References
Allen, D. J., Pickering, K. E., Lamsal, L., Mach, D. M., Quick, M. G., Lapierre, J., et al. (2021). Observations of lightning NOx production from GOES-R post launch test field campaign flights. Journal of Geophysical Research: Atmospheres, 126, e2020JD033769. https://doi.org/10.1029/2020JD033769
AOS, cited 2022. Atmosphere Observing System. [Available online at https://aos.gsfc.nasa.gov/.]
Avery, M., Winker, D., Heymsfield, A., Vaughan, M., Young, S., Hu, Y., and Trepte, C. (2012), Cloud ice water content retrieved from the CALIOP space-based lidar, Geophys. Res. Lett., 39, L05808, doi:10.1029/2011GL050545.
Blakeslee, R.J., Lang, T.J., Koshak, W.J., Buechler, D., Gatlin, P., Mach, D.M., Stano, G.T., Virts, K.S., Walker, T.D., Cecil, D.J., Ellett, W., Goodman, S.J., Harrison, S., Hawkins, D.L., Heumesser, M., Lin, H., Maskey, M., Schultz, C.J., Stewart, M., Bateman, M., Chanrion, O. and Christian, H. (2020), Three Years of the Lightning Imaging Sensor Onboard the International Space Station: Expanded Global Coverage and Enhanced Applications. J. Geophys. Res. Atmos., 125: e2020JD032918. https://doi.org/10.1029/2020JD032918
Blakeslee, Richard J. (2020a). Quality Controlled Lightning Imaging Sensor (LIS) on International Space Station (ISS) Science Data. Dataset available online from the NASA Global Hydrometeorology Resource Center DAAC, Huntsville, Alabama, U.S.A. DOI: http://dx.doi.org/10.5067/LIS/ISSLIS/DATA108
Blakeslee, Richard J. (2020b). Quality Controlled Lightning Imaging Sensor (LIS) on International Space Station (ISS) Backgrounds. Dataset available online from the NASA Global Hydrometeorology Resource Center DAAC, Huntsville, Alabama, U.S.A. DOI: http://dx.doi.org/10.5067/LIS/ISSLIS/DATA208
Campbell, J. R., Sassen, K., McGill, M. J., & Hart, W. D. (2005, January). Lidar depolarization ratios from CRYSTAL-FACE thunderstorm anvils. In Preprints of 2nd Symp. Lidar Atmospheric Monitoring, P (Vol. 1).
Carey, L.D.; Schultz, E.V.; Schultz, C.J.; Deierling, W.; Petersen, W.A.; Bain, A.L.; Pickering, K.E. An Evaluation of Relationships between Radar-Inferred Kinematic and Microphysical Parameters and Lightning Flash Rates in Alabama Storms. Atmosphere 2019, 10, 796. https://doi.org/10.3390/atmos10120796
Ceolato, R., & Berg, M. J. (2021). Aerosol light extinction and backscattering: A review with a lidar perspective. Journal of Quantitative Spectroscopy and Radiative Transfer, 262, 107492.
Cui, Z., Pu, Z., Emmitt, G. D., & Greco, S. (2020). The Impact of Airborne Doppler Aerosol Wind (DAWN) Lidar Wind Profiles on Numerical Simulations of Tropical Convective Systems during the NASA Convective Processes Experiment (CPEX), Journal of Atmospheric and Oceanic Technology, 37(4), 705-722. https://doi.org/10.1175/JTECH-D-19-0123.1
Delanoë, J., and Hogan, R. J. (2010), Combined CloudSat-CALIPSO-MODIS retrievals of the properties of ice clouds, J. Geophys. Res., 115, D00H29, doi:10.1029/2009JD012346.
Ester, M., H. P. Kriegel, J. Sander, and X. Xu, “A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise”. In: Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining, Portland, OR, AAAI Press, pp. 226-231. 1996
Hagihara, Y., Okamoto, H., and Luo, Z. J. (2014), Joint analysis of cloud top heights from CloudSat and CALIPSO: New insights into cloud top microphysics, J. Geophys. Res. Atmos., 119, 4087– 4106, doi:10.1002/2013JD020919.
Heymsfield, G. M., & Fulton, R. (1988). Comparison of High-Altitude Remote Aircraft Measurements with the Radar Structure of an Oklahoma Thunderstorm: Implications for Precipitation Estimation from Space, Monthly Weather Review, 116(5), 1157-1174. https://doi.org/10.1175/1520-0493(1988)116<1157:COHARA>2.0.CO;2
Holmlund, K., Grandell, J., Schmetz, J., Stuhlmann, R., Bojkov, B., Munro, R., Lekouara, M., Coppens, D., Viticchie, B., August, T., Theodore, B., Watts, P., Dobber, M., Fowler, G., Bojinski, S., Schmid, A., Salonen, K., Tjemkes, S., Aminou, D., & Blythe, P. (2021). Meteosat Third Generation (MTG): Continuation and Innovation of Observations from Geostationary Orbit, Bulletin of the American Meteorological Society, 102(5), E990-E1015. https://doi.org/10.1175/BAMS-D-19-0304.1
Hou, A. Y., Kakar, R. K., Neeck, S., Azarbarzin, A. A., Kummerow, C. D., Kojima, M., Oki, R., Nakamura, K., & Iguchi, T. (2014). The Global Precipitation Measurement Mission, Bulletin of the American Meteorological Society, 95(5), 701-722.
Khain, A., Rosenfeld, D. and Pokrovsky, A. (2005), Aerosol impact on the dynamics and microphysics of deep convective clouds. Q.J.R. Meteorol. Soc., 131: 2639-2663. https://doi.org/10.1256/qj.04.62
Kumjian, M. R., & Ryzhkov, A. V. (2008). Polarimetric Signatures in Supercell Thunderstorms, Journal of Applied Meteorology and Climatology, 47(7), 1940-1961. https://doi.org/10.1175/2007JAMC1874.1
Kummerow, C., Barnes, W., Kozu, T., Shiue, J., & Simpson, J. (1998). The Tropical Rainfall Measuring Mission (TRMM) Sensor Package, Journal of Atmospheric and Oceanic Technology, 15(3), 809-817.
Lang, T. J. (2019). ISS Camera Geolocate Python module, doi: 10.5281/zenodo.2585824. [Available online at https://github.com/nasa/ISS_Camera_Geolocate]
Liu, C. (2020). GPM Precipitation Feature Database Description, Version 2.0. Texas A&M University at Corpus Christi, Corpus Christi, TX. http://atmos.tamucc.edu/trmm/
Liu, C., and Zipser, E. J. (2005), Global distribution of convection penetrating the tropical tropopause, J. Geophys. Res., 110, D23104, doi:10.1029/2005JD006063.
Liu, C., Zipser, E. J., Cecil, D. J., Nesbitt, S. W., & Sherwood, S. (2008). A Cloud and Precipitation Feature Database from Nine Years of TRMM Observations, Journal of Applied Meteorology and Climatology, 47(10), 2712-2728.
López, R. E., and Aubagnac, J.-P. (1997), The lightning activity of a hailstorm as a function of changes in its microphysical characteristics inferred from polarimetric radar observations, J. Geophys. Res., 102( D14), 16799– 16813, doi:10.1029/97JD00645.
Mace, G. G., Zhang, Q., Vaughan, M., Marchand, R., Stephens, G., Trepte, C., and Winker, D. (2009), A description of hydrometeor layer occurrence statistics derived from the first year of merged Cloudsat and CALIPSO data, J. Geophys. Res., 114, D00A26, doi:10.1029/2007JD009755.
MacGorman, D. R., M. S. Elliott, and E. DiGangi (2017), Electrical discharges in the overshooting tops of thunderstorms, J. Geophys. Res. Atmos., 122, 2929–2957, doi:10.1002/ 2016JD025933.
Mach, D., & Virts, K. (2021). A Technique for Determining Three-Dimensional Storm Cloud-Top Locations Using Stereo Optical Lightning Pulses Observed from Orbit, Journal of Atmospheric and Oceanic Technology, 38(11), 1993-2001. https://doi.org/10.1175/JTECH-D-21-0078.1
Matthew McGill, Dennis Hlavka, William Hart, V. Stanley Scott, James Spinhirne, and Beat Schmid, ”Cloud Physics Lidar: instrument description and initial measurement results,” Appl. Opt. 41, 3725-3734 (2002)
McGill, M. J., Li, L., Hart, W. D., Heymsfield, G. M., Hlavka, D. L., Racette, P. E., Tian, L., Vaughan, M. A., and Winker, D. M. (2004), Combined lidar-radar remote sensing: Initial results from CRYSTAL-FACE, J. Geophys. Res., 109, D07203, doi:10.1029/2003JD004030.
McGill, M. J., Vaughan, M. A., Trepte, C. R., Hart, W. D., Hlavka, D. L., Winker, D. M., and Kuehn, R. (2007), Airborne validation of spatial properties measured by the CALIPSO lidar, J. Geophys. Res., 112, D20201, doi:10.1029/2007JD008768.
Omar, A. H., Winker, D. M., Vaughan, M. A., Hu, Y., Trepte, C. R., Ferrare, R. A., Lee, K., Hostetler, C. A., Kittaka, C., Rogers, R. R., Kuehn, R. E., & Liu, Z. (2009). The CALIPSO Automated Aerosol Classification and Lidar Ratio Selection Algorithm, Journal of Atmospheric and Oceanic Technology, 26(10), 1994-2014. https://doi.org/10.1175/2009JTECHA1231.1
Price, C., and Rind, D. (1992), A simple lightning parameterization for calculating global lightning distributions, J. Geophys. Res., 97( D9), 9919– 9933, doi:10.1029/92JD00719.
Quick, M. G., Christian, H. J., Virts, K. S., & Blakeslee, R. J. (2020). Airborne radiometric validation of the geostationary lightning mapper using the Fly’s Eye GLM Simulator. Journal of Applied Remote Sensing, 14(4), 044518.
Rudlosky, S. D., Goodman, S. J., Virts, K. S., & Bruning, E. C. (2019). Initial geostationary lightning mapper observations. Geophysical Research Letters, 46, 1097– 1104. https://doi.org/10.1029/2018GL081052
Rust, W., Doviak, R. Radar research on thunderstorms and lightning. Nature 297, 461–468 (1982). https://doi.org/10.1038/297461a0
Rutledge, S. A., Hilburn, K. A., Clayton, A., Fuchs, B., & Miller, S. D. (2020). Evaluating Geostationary Lightning Mapper flash rates within intense convective storms. Journal of Geophysical Research: Atmospheres, 125, e2020JD032827. https://doi.org/10.1029/2020JD032827
Ryzhkov, A. V., Schuur, T. J., Burgess, D. W., Heinselman, P. L., Giangrande, S. E., & Zrnic, D. S. (2005). The Joint Polarization Experiment: Polarimetric Rainfall Measurements and Hydrometeor Classification, Bulletin of the American Meteorological Society, 86(6), 809-824. https://doi.org/10.1175/BAMS-86-6-809
Santer, B. D., et al., Behavior of tropopause height and atmospheric temperature in models, reanalyses, and observations: Decadal changes, J. Geophys. Res., 108( D1), 4002, doi:10.1029/2002JD002258, 2003.
Sassen, K. (1977). Lidar Observations of High Plains Thunderstorm Precipitation, Journal of Atmospheric Sciences, 34(9), 1444-1457. https://doi.org/10.1175/1520-0469(1977)034<1444:LOOHPT>2.0.CO;2
Sassen, K., Benson, R. P., & Spinhirne, J. D. (2000). Tropical cirrus cloud properties derived from TOGA/COARE airborne polarization lidar. Geophysical Research Letters, 27(5), 673-676. https://doi.org/10.1029/1999GL010946
Schultz, C. J., Lang, T. J., Leake, S., Runco, M., & Stefanov, W. (2021). A technique for automated detection of lightning in images and video from the International Space Station for scientific understanding and validation. Earth and Space Science, 8, e2020EA001085. https://doi.org/10.1029/2020EA001085
Sherwood, S. C., Chae, J.-H., Minnis, P., and McGill, M. (2004), Underestimation of deep convective cloud tops by thermal imagery, Geophys. Res. Lett., 31, L11102, doi:10.1029/2004GL019699.
Tatsuo Shiina, Toshio Honda, and Tetsuo Fukuchi ”Examination of lidar lightning measurement”, Proc. SPIE 6409, Lidar Remote Sensing for Environmental Monitoring VII, 64090Y (12 December 2006); https://doi.org/10.1117/12.693735
van Diedenhoven, B., A. M. Fridlind, B. Cairns, A. S. Ackerman, and
J. E. Yorks (2016), Vertical variation of ice particle size in convective cloud tops, Geophys. Res. Lett., 43, 4586–4593, doi:10.1002/2016GL068548.
Virts, K. S., Wallace, J. M., Hutchins, M. L., & Holzworth, R. H. (2013). Highlights of a New Ground-Based, Hourly Global Lightning Climatology, Bulletin of the American Meteorological Society, 94(9), 1381-1391.
Wang, L., Follette-Cook, M. B., Newchurch, M. J., Pickering, K. E., Pour-Biazar, A., Kuang, S., … & Peterson, H. (2015). Evaluation of lightning-induced tropospheric ozone enhancements observed by ozone lidar and simulated by WRF/Chem. Atmospheric Environment, 115, 185-191.
Wiens, K. C., Rutledge, S. A., & Tessendorf, S. A. (2005). The 29 June 2000 Supercell Observed during STEPS. Part II: Lightning and Charge Structure, Journal of the Atmospheric Sciences, 62(12), 4151-4177. https://doi.org/10.1175/JAS3615.1
Winker, D. M. (2022). The CALIPSO Lidar: Aerosol Observations for Air Quality and Climate. In Handbook of Air Quality and Climate Change (pp. 1-13). Singapore: Springer Singapore.
Dave Winker, Mark Vaughan, Bill Hunt, ”The CALIPSO mission and initial results from CALIOP,” Proc. SPIE 6409, Lidar Remote Sensing for Environmental Monitoring VII, 640902 (12 December 2006); https://doi.org/10.1117/12.698003
Yorks, J. E., M. J. McGill, S. P. Palm, D. L. Hlavka, P. A. Selmer, E. P. Nowottnick, M. A. Vaughan, S. D. Rodier, and W. D. Hart (2016), An overview of the CATS level 1 processing algorithms and data products, Geophys. Res. Lett., 43, 4632–4639, doi:10.1002/2016GL068006.
Yoshida, R., Okamoto, H., Hagihara, Y., and Ishimoto, H. (2010), Global analysis of cloud phase and ice crystal orientation from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) data using attenuated backscattering and depolarization ratio, J. Geophys. Res., 115, D00H32, doi:10.1029/2009JD012334.