Savas Ceylan

and 8 more

InSight’s seismometers recorded more than 1300 events. Ninety-eight of these, named the low-frequency family, show energy predominantly below 1 Hz down to ∼0.125 Hz. The Marsquake Service identified seismic phases and computed distances for 42 of these marsquakes, 26 of which have backazimuths. Hence, the locations of the majority of low-frequency family events remain undetermined. Here, we use an envelope shape similarity approach to determine event classes and distances, and introduce an alternative method to estimate the backazimuth. In our similarity approach, we use the highest quality marsquakes with well-constrained distance estimates as templates, including the largest event S1222a, and assign distances to marsquakes with relatively high signal-to-noise ratio based on their similarities to the template events. The resulting enhanced catalog allows us to re-evaluate the seismicity of Mars. We find the Valles Marineris region to be more active than initially perceived, where only a single marsquake (S0976a) had previously been located. We relocated two marsquakes using new backazimuth estimates, which had reported distances of ∼90o, in the SW of the Tharsis region, possibly at Olympus Mons. In addition, two marsquakes with little or no S-wave energy have been located in the NE of the Elysium Bulge. Event epicenters in Cerberus Fossae follow a North-South trend due to uncertainties in location, while the fault system is in the NW-SE direction; therefore, these events are re-projected along the observed fault system.

Raphael F. Garcia

and 17 more

The relatively unconstrained internal structure of Venus is a missing piece in our understanding of the Solar System formation and evolution. To determine the seismic structure of Venus’ interior, the detection of seismic waves generated by venusquakes is crucial, as recently shown by the new seismic and geodetic constraints on Mars’ interior obtained by the InSight mission. In the next decades multiple missions will fly to Venus to explore its tectonic and volcanic activity, but they will not be able to conclusively report on seismicity or detect actual seismic waves. Looking towards the next fleet of Venus missions in the future, various concepts to measure seismic waves have already been explored in the past decades. These detection methods include typical geophysical ground sensors already deployed on Earth, the Moon, and Mars; pressure sensors on balloons; and airglow imagers on orbiters to detect ground motion, the infrasound signals generated by seismic waves, and the corresponding airglow variations in the upper atmosphere. Here, we provide a first comparison between the detection capabilities of these different measurement techniques and recent estimates of Venus’ seismic activity. In addition, we discuss the performance requirements and measurement durations required to detect seismic waves with the various detection methods. As such, our study clearly presents the advantages and limitations of the different seismic wave detection techniques and can be used to drive the design of future mission concepts aiming to study the seismicity of Venus.

Ross Maguire

and 11 more

On May 4th, 2022 the InSight seismometer SEIS recorded the largest marsquake ever observed, S1222a, with an initial magnitude estimate of Mw 4.7. Understanding the depth and source properties of this event has important implications for the nature of tectonic activity on Mars. Located ~37 degrees to the southeast of InSight, S1222a is one of the few non-impact marsquakes that exhibits prominent ratio surface waves. We use waveform modeling of body waves (P and S) and surface waves (Rayleigh and Love) to constrain the moment tensor and quantify the associated uncertainty. We find that S1222a likely resulted from dip-slip faulting in the mid-crust (source depth ~18 – 28 km) and estimate a scalar moment of 3.51015 – 5.01015 Nm (magnitude Mw 4.3 – 4.4). The best-fitting focal mechanism is sensitive to the choice of phase windows and misfit weights, as well as the structural model of Mars used to calculate Green’s functions. We find that an E-W to SE-NW striking thrust fault can explain the data well, although depending on the choice of misfit weighting, a normal fault solution is also permissible. The orientation of the best-fitting fault plane solutions suggests that S1222a takes place on a fault system near the martian crustal dichotomy accommodating relative motion between the northern lowlands and southern highlands. Independent constraints on the event depth and improved models of the (an)isotropic velocity structure of the martian crust and mantle could help resolve the ambiguity inherent to single-station moment tensor inversions of S1222a and other marsquakes.

John-Robert Scholz

and 35 more

The instrument package SEIS (Seismic Experiment for Internal Structure) with the three very broadband and three short-period seismic sensors is installed on the surface on Mars as part of NASA’s InSight Discovery mission. When compared to terrestrial installations, SEIS is deployed in a very harsh wind and temperature environment that leads to inevitable degradation of the quality of the recorded data. One ubiquitous artifact in the raw data is an abundance of transient one-sided pulses often accompanied by high-frequency spikes. These pulses, which we term “glitches”, can be modeled as the response of the instrument to a step in acceleration, while the spikes can be modeled as the response to a simultaneous step in displacement. We attribute the glitches primarily to SEIS-internal stress relaxations caused by the large temperature variations to which the instrument is exposed during a Martian day. Only a small fraction of glitches correspond to a motion of the SEIS package as a whole caused by minuscule tilts of either the instrument or the ground. In this study, we focus on the analysis of the glitch+spike phenomenon and present how these signals can be automatically detected and removed from SEIS’ raw data. As glitches affect many standard seismological analysis methods such as receiver functions, spectral decomposition and source inversions, we anticipate that studies of the Martian seismicity as well as studies of Mars’ internal structure should benefit from deglitched seismic data.

Savas Ceylan

and 26 more

The InSight mission (Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) has been collecting high-quality seismic data from Mars since February 2019, shortly after its landing. The Marsquake Service (MQS) is the team responsible for the prompt review of all seismic data recorded by the InSight’s seismometer (SEIS), marsquake event detection, and curating seismicity catalogues. Until sol 1011 (end of September 2021), MQS have identified 951 marsquakes that we interpret to occur at regional and teleseismic distances, and 1062 very short duration events that are most likely generated by local thermal stresses nearby the SEIS package. Here, we summarize the seismic data collected until sol 1011, version 9 of the InSight seismicity catalogue. We focus on the significant seismicity that occurred after sol 478, the end date of version 3, the last catalogue described in a dedicated paper. In this new period, almost a full Martian year of new data has been collected, allowing us to observe seasonal variations in seismicity that are largely driven by strong changes in atmospheric noise that couples into the seismic signal. Further, the largest, closest and most distant events have been identified, and the number of fully located events has increased from 3 to 7. In addition to the new seismicity, we document improvements in the catalogue that include the adoption of InSight-calibrated Martian models and magnitude scales, the inclusion of additional seismic body-wave phases, and first focal mechanism solutions for three of the regional marsquakes at distances ~30 degrees.

Haotian Xu

and 16 more

Eleonore Stutzmann

and 24 more

Seismic noise recorded at the surface of Mars has been monitored since February 2019, using the seismometers of the InSight lander. The noise on Mars is 500 times lower than on Earth at night and it increases during the day. We analyze its polarization as a function of time and frequency in the band 0.03-1Hz. We use the degree of polarization to extract signals with stable polarization whatever their amplitude. We detect polarized signals at all frequencies and all times. Glitches correspond to linear polarized signals which are more abundant during the night. For signals with elliptical polarization, the ellipse is in the horizontal plane with clockwise and anti-clockwise motion at low frequency (LF). At high frequency (HF), the ellipse is in the vertical plane and the major axis is tilted with respect to the vertical. Whereas polarization azimuths are different in the two frequency bands, they are both varying as a function of local time and season. They are also correlated with wind direction, particularly during the day. We investigate possible aseismic and seismic origin of the polarized signals. Lander or tether noise are discarded. Pressure fluctuation transported by environmmental wind may explain part of the HF polarization but not the tilt of the ellipse. This tilt can be obtained if the source is an acoustic emission in some particular case. Finally, in the evening when the wind is low, the measured polarized signals seems to correspond to a diffuse seismic wavefield that would be the Mars microseismic noise.

Nikolaj L. Dahmen

and 7 more

NASA’s InSight seismometer has been recording Martian seismicity since early 2019, and to date, over 1300 marsquakes have been catalogued by the Marsquake Service (MQS). Due to typically low signal-to-noise ratios (SNR) of marsquakes, their detection and analysis remain challenging: while event amplitudes are relatively low, the background noise has large diurnal and seasonal variations and contains various signals originating from the interactions of the local atmosphere with the lander and seismometer system. Since noise can resemble marsquakes in a number of ways, the use of conventional detection methods for catalogue curation is limited. Instead, MQS finds events through manual data inspection. Here, we present MarsQuakeNet (MQNet), a deep convolutional neural network for the detection of marsquakes and the removal of noise contamination. Based on three-component seismic data, MQNet predicts segmentation masks that identify and separate event and noise energy in time-frequency domain. As the number of catalogued MQS events is small, we combine synthetic event waveforms with recorded noise to generate a training data set. We apply MQNet to the entire continuous 20 samples-per-second waveform data set available to date, for automatic event detection and for retrieving denoised amplitudes. The algorithm reproduces all high quality-, as well as majority of low quality events in the manual, carefully curated MQS catalogue. Furthermore, MQNet detects 60% additional events that were previously unknown with mostly low SNR, that are verified in manual review. Our analysis on the event rate confirms seasonal trends and shows a substantial increase in the second Martian year.