Jason M H Beedle

and 4 more

The solar wind is a continuous outflow of charged particles from the Sun's atmosphere into the solar system. At Earth, the solar wind's outward pressure is balanced by the Earth's magnetic field in a boundary layer known as the magnetopause. Plasma density and temperature differences across the boundary layer generate the Chapman-Ferraro current which supports the magnetopause. Along the dayside magnetopause, magnetic reconnection can occur in electron diffusion regions (EDRs) embedded into the larger ion diffusion regions (IDRs). These diffusion regions form when opposing magnetic field lines in the solar wind and Earth’s magnetic field merge, releasing magnetic energy into the surrounding plasma. While previous studies have given us a general understanding of the structure of these diffusion regions, we still do not have a good grasp of how they are statistically differentiated from the non-diffusion region magnetopause. By investigating 251 magnetopause crossings from NASA’s Magnetospheric Multiscale (MMS) Mission, we demonstrate that EDR magnetopause crossings show current densities an order of magnitude higher than non-EDR magnetopause crossings - crossings that either passed through the reconnection exhausts or through the non-reconnecting magnetopause. Significant current signatures parallel to the local magnetic field in EDR crossings are also identified, which is in contrast to the dominantly perpendicular current found in the non-EDR magnetopause. Additionally, we show that the ion velocity along the magnetopause is highly correlated with a crossing's location, indicating the presence of magnetosheath flows inside the magnetopause current sheet.

Souhail Dahani

and 11 more

Fundamental processes in plasmas act to convert energies into different forms, e.g., electromagnetic, kinetic and thermal. Direct derivation from the Valsov-Maxwell equation yields sets of equations that describe the temporal evolution of the magnetic, kinetic and internal energies in either the monofluid or multifluid frameworks. In this work we focus on the main terms that affect the changes in the kinetic energy. These are pressure gradient-related terms and electromagnetic terms. The former account for plasma acceleration or deceleration from a pressure gradient, while the latter from an electric field. The overall balance between these terms is fundamental to ensure the conservation of energy and momentum. We use in-situ observations from the Magnetospheric MultiScale (MMS) mission to study the relationship between these terms. We perform a statistical analysis of those parameters in the context of magnetic reconnection by focusing on small-scale Electron Diffusion Regions and large-scale Flux Transfer Events. The analysis reveals a correlation between the two terms in the monofluid force balance, and in the ion force and energy balance. However, the expected relationship cannot be verified from electron measurements. Generally, the pressure gradient related terms are smaller than their electromagnetic counterparts. We perform an error analysis to quantify the expected underestimation of gradient values as a function of the spacecraft separation compared to the gradient scale. Our findings highlight that MMS is capable of capturing energy and force balance for the ion fluid, but that care should be taken for energy conversion terms based on electron pressure gradients.

Corentin Kenelm Louis

and 15 more

Hiroshi Hasegawa

and 10 more

The Kelvin-Helmholtz instability (KHI) at Earth’s magnetopause and associated turbulence are suggested to play a role in the transport of mass and momentum from the solar wind into Earth’s magnetosphere. We investigate electromagnetic turbulence observed in KH vortices encountered at the dusk flank magnetopause by the Magnetospheric Multiscale (MMS) spacecraft under northward interplanetary magnetic field (IMF) conditions in order to reveal its generation process, mode properties, and role. A comparison with another MMS event at the dayside magnetopause with reconnection but no KHI signatures under a similar IMF condition indicates that while high-latitude magnetopause reconnection excites a modest level of turbulence in the dayside low-latitude boundary layer, the KHI further amplifies the turbulence, leading to magnetic energy spectra with a power-law index –5/3 at magnetohydrodynamic scales even in its early nonlinear phase. The mode of the electromagnetic turbulence is analyzed with a single-spacecraft method based on Ampère’s law, developed by Bellan (2016), for estimating wave vectors as a function of spacecraft-frame frequency. The results suggest that the turbulence does not consist of propagating normal-mode waves, but is due to interlaced magnetic flux tubes advected by plasma flows in the vortices. The turbulence at sub-ion scales in the early nonlinear phase of the KHI may not be the cause of the plasma transport across the magnetopause, but rather a consequence of three-dimensional vortex induced reconnection, the process that can cause an efficient transport by producing tangled reconnected field lines.

Masaki N Nishino

and 9 more

The near-Earth plasma sheet becomes cold and dense under northward interplanetary magnetic field (IMF) condition, which suggests efficient solar wind plasma entry into the magnetosphere across the magnetopause for northward IMF and a possible contribution of ionospheric oxygen ion outflow. The cold and dense characteristics of the plasma sheet are more evident in the magnetotail flank regions that are the interface between cold solar wind plasma and hot magnetospheric plasma. Several physical mechanisms have been proposed to explain the solar wind plasma entry across the magnetopause and resultant formation of the cold-dense plasma sheet (CDPS) in the tail flank regions. However, the transport path of the cold-dense plasma inside the magnetotail has not been understood yet. Here we present a case study of the CDPS in the dusk magnetotail by Magnetospheric Multiscale (MMS) spacecraft under strongly northward IMF and high-density solar wind conditions. The ion distribution function consists of high- and low-energy components, and the low-energy one intermittently shows energy dispersion in the directions parallel and anti-parallel to the local magnetic field. The time-of-flight analysis of the energy-dispersed low-energy ions suggests that these ions originate in the region farther down the tail, move along the magnetic field toward the ionosphere and then come back to the magnetotail by the mirror reflection. The pitch-angle dispersion analysis gives consistent results on the traveling time and path length of the energy-dispersed ions. Based on these observations, we discuss possible generation mechanisms of the energy-dispersed structure of the low-energy ions during the northward IMF.

Steven J. Schwartz

and 10 more

Shock waves are common in the heliosphere and beyond. The collisionless nature of most astrophysical plasmas allows for the energy processed by shocks to be partitioned amongst particle sub-populations and electromagnetic fields via physical mechanisms that are not well understood. The electrostatic potential across such shocks is frame dependent. In a frame where the incident bulk velocity is parallel to the magnetic field, the deHoffmann-Teller frame, the potential is linked directly to the ambipolar electric field established by the electron pressure gradient. Thus measuring and understanding this potential solves the electron partition problem, and gives insight into other competing shock processes. Integrating measured electric fields is space is problematic since the measurements can have offsets that change with plasma conditions. The offsets, once integrated, can be as large or larger than the shock potential. Here we exploit the high-quality field and plasma measurements from NASA's Magnetospheric Multiscale mission to attempt this calculation. We investigate recent adaptations of the deHoffmann-Teller frame transformation to include time variability, and conclude that in practise these face difficulties inherent in the 3D time-dependent nature of real shocks by comparison to 1D simulations. Potential estimates based on electron fluid and kinetic analyses provide the most robust measures of the deHoffmann-Teller potential, but with some care direct integration of the electric fields can be made to agree. These results suggest that it will be difficult to independently assess the role of other processes, such as scattering by shock turbulence, in accounting for the electron heating.

Kamolporn Haewsantati

and 18 more