
LSMs contains significant biases, for example, wide SM spreads were found within a diverse 79 
ensemble of LSMs (Boone et al., 2004; Dirmeyer et al., 2016, 2006b, 2006a). The large SM biases 80 
could then be amplified through land-atmosphere interaction processes and result in substantial air 81 
temperature and precipitation biases in ESMs (Dong et al., 2022). In previous studies, successful 82 
efforts have been addressed to improve SM simulations in LSMs, including calibrating the models’ 83 
soil hydrothermal parameterization schemes (Zheng et al., 2015; Koster et al., 2017, 2018), 84 
essential land surface parameters such as Leaf Area Index (LAI), surface albedo (Kumar et al., 85 
2019; Malik et al., 2012; Yin et al., 2016) etc. However, these improvement studies are model 86 
specific, that is to say, SM biases cannot be improved if the models already use the optimal 87 
parameterization schemes or land surface parameters.The systematical SM biases (i.e., the long-88 
term equilibrium SM) determined by soil texture between models should be improved through the 89 
calibration of soil texture datasets utilized in current LSMs (Teuling et al., 2009; He et al., 2023).  90 

Soil texture is defined as a certain soil composition of sand, clay and loam content, and 91 
determines the soil hydrothermal properties such as saturated soil matric potential, saturated soil 92 
hydraulic conductivity and diffusivity etc. Generally, there are two options to define soil texture 93 
in LSMs: one is to use the model-prescribed look-up table, in which a certain value obtained from 94 
in-situ geological surveys (e.g., particle size analyses (PCA) (Black, 1965; Gee and Bauder, 2018)) 95 
is assigned for each soil type; The other is to incorporate gridded soil maps externally, which is 96 
favored in recent land surface simulation studies sinc it is spatially more representative compared 97 
to the look-up table approach (Xu et al., 2023). However, the gridded soil maps themselves contain 98 
biases, since they are often generated by extrapolating the point-scale measurements into polygons 99 
(Dai et al., 2019; Shangguan et al., 2014). Such mismatch in spatial scales might lead to unreal 100 
soil texture results, particularly when the number of in-situ measurements is limited. However, 101 
since the large-scale soil texture observation is unavailable, it is difficult to improve the quality of 102 
current gridded soil maps. 103 

Recent advancements in remote sensing technologies have provided unique opportunities 104 
to observe Earth’s land surface from large spatial scales. Development of satellite-observed land 105 
surface products such as land surface temperature (Wan, 2013), soil moisture (Entekhabi et al., 106 
2010; Kerr et al., 2001; Njoku et al., 2003), and vegetation indices (e.g., LAI, Fractional Vegetation 107 
Cover (FVC), etc.) (Cohen et al., 2006; Garrigues et al., 2008; Xiao et al., 2016) facilitates 108 
improvement of land surface modeling by providing real-time and realistic land surface 109 
information (He et al., 2021; Kolassa et al., 2020; Kumar et al., 2019, 2015; Li et al., 2019). Data 110 
assimilation (DA) technology is one typical way of incorporating satellite datasets to improve land 111 
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surface simulations (Gettelman et al., 2022; Z.-L. Yang et al., 2020). While this approach is 112 
effective in improving models’ biases, to maintain the persistent improvement of LSM 113 
simulations, the DA approach requires continuous input of satellite signals. The improvement thus 114 
cannot be extended to future predictions when satellite measurements are unavailable. An 115 
alternative and much simpler approach for satellite-based model improvement is using satellite 116 
information to calibrate LSMs’ physical schemes and parameters (Yang et al., 2009; Balsamo et 117 
al., 2018; Lu et al., 2020). Efforts using this approach have demonstrated that the parameter 118 
calibration approach can also substantially improve land surface modeling biases (Chen et al., 119 
2010; Kolassa et al., 2020; Sun et al., 2021), and more importantly, it can complement the DA-120 
based model improvements (Koster et al., 2018). The model improvement from the calibration 121 
approach can be efficiently transferred into future scenarios compared to the DA approach.  122 

In land surface modeling studies, empirical functions (i.e., pedo-transfer functions, PTFs, 123 
e.g., Wösten et al., 2001) are often used to link soil texture data and soil hydraulic parameters (e.g., 124 
wilting point, field capacity, saturated point, etc.) However, since the acquisition of soil hydraulic 125 
parameters could be more labor-intensive and more costing than soil texture measurements, the 126 
typical way is to first collect soil texture information, then estimate the soil hydraulic parameters 127 
by applying PTF equations. Instead of directly obtaining them from laboratory measurements or 128 
field observations, recent studies have shown that some soil hydraulic parameters can be estimated 129 
from soil moisture data only (McColl et al., 2017; Akbar et al., 2018). With satellite observations 130 
of soil moisture being increasingly available and the empirical functions being known, the newly 131 
developed soil moisture – soil hydraulic parameter estimation approach brings a new opportunity 132 
to derive soil texture from soil hydraulic parameters in turn. Such an approach could also provide 133 
new insight into improvement on currently existing soil texture products. 134 

In this light, this study aims to use soil hydraulic parameters (i.e., soil wilting point 𝜃! and 135 
critical point 𝜃") estimated from long-term satellite soil moisture dataset to calibrate two major 136 
soil texture baseline datasets, i.e., Global Soil Datasets for Earth system science (GSDE) developed 137 
by Land-Atmosphere Interaction Laboratory of Sun Yat-Sen University (Shangguan et al., 2014), 138 
and Harmonized World Soil Data developed by Food and Agriculture Organization (FAO) 139 
(Nachtergaele et al., 2009). The calibration is realized by applying an optimization procedure, 140 
where the soil hydraulic parameters 𝜃!  and 𝜃"  calculated from baseline soil maps and PTF 141 
functions are compared with those from satellite estimations. Two PTF schemes with and without 142 
considering soil organic carbon (SOC) are used to investigate the influence of SOC on the 143 
calibration results. The baseline and calibrated soil maps are then incorporated into an example 144 
land surface model (i.e., Noah LSM with Multiple Parameters, Noah-MP (Niu et al., 2011; Yang 145 
et al., 2011)) to conduct simulations. The simulated SM with baseline and calibrated soil maps are 146 
then compared and validated with observational data at both regional and in-situ scales. In doing 147 
so, this study could offer an observation-based reference for improving SM simulations in LSMs. 148 
This study also provides a method for calibrating gridded soil texture maps with satellite 149 
observations, which joins the call for updating the characterization of the soil profile for the 150 
development of next generation LSMs (as well as ESMs). 151 

2 Data and Methods 152 

This section contains information of the methodology and primary datasets this study used 153 
and is divided into three parts based on their purposes: Section 2.1 describes the methods for 154 
obtaining soil hydraulic parameters, i.e., soil wilting point 𝜃!  and critical point 𝜃" , from soil 155 
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moisture time series. The satellite soil moisture dataset used in this study will also be introduced; 156 
Section 2.2 describes the main algorithm for constraining soil texture datasets using the parameters 157 
obtained from Section 2.1. Two PTF schemes with and without SOC effects, and two global 158 
baseline soil texture datasets are introduced; In Section 2.3, experiment designs for incorporating 159 
the calibrated soil texture datasets in Noah-MP LSM are described. Meteorological forcing data 160 
and validation datasets are introduced in this part. 161 

2.1 Soil Hydraulic Parameters from Satellite Soil Moisture Data 162 

As discussed above, recent studies have shown that soil hydraulic parameters can be 163 
estimated solely from surface soil moisture data (McColl et al., 2017). This method will be adopted 164 
in our study to derive important soil hydraulic parameters (i.e., 𝜃! and 𝜃"). The basic hypothesis 165 
of the method in (McColl et al., 2017) is that as intrinsic properties of soil, the soil hydraulic 166 
parameters (also defined as SM thresholds) are reflected in the SM temporal changes. This can be 167 
explained by the surface water loss function (𝐿(𝜃)) shown in Figure 1a. First, when a precipitation 168 
event occurs, SM will be immediately saturated after the rainfall event, at this time surface water 169 
decreases as drainage loss until it reaches the field capacity 𝜃#". Then evapotranspiration (ET) 170 
occurs at its maximum rate (i.e., potential ET); SM decreases as potential ET loss until it reaches 171 
the soil critical point 𝜃". Since the potential ET process occurs very rapidly, the two thresholds, 172 
𝜃#" and 𝜃", are considered to be consistent in some cases. Afterward, SM continues decreasing as 173 
the water-limited rate of ET loss (typically this rate can be defined as a first-order relation between 174 
ET and SM) until all water loss processes cease. SM at this time is defined as 𝜃!. Converting 𝐿(𝜃) 175 
to the time domain an exponential curve showing the relationship between SM and time occurs 176 
(𝜃(𝑡) , Figure 1b). This curve is defined as the SM drydown event where SM changes are 177 
consistently negative.  178 

 179 

Figure 1. Diagram for surface water loss function (a) and soil moisture drydown curve (b). The x-180 
axis in (a) refers to soil moisture (m3 m-3), and y-axis refers to surface water loss rate (𝐿(𝜃), in unit 181 
of 𝐿𝑇$%); 𝐸&'( is the maximum evapotranspiration rate (𝐿𝑇$%). Figure 1b is the projection of 1a 182 
in the time domain, where the x-axis refers to time (e.g., days) and y-axis refers to soil moisture 183 
content (m3 m-3). 𝜃! , 𝜃" , and 𝜃#"  refers to soil wilting point, critical point, and field capacity, 184 
respectively. Figures adaptated from (He et al., 2023). 185 

Recall that 𝜃" and 𝜃! refers to the start and end point of the water-limited surface water 186 
loss process, respectively. In this light, it is reasonable to expect 𝜃" corresponds to the initial SM 187 
value (𝜃))*), and 𝜃! refers to the minimum SM value (𝜃&+,) of the water-limited drydown curve 188 
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(solid red line in Figure 1b). To characterize this part of drydown curve, the linear relation between 189 
the rate of water loss and SM can be described as: 190 

     )-(/)
)/

= 𝑘𝜃(𝑡),                       (1) 191 

where, 𝑘 refers to the slope of the curve (d-1). Integrating both sides of (1) as a function of time, 192 
an empirically derived equation can be derived, as:  193 

𝜃(𝑡) = ∆𝜃 exp .− /
1!
0 + 𝜃!2                               (2) 194 

where, 𝛥𝜃 refers to the soil moisture change during each soil drying event (m3 m-3); 𝜃!2  refers to 195 
the estimated minimum soil moisture value (m3 m-3); 𝑡 refers to the time duration of the soil 196 
moisture drydown event (days); and 𝜏2  refers to the time scale when SM returns back to an 197 
equilibrium state, i.e., soil moisture memory time (days). Details of the derivation from equations 198 
(1) to (2) can be found in (McColl et al., 2017).  199 

To obtain estimations of 𝜃" and 𝜃!, the water-limited soil moisture drydown event is first 200 
identified as the observed SM timeseries with consistent soil moisture decrement. 𝜃"  thus 201 
corresponds to the observed initial SM value of each drydown event. Then equation (2) is used to 202 
fit the identified drydown event to derive 𝜃! . We note that the estimated parameters can be 203 
different for each identified drydown event (i.e., there are temporal variations in 𝜃"  and 𝜃! 204 
estimations). We here use their statistical medians as “representative” estimations for the 205 
parameters at each grid. The analyses in this study are conducted by using 19-year (2002-2020) 206 
remote sensing soil moisture data, i.e., Neural Network Soil Moisture (NNSM (Yao et al., 2021)). 207 
Compared to other remote sensing SM datasets such as Soil Active and Passive (SMAP) and Soil 208 
Moisture and Ocean Salinity (SMOS), NNSM provides a much longer temporal span and larger 209 
spatial coverage over frozen and heavy-vegetated areas with high data accuracy (ubRMSE ≤ 0.04 210 
m3 m-3). NNSM has the daily temporal resolution and the spatial resolution of 36km. The identified 211 
drydown events containing less than 3 observation samples and events with the determination 212 
coefficient (𝑅3) of the fitting less than 0.7 are filtered, consistent with (McColl et al., 2017). 213 

2.2 Soil Texture Optimization through SCE-UA Algorithm 214 

Once 𝜃! and 𝜃" are estimated from satellite observation, and relations between them and 215 
soil texture have been known through PFT functions, the most straightforward way to derive soil 216 
texture data is to directly solve the empirical equations. However, in doing so the underlying 217 
hypothesis would be to assume satellite estimations are the truth. However, theoretically the truth 218 
could never be known for any variable or system even though with abundant observation records. 219 
To avoid such a problem, we here apply another method, i.e., SCE-UA (Shuffled Complex 220 
Evolution – University of Arizona (Duan et al., 1994, 1992, 1993)) algorithm to obtain soil texture 221 
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from the satellite-estimated 𝜃!  and 𝜃"  without explicitly solving the PTF equations. The basic 222 
working flow of this algorithm is depicted in Figure 2. 223 

 224 

Figure 2. Working flow of soil texture optimization by using SCE-UA algorithm in this study. 225 
Parameters in each block are: (1) S, C, and SOC are for soil sand content (%), soil clay content 226 
(%) and soil organic carbon content (%) from the input baseline soil texture data; ∆𝑠, ∆𝑐 and 227 
∆𝑠𝑜𝑐 are the absolute value of prescribed variation range for sand, clay and soil organic carbon 228 

respectively; (2)𝑆+,	𝐶+ 	and	𝑆+ 	indicate the sand, clay and SOC content generated by SCE-UA 229 
program; 𝑖 refers to the sample index; (3)PTF indicates the PedoTransfer Function (in this study, 230 
both SR06 and CH78 schemes are used), 𝜃(+4  indicates the soil hydraulic parameters calculated 231 
using the soil composition samples generated by SCE-UA program; 𝑥 = 𝑤, 𝑐 indicates both 𝜃" 232 

and 𝜃! will be calculated; 𝑖 refers to the sample index. 233 

The basic working flow of applying SCE-UA in this study is that for a certain grid, a 234 
variation range of each soil texture component will be first prescribed (Step 1 in Figure 2). In this 235 
study, the variation range of ±20% for sand, ±10% for clay, and ±5% for SOC is defined. The 236 
SCE-UA algorithm will then generate a sample pool based on the input baseline soil texture data 237 
(Step 2). For each sample, fitness values of wilting point and critical point is calculated through 238 
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PTF (𝜃!+4  and 𝜃"+4 , 𝑖 = 1, 𝑛 where 𝑛 refers to the total number of soil texture combinations, Step 239 
3). Then the generated 𝜃!+4  and 𝜃"+4  are shuffled (Step 4) and the cost function between the fitness 240 
values and satellite estimation of  𝜃! and 𝜃" is calculated (Step 5). Then the evolution procedure 241 
is conducted using the Constraint-handling using Constrained Evolutionary (CCE) optimization 242 
algorithm (Step 6) to ensure the cost function is minimum between the fitness values and satellite 243 
estimations. The soil texture combination corresponding to the time when the cost function is 244 
minimum is chosen as the optimal soil texture composition for this grid.  245 

Two baseline soil texture datasets, i.e., GSDE that includes soil organic carbon (SOC) and 246 
HWSD that includes only the basic components of soil texture (i.e., sand, clay, and loam) are 247 
chosen in this study because we want to investigate the effect of different PTF schemes on SM 248 
improvement. SOC has attracted increasing interests in recent land surface modeling studies (Chen 249 
et al., 2016; Lawrence and Slater, 2008) since it can have significant influence on soil hydraulic 250 
properties through its effect on soil structure and adsorption properties (Rawls et al., 2004, 2003). 251 
Two PTF schemes with and without consideration of SOC effect (i.e., SR06 (Saxton and Rawls, 252 
2006) and CH78 (Clapp and Hornberger, 1978), correspondingly) are therefore chosen to apply 253 
for GSDE and HWSD, respectively. Descriptions of the two PTF schemes are listed in Table S1. 254 
The original spatial resolution of both GSDE and HWSD is 0.25 degree. 255 

Three experiment designs for soil texture optimization in this study are shown in Table 1. 256 
Opti_exp1 uses sand, clay and SOC from GSDE as baseline soil texture data and SR06 PTF 257 
scheme to account for the SOC effect; Opti_exp3 uses sand and clay from the HWSD dataset and 258 
CH78 as the PTF scheme that does not account for SOC effect. However, since different soil 259 
texture datasets are used, comparing results between these two experiments cannot give an explicit 260 
indications of how SOC affects soil texture optimizations. As such, an additional experiment, 261 
Opti_exp2, which uses only soil sand and clay content from GSDE and the non-SOC effect PTF 262 
scheme is also conducted. Comparing results from Opti_exp2 and Opti_exp1 therefore indicates 263 
effects of SOC on soil texture optimization, and comparing results from Opti_exp2 and Opti_exp3 264 
can inform the global spatial patterns of soil texture before and after optimization in two different 265 
datasets. 266 

Table 1. Experiment Designs for Global Soil Texture Optimization 267 

Experiment 
Name  

Baseline Soil Data 
Name PTF Scheme Optimized Soil Data 

Name 
Prescribed 
Ranges† 

Opti_exp1 GSDE_default SR06 GSDEoc_sce ∆Sand: ±20% 
∆Clay: ±10% 
∆SOC:	±5%	

Iteration: 3000 
Opti_exp2 GSDE_default CH78 GSDEnoc_sce 

Opti_exp3 HWSD_default CH78 HWSDnoc_sce 

†The lower and upper bound for Sand, Clay and SOC are 6% to 98%, 3% to 58%, 0 to 15% respectively. 268 
Optimization results exceed this range is regarded as ineffective and will be masked out. The analysis in 269 
the main context is conducted on 3000 iteration steps, i.e., for each experiment there are 3000 suits of soil 270 
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sand, clay (and SOC) combinations. The opitimization result will then be chosen as the one combination 271 
that can produce the closest 𝜃! and 𝜃" to the satellite estimations. 272 

2.3 Simulation Designs in Noah-MP LSM 273 

As aforementioned in our research purposes, the final goal of optimizing soil texture data 274 
is to improve SM simulation in LSMs. Here we use Noah-MP (Niu et al., 2011; Yang et al., 2011) 275 
as an example LSM to evaluate how the optimized soil texture data can help improve SM 276 
simulations. For each optimization experiment listed in Table 1, we design two simulation 277 
experiments – one uses the baseline soil texture dataset, and the other one uses the optimized soil 278 
texture – to run simulations in Noah-MP (Table 2). A high-quality meteorological dataset based 279 
on remote sensing data, reanalysis data and observation data of over 700 stations (CMFD, China 280 
Meteorological Forcing Dataset) is chosen to drive the model runs, meaning the focus area of the 281 
model simulation part is China, different from the global analyses in the other part of this study. 282 
The simulation period is from Jan 01 2008 to Dec 31 2010, in which the first two years are run for 283 
the model’s spin-up. The model is run at the 3-hourly time step and at a spatial resolution of 0.1 284 
degree. All the soil texture datasets used in the model simulation are downscaled into this spatial 285 
resolution. 286 

To evaluate how much the simulated SM can be improved from the optimized soil texture 287 
data, the difference between SM from simulations using baseline soil texture and NNSM, and the 288 
difference between SM simulation using optimized soil texture and NNSM are compared. Since 289 
NNSM also serves as the primary satellite dataset to extract soil hydraulic parameters, the other 290 
remote sensing SM product that is independent of the optimization procedure, namely, ITPLDAS 291 
(soil moisture dataset of China based on microwave data assimilation (Yang et al., 2020; Yang et 292 
al., 2016)), is also used for evaluation. Additionally, the Root-Mean-Square-Error (RMSE) 293 
between SM from simulations using baseline and optimized soil texture data are also compared by 294 
using 732 in-situ SM observations (Wang and Shi, 2019).  295 

Table 2. Experiment Designs for Noah-MP Model Simulations over China 296 

 Soil Texture PTF Scheme Forcing Time period 

Exp1 GSDE_default SR06 

CMFD 2008.01.01 – 
2010. 12.31 

Exp2 GSDEoc_sce SR06 

Exp3 GSDE_default CH78 

Exp4 GSDEnoc_sce CH78 

Exp5 HWSD_default CH78 

Exp6 HWSDnoc_sce CH78 
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 297 

3 Results 298 

3.1 Global Patterns of Soil Hydraulic Parameters from Satellite Estimations 299 

Global medians of the two soil thresholds, namely, 𝜃!  and 𝜃"  estimated from satellite-300 
identified drydown events are shown in Figure 3a and Figure 3b, respectively. Both 𝜃! and 𝜃" 301 
show clear geographical gradient globally, for example, they both show high values in 302 
climatologically humid regions (e.g., eastern U.S., southern Sahara, and southern China) whereas 303 
show low values in climatologically arid regions (e.g., western U.S., central Asia, and central 304 
Australia). In terms of magnitude, 𝜃"  with the mode of ~0.23m3m-3, is overall higher than 𝜃! , 305 
which has a mode of 0.13m3m-3 (x-axis value corresponding to the peak of PDF function in Figure 306 
3). The results above suggest that our estimations of 𝜃! and 𝜃" using NNSM dataset in this study 307 
are reasonable, where their global patterns compare consistently to the soil drydown time in several 308 
previous studies (McColl et al., 2019, 2017). 309 

 310 

Figure 3. Global distribution of 𝜃! (top) and 𝜃" (bottom) from satellite estimations (a and c), 311 
baseline soil texture map (b and e) and optimized soil texture map (c and f). Insets refer to the 312 

probability density distribution of each map. 313 

   Compared to satellite estimations, the soil thresholds calculated from one of the baseline 314 
soil texture datasets (i.e., GSDE, using SR06 PTF) without any satellite correction show much less 315 
spatial gradient, for example, both 𝜃!  and 𝜃"  are relatively uniform (e.g., North America), 316 
showing scattered hotspots across climate zones (e.g., Amazon, eastern Africa, and northwestern 317 
India) (Figure 3, b and e). Results are similar when using different combinations of baseline soil 318 
texture data and PTF functions (Figure S1). This uniform-with-hotspots pattern could be a product 319 
of the extrapolation algorithm of the baseline soil texture dataset, where the limited point-scale 320 
geological survey samples can barely represent the soil characteristics to a much larger spatial 321 
extent, which indicates that the spatial pattern of SM simulations might be biased if baseline soil 322 
texture dataset were directly used in LSMs without corrections from satellite information. In 323 
addition, the uniform distribution of soil thresholds in baseline soil texture also results in 324 
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overestimation in the magnitude of 𝜃! and 𝜃" over arid areas while underestimation over humid 325 
areas, which may add additional biases to SM simulations. 326 

The soil thresholds from baseline soil texture with satellite corrections, that is,  𝜃! and 𝜃" 327 
corresponding to the minimum value of the cost function in the SCE-UA procedure, compare much 328 
closer to satellite estimations in both spatial pattern and magnitude, than to those from baseline 329 
soil texture only (Figure 3, c and f, and Figure S1 for results using different baseline soil texture 330 
datasets and PTF functions). The East-West gradient over North America is reproduced, and the 331 
left-skewed PDF of 𝜃! is largely corrected. A similar correction is also made to the dual-peak 332 
distribution of 𝜃". The results suggest that the SCE-UA procedure can efficiently reproduce 𝜃! 333 
and 𝜃" that are closest to satellite drydown estimations, and the soil texture components derived 334 
under this condition can also serve as an improved dataset to represent soil characteristics at large 335 
spatial scales. 336 

 337 

Figure 4. Global patterns of sand content from baseline soil maps (left column), optimized soil 338 
maps (middle column) and their difference (right column). For the middle and right columns, From 339 
top to bottom are results from GSDE soil map with SR06 PTF scheme, GSDE soil map with CH78 340 
PTF scheme and HWSD soil map with CH78 PTF scheme. Insets refer to probability density 341 
distribution. 342 

3.2 Global Patterns of Soil Texture Optimized from SCE-UA Algorithm 343 

Before discussing their spatial patterns, the sensitivity of the optimization results to one 344 
important parameter of the SCE-UA algorithm, i.e., the iteration steps n, is analyzed. We 345 
conducted 4 optimization experiments with n equaling 300, 3000, 10000 and 30000 to conduct 346 
analyses. Figure S2 shows that the optimization results of sand, clay and SOC are insensitive to 347 
the iteration steps. The optimized sand and clay content both remain consistent among the four 348 
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experiments. The SOC content in the four experiments is also highly consistent, only except that 349 
the experiment with 300 iteration steps shows minorly lower SOC content. The analyses in the 350 
context below are based on optimization results with iteration steps of 3000. 351 

Soil texture derived from the SCE-UA procedure with satellite information (we will refer 352 
to them as “optimized” dataset hereafter) as well as comparison with their baseline soil texture 353 
datasets are shown in Figures 4 – 6. Overall, the soil texture components from the SCE-UA 354 
algorithm show a similar geographical pattern to the baseline maps, e.g., sand content from both 355 
optimized and baseline datasets are high in climatologically arid areas (e.g., great deserts such as 356 
California, Sahara and central Australia), while low in climatologically humid areas (Figure. 4, a 357 
– f), and vice versa for the soil clay component (Figure 5, a – f). Soil organic carbon, however, is 358 
overall evenly distributed across climate zones, but shows close relations to vegetation density. 359 
For example, in areas with dense vegetation coverage, SOC is comparably high (Figure 6, a – b). 360 
The above results suggest that the SCE-UA procedure performs reasonably in reproducing the 361 
overall geographical pattern of global soil component content.  362 

 363 

Figure 5. Same as Figure 4 but for the soil clay content. 364 

However, the optimized soil texture datasets differ from the baseline soil maps in 365 
magnitude (Figures 4 – 5, g – i and Figure 6c). Each soil content from the optimized dataset shows 366 
up to 20%, 10%, and 5% changes in absolute values respectively (the three numbers correspond 367 
to the prescribed range in Table 1). Similar to their spatial patterns, the magnitude changes in sand 368 
and clay content show dependence on climate zones, that is, the sand content from the optimized 369 
dataset increases over arid regions whereas decreases over humid regions (the other way around 370 
for the clay content changes), while SOC shows overall increase globally, although the increase is 371 
comparably more over the densely covered vegetation areas. The spatial dependence of the sand 372 
and clay changes corresponds well to the satellite-baseline soil thresholds difference (Section III-373 
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A), further verifying that the optimized soil texture results do contain satellite information from 374 
satellite observations, such that they could perform better in representing large-scale soil 375 
characteristics (compared to the baseline soil maps). We should also note that such spatial 376 
dependence of sand changes is also related to PTF functions, for example, the decrease of sand 377 
content in humid areas in the cases Opti_exp2 and Opti_exp3 is not as much as that in Opti_exp1 378 
(even showing an increase in some areas such as eastern U.S. and southern China). This indicates 379 
that appropriately choosing PTF functions is essential to obtain reasonable soil sand estimations. 380 

 381 

Figure 6. Global patterns of soil organic carbon from baseline soil maps (a), optimized soil maps 382 
(b) and their difference (c). Insets refer to probability density distribution. 383 

3.3 Soil Moisture Simulations from Noah-MP LSM 384 

JJA soil moisture simulations from Noah-MP LSM using baseline and optimized soil 385 
texture maps are then compared with contemporary NNSM SM product and shown in Figure 7. 386 
SM simulated using baseline soil maps (i.e., exp1, exp3 and exp5) show overall positive biases 387 
(biases of ~0.1 m3 m-3 compared to NNSM, inset PDF distribution) over the entire study area. The 388 
positive biases are especially large in southeastern China (humid climate) while substantial 389 
negative biases are observed in the northwestern part (arid climate), with maximum biases larger 390 
than 0.15 m3 m-3 (in absolute value). By comparison, SM using optimized soil data (i.e., exp2, 391 
exp4 and exp6) show reduced biases, with the right-skewed PDF distribution corrected left-392 
forward. Noticeably, the substantial positive and negative biases over southeastern and 393 
northwestern regions are largely corrected, with the maximum biases constrained within 0.1 m3 m-394 
3 respectively. Scattered hotspots with extremely large SM biases are still observed, possibly due 395 
to local land surface conditions (e.g., vegetation properties) that may not be accounted for by soil 396 
characteristics. 397 

In addition to the overall SM improvement in experiments using the optimized soil texture 398 
dataset, the SM improvements are also case-dependent. In exp4 and exp6, where different baseline 399 
soil data and PTF functions without considering SOC are used, the negative SM biases – meaning 400 
less soil moisture retained by the soil in the simulations compared to satellite observation – over 401 
southeastern regions do not show as much improvement as in exp2. The SM simulation difference 402 
between exp2 and the other two experiments corresponds reasonably to the discrepancy in the 403 
spatial distribution of soil sand content – the decrement of soil sand percentage in exp2 will 404 
consequently enhance the soil water-holding capability, thus that more water can be retained in the 405 
soil column, while in the other two cases the soil sand percentage is increased, resulting in 406 
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degradation of the soil water-holding capacity. Detailed inter-case comparisons will be discussed 407 
in Section 3.4. 408 

Since NNSM serves as input (although not directly) to the optimization procedure, using it 409 
as a reference to validate SM simulations might lead to the comparison itself being biased. To 410 
further validate the simulated SM independently, a comparison using SM from ITPLDAS is 411 
conducted. Results show that SM biases over southeastern (negative biases) and northwestern 412 
regions (positive biases, more inland compared to Figure 7) are still substantial between 413 
simulations using baseline soil maps and ITPLDAS, and biases are both reduced, although 414 
relatively moderate when compared to SM comparison with NNSM (Figure S3).  415 

 416 

Figure 7. Difference of JJA soil moisture from simulations with baseline soil maps and NNsm 417 
(left column), and simulations with optimized soil maps and NNsm (right column). Panels from 418 
top to bottom refers to simulations using GSDE soil map with SR06 PTF scheme, GSDE soil map 419 
with CH78 PTF scheme, and HWSD soil map with CH78 PTF scheme. Inserted boxes with dash 420 
lines indicate areas where soil moisture simulations are substantially improved using the optimized 421 



manuscript submitted to Journal of Advances in Modeling Earth Systems 

 

soil map results. Insets on the leftbottom corner indicate the probability density distribution. Areas 422 
with water bodies are masked. 423 

Another thing noticed in particular when compared with ITPLDAS is that large biases in 424 
northeastern areas also exist in exp1, exp3 and exp5, and using the optimized soil texture dataset 425 
does not visibly help to reduce the biases. The relative moderate improvement over southeastern 426 
and northeastern areas could be again because over these areas where the land surface is covered 427 
by dense vegetation, the soil texture may play a secondary role in regulating SM dynamics. 428 
However, we should also note that the different performance of how soil texture can improve SM 429 
in comparison with ITPLDAS may also be caused by the behavior of the reference SM data itself. 430 
ITPLDAS is an assimilation system where the SiB2 LSM is incorporated (K. Yang et al., 2020), 431 
therefore the output SM product may unavoidably be influenced by the prescribed model 432 
parameters (e.g., land surface parameters such as vegetation height, leaf reflectance, surface 433 
roughness, etc.), especially over areas with high vegetation density. For example, SiB2 only uses 434 
9 vegetation types (Table 2 in (Sellers et al., 1996)) while the vegetation category in Noah-MP is 435 
27 (this option is based on USGS’s land cover classification; the other option is based on MODIS 436 
product, which has 20 categories). This means the representation of vegetation spatial 437 
heterogeneity in SiB2 is much coarser, which may yield biases in the ITPLDAS product when 438 
compared with simulations from Noah-MP. Even for similar vegetation types, their parameters 439 
differ a lot. For example, the canopy base and top height for Broadleaf Evergreen Forests (BEF) 440 
are 1m and 35m in SiB2 (Table 5 in (Sellers et al., 1996)), while 8m and 20m in Noah-MP. Similar 441 
differences are also found in other vegetation biomes. These differences indicate that improving 442 
soil texture only may not necessarily help to reduce the simulated SM biases. Instead, additional 443 
efforts should be addressed to improve the characterization of other important land surface 444 
parameters. 445 

 446 

Figure 8. RMSE difference of simulated soil moisture with in-situ observations between cases 447 
using optimized soil maps and default soil maps. Panel (a) is for RMSE difference between the 448 
simulation using baseline and optimized GSDE soil map with SR06 scheme; (b) is for RMSE 449 
difference between simulations using baseline and optimized GSDE soil maps with CH78 scheme; 450 
and (c) is for RMSE difference between simulations using baseline and optimized HWSD soil 451 
maps with CH78 scheme. Red color means the soil moisture simulations using optimized soil maps 452 
outperform those with baseline soil maps.  453 

We further compared the SM simulation with 732 in-situ observations of a half-monthly 454 
time scale. Nearly at half of the stations, RMSEs of SM simulated with the optimized soil texture 455 
dataset are improved (Figure 8). Even though that at the other half of the stations the SM RMSEs 456 
are slightly increased in simulation with optimized soil texture, this result further proves that the 457 
SM can be improved using the optimized soil texture data at the in-situ scale. The RMSE increase 458 
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at the other half station could possibly be explained by the scale mismatch between the model’s 459 
grid-based result and the point scale in-situ observations. 460 

3.4 Intercomparison of Results between Different Optimization and Simulation Cases 461 

In previous sections we describe the overall behaviors of soil texture, soil thresholds and 462 
SM improvement in different optimization/simulation cases and show that they are comparably 463 
consistent. However, there are still some inter-case differences that may be caused by the different 464 
baseline soil data or PTF functions used, and therefore need to be examined in detail. In this 465 
section, we will elucidate how the optimized soil texture, soil thresholds, and simulated SM results 466 
behave between different optimization and simulation cases.  467 

 468 

Figure 9. Intercomparison of soil texture (a and b) and soil thresholds (c and d) for difference cases 469 
(global). For (a) and (b), dash lines indicate probability density function (PDF) of soil texture from 470 
default soil maps and solid lines indicate result from optimized soil maps. For (c) and (d), dash 471 
lines indicate soil thresholds calculated using default soil maps and PTF functions, black solid 472 
lines indicate estimations from NNsm product, and solid lines in color indicate results from 473 
optimized soil maps and PTF functions. See legend in each panel for explanation of lines in 474 
different color. 475 

Figure 9 and Figure 10 show the intercomparison of PDF distribution of soil texture data, 476 
soil thresholds and SM simulations between different cases. Compared to all other cases, the 477 
optimization case using the baseline soil data of GSDE and PTF function considering SOC effect 478 
(Opti_exp1) and the corresponding simulation case (exp2) shows the closest performance of soil 479 
thresholds and SM simulation compared to satellite observations respectively (Figure 9, c – e, solid 480 
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red lines). The optimization case using GSDE soil data but the PTF function without considering 481 
the SOC effect shows the second closest result to satellite observations in terms of SM simulation 482 
and soil thresholds (Figure 9, c – e, green solid lines). The comparison between the above two 483 
cases suggests that the choice of PTF is essential in the soil texture optimization procedure, and a 484 
PTF considering the SOC effect may help improve the soil texture optimization performance. 485 
Since there is no directly available satellite-observed soil texture data for comparison, the above 486 
analyses may also suggest the soil sand and clay distribution from the optimized soil texture using 487 
GSDE and SOC-based PTF – that is, unimodal distribution of both sand and clay but with sand 488 
content more frequently occurring between 30%-60% while clay content 8%-30% (Figure 9, a – 489 
b, solid violet lines) – should outperform other results and serve as a better reference for soil texture 490 
assessment studies. 491 

The optimization case uses the same non-PTF scheme as in Opti_exp2 but the HWSD soil 492 
data show the most inferior performance of soil thresholds estimation as well as SM simulation 493 
compared to satellite observations (Figure 9, c – e, orange solid lines; only among cases using 494 
optimized soil data). Comparison between cases using soil data without optimization, however, 495 
shows consistent results (Figure 9, c – e, dash lines). The comparison here reflects inconsistent 496 
behaviors (thus large uncertainties) of current soil texture datasets, and our results show that 497 
utilization of GSDE soil texture data could produce more realistic soil thresholds and SM 498 
simulation in LSM.   499 

 500 

Figure 10. Intercomparison of soil moisture simulations between different cases. Dash lines in 501 
color indicates results simulated with default soil maps and PTF functions; solid lines in color 502 
indicate results simulated with optimized soil maps and PTF functions. Panel (a) and (b) are the 503 
same except for the black solid line in (a) is soil moisture from NNsm while in (b) is from 504 
ITPLDAS. 505 

4 Discussions 506 

4.1 Limited ET Improvement in Noah-MP Optimized Experiment 507 

In addition to SM, ET serves as another hot but challenging topic in land surface modeling 508 
studies since one important role of LSMs is to provide boundary conditions (i.e., flux) to the upper 509 
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layer Atmospheric Circulation Models (ACMs) or the coupled Global Climate Models (GCMs). 510 
In theory, the incorporation of observation-constrained soil texture data in LSMs should lead to 511 
improved ET simulation results. Therefore, here we compare the simulated ET results with one 512 
observation-based ET product, i.e., Penman-Monteith-Leuning (PML) version 2 ET product 513 
(Zhang et al., 2019) in order to see how soil texture influences the ET results. In addition to the 514 
total ET results, different components of ET, i.e., bare soil evaporation (𝐸5) and plant transpiration 515 
(𝐸/) are also compared respectively, since in LSMs the plant transpiration processes are not solely 516 
determined by soil parameters (e.g., they are also controlled by vegetation parameters such as 517 
stomatal resistance, plant hydraulic parameters etc.). 518 

Results show that the total ET result is only minorly different between experiments with 519 
baseline and optimized soil texture data, and both of them compare underestimated to PMLv2 520 
(Figure 11). Focusing on ET only, the result indicates the incorporation of observation-constrained 521 
soil texture only has limited influence on the model’s total ET simulation. However, the 522 
comparison of 𝐸5 and 𝐸/ shows that 𝐸5 in experiment with optimized soil texture is substantially 523 
improved by ~40mm/yr (measured by medians) compared to PMLv2 bare soil product, whereas 524 
𝐸/ simulations are almost consistent in both experiments. This result suggests that the soil texture 525 
does indeed have an impact on the ET, but the impact is limited to the bare soil evaporation process 526 
only. Figure 11 also shows an overall underestimation of 𝐸//𝐸𝑇 ratio in all simulation cases. The 527 
results are consistent with several previous studies (Dong et al., 2022; Zhou et al., 2023), in which 528 
the 𝐸//𝐸𝑇 ratio biases are found to be dominated by the wrong SM-ET coupling relationship. As 529 
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such, to further improve the total ET simulation, the representation of the model’s vegetation 530 
parameters as well as the SM-ET coupling regime should be corrected. 531 

 532 

Figure 11. Comparison of annual accumulated total ET , bare soil evaporation, and plant 533 
transpiration with PMLv2 between different simulation cases over China. Panel (a) is  for 534 
simulations using GSDE baseline and optimized soil maps and SR06 PTF schemes; (b) is for 535 
simulations using GSDE baseline and optimized soil maps and CH78 PTF schemes; and (c) is for 536 
simulations using HWSD baseline soil maps and CH78 PTF schemes. 537 

4.2 Limitations of This Study 538 

While the method this study provides has many advantages and does indeed improve the 539 
land surface simulation results, several limitations of the method should be noted as precautions 540 
for further application. First, the two soil thresholds, 𝜃! and 𝜃", may contain high uncertainty over 541 
extremely humid and arid areas, respectively.  In humid regions, the soil could be persistently wet 542 
so that it may never dry down to its wilting point; similarly the soil in arid regions can be 543 
consistently dry so that it never rises up to reach 𝜃". Therefore over these areas the derived soil 544 
texture results may still be subject to large biases, although using long-term (i.e., 20-year) soil 545 
moisture products may help reduce such uncertainty.  546 

Second, to provide a strict constraint on the soil hydraulic parameters – soil texture 547 
relationship, more soil hydraulic parameters should be incorporated with the optimization 548 
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procedure, e.g., incorporating all the 7 parameters on the lefthand side of the PTF functions (Table 549 
S1). However, only two of them were applied here because of the non-availability of other 550 
parameters when this study was conducted. We did consider using the 20-year maximum satellite 551 
SM as the saturated point (𝜃6'/) for further analyses. The idea was finally abandoned since satellite 552 
sensors can hardly detect the moment when SM achieves its saturated point. Moreover, recently 553 
we also noticed that there are some studies providing large-scale datasets of saturated soil 554 
hydraulic conductivity (𝜅6'/, cited though still not published when this manuscript was drafted). 555 
While their quality may need to be validated, these parameters mentioned above can indeed 556 
provide insight for improvement on the soil texture calibration work in the future. 557 

Finally, we note that only two soil texture datasets and two PTF functions are tested within 558 
the optimization framework here. The inter-case comparison analyses already show the 559 
optimization results can be sensitive to the baseline soil texture products as well as the PTF 560 
functions. Therefore, additional optimization cases including more soil texture products and PTF 561 
functions are necessary for a comprehensive evaluation of the optimized soil texture results. 562 

4.3 Implications for Soil Texture Calibration Using Satellite Datasets 563 

As we noted in the introduction part, soil texture serves as the fundamental parameter in 564 
LSMs, while current soil texture datasets may be prone to large biases when applied to the large 565 
spatial extent since they are often extrapolated from point-scale in-situ measurements, and 566 
therefore need constraint by large-scale soil information. Satellite-observed soil moisture products 567 
indeed provide the large-scale observation-based constraint on soil texture, yet seldom has been 568 
done to bridge the missing link, likely because the issue of scale gaps has not gained sufficient 569 
attention within the land surface modeling community in the past. Nowadays as we are in the big 570 
data era where spatial heterogeneity of model outputs can be especially important for local 571 
environmental solutions, such scale gap problem has to be considered carefully in the model 572 
development. 573 

So far, the only study (to our best knowledge) on incorporating satellite soil moisture to 574 
soil texture calibration in LSMs is Zhao et al. 2021, in which the calibrated soil texture is derived 575 
by converting the best-screened soil type from the Noah-MP look-up table that can produce the 576 
closest soil moisture simulation to SMAP through FAO soil fraction triangle. Using GSDE soil 577 
texture as the reference dataset (“truth”), the calibrated soil texture outperforms its baseline soil 578 
texture dataset (i.e., GLDAS-Noah soil texture, on which the Noah-MP soil type look-up table is 579 
based). Our study resembles Zhao et al. 2021 in that we both apply an “effect-to-cause” procedure 580 
to derive soil texture, which can be seen as a backward process compared to the traditional “from 581 
soil texture to soil hydraulic parameters to soil moisture” approach. Such a backward approach 582 
should be valued in future large-scale soil texture calibration studies since the availability of the 583 
effect variables can be more easily accessed with the development of new land surface theories 584 
and data products. 585 

However, we should note that although Zhao et al. 2021 does serve as a pioneering study 586 
that motivates the conceptualization of our work, it does also contain several limitations, which 587 
may impede the applications of the derived soil texture dataset. The biggest disadvantage is that 588 
the result is very much limited by the soil type look-up table, where only 12 available soil types 589 
are presented for each model grid. That is to say the soil texture fraction at each grid can only be 590 
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selected from a fixed number of soil sand, clay and loam combinations. In the real world, it is 591 
certainly possible that there can be other soil fraction combinations beyond the 12 available 592 
choices. In comparison, the optimization procedure our study used here can have as many soil 593 
fraction combinations as possible (within the variation upper and lower bounds), therefore the 594 
derived results may be closer to the real soil conditions.  595 

5 Conclusions 596 

This study set out to improve soil moisture simulation in Noah-MP LSM by using soil 597 
texture datasets constrained by satellite-derived soil thresholds (i.e., 𝜃!  and 𝜃" ). Soil moisture 598 
thresholds are first estimated from satellite-identified soil drydown events. The SCE-UA algorithm 599 
and two PTF schemes are then chosen to conduct optimization procedure based on two baseline 600 
soil texture datasets, i.e., GSDE and HWSD. The baseline and optimized soil texture datasets are 601 
then incorporated with Noah-MP LSM to conduct SM simulations. The model simulation results 602 
show that using the optimized soil texture data can indeed improve SM simulations in Noah-MP, 603 
and utilization of GSDE soil data optimized with SOC-based PTF scheme can produce the most 604 
significant SM improvement.  605 

The inter-case comparison shows that there is large uncertainty in the current global soil 606 
texture database. Since soil texture often serves as the prescribed parameter in LSMs, such 607 
uncertainty will lead to systematical model biases, that is, even though all the other physical 608 
parameterizations or parameters were perfect, the model simulations could still be unrealistic due 609 
to the biased representation of soil texture. Our study, by using 20-yr NNSM SM data, shows that 610 
satellite soil moisture data has the potential to constrain such uncertainty. The improved soil 611 
texture in this study could therefore serve as a new database to be employed in LSMs for a more 612 
accurate land surface simulation. However, we recognize this study could only serve as a testbed. 613 
To build a more robust satellite-optimized soil texture database, further experiments using different 614 
satellite products (e.g., SMAP, SMOS, CCI etc.), global soil database (e.g., Data and Information 615 
System of International Geosphere-Biosphere Programme，IGBP-DIS), and PTF schemes are 616 
required and inter-case comparison analyses are highly expected. 617 

Our study also provides a method to improve land surface simulations from the perspective 618 
of land-atmosphere interactions. Previous LSM improvement studies prefer incorporating the 619 
“state” variable (e.g., land surface temperature, leaf area index, soil moisture etc.) to improve land 620 
surface simulations. However, such improvement may be limited (especially for improvement in 621 
flux simulations) since the state variables could only poorly capture the near-surface atmosphere’s 622 
impact on or response to the land surface. By comparison, soil moisture drydown used in this study 623 
directly reflects the coupling between SM and the key flux variable ET, therefore it provides more 624 
“dynamic” information to be incorporated into LSM. Although only the bare soil evaporation is 625 
significantly improved in the results, this study does show that incorporating land-atmosphere 626 
coupling information should serve as an essential part in LSM improvement studies. Recent 627 
research also shows that the wrong representation of the SM-ET coupling regime is the dominant 628 
reason for land surface simulation biases (Dong et al. 2022; Zhou et al. 2023), which further 629 
confirms our conclusion here. Joint efforts considering both state variables and land-atmosphere 630 
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interactions could therefore complement each other and facilitate the better LSM simulations in 631 
future. 632 
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