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Abstract14

Convection parameterizations such as eddy-diffusivity mass-flux (EDMF) schemes re-15

quire a consistent closure formulation for the perturbation pressure, which arises in the16

equations for vertical momentum and turbulence kinetic energy (TKE). Here we derive17

an expression for the perturbation pressure from approximate analytical solutions for 2D18

and 3D rising thermal bubbles. The new closure combines a modified pressure drag and19

virtual mass effects with a new momentum advection term. This momentum advection20

is an important source in the lower half of the thermal bubble and at cloud base levels21

in convective systems. It represents the essential physics of the perturbation pressure,22

that is, to ensure the 3D non-divergent properties of the flow. Moreover, the new for-23

mulation modifies the pressure drag to be inversely proportional to updraft depth. This24

is found to significantly improve simulations of the diurnal cycle of deep convection, with-25

out compromising simulations of shallow convection. It is thus a key step toward a uni-26

fied scheme for a range of convective motions. By assuming that the pressure only re-27

distributes TKE between plumes and the environment, rather than vertically, a closure28

for the velocity pressure-gradient correlation is obtained from the perturbation pressure29

closure. This novel pressure closure is implemented in an extended EDMF scheme and30

is shown to successfully simulate a rising bubble test case as well as shallow and deep31

convection cases in a single column model.32

Plain Language Summary33

Global climate models rely on subgrid-scale (SGS) parameterizations to represent34

heat and moisture transport by unresolved turbulent and convective motions. In this and35

two companion papers, the extended eddy-diffusivity mass-flux (EDMF) scheme is de-36

veloped as a single unified scheme that represents all SGS turbulent and convective pro-37

cesses. This paper focuses on the closure for the perturbation pressure that ensures the38

non-divergence of the 3D mass flux. An analytical formulation for the pressure closure39

is derived by considering the dynamics of a buoyant bubble. The closure differs from com-40

monly used formulations in two respects. First, it introduces an additional momentum41

advection term that contributes a momentum source at the bubble bottom and cloud42

base. Second, it improves the drag term and enables the EDMF to correctly reproduce43

the diurnal cycle of deep convection. Comparison with large-eddy simulations of moist44

convection and rising bubbles demonstrates the adequacy of the closure.45

1 Introduction46

Turbulent and convective motions play essential roles in the transport of energy47

and moisture in the climate system. Due to computational constraints, climate models48

use resolutions that are too coarse to resolve these motions and rely heavily on various49

parameterizations to represent their subgrid-scale (SGS) contribution to the resolved flow.50

Such parameterizations are one of the primary sources of model uncertainty in long term51

climate projections (Bony & Dufresne, 2005; Bony et al., 2015; Brient & Schneider, 2016;52

Caldwell et al., 2018; Ceppi et al., 2017; Murphy et al., 2004; Teixeira et al., 2011; Webb53

et al., 2013). Since advances in computational resources will not suffice to fully resolve54

turbulent and convective motions in the foreseeable future (Schneider et al., 2017), con-55

tinuous efforts to reduce the biases and uncertainties from SGS parameterizations in cli-56

mate models are required.57

Conventionally, SGS processes such as boundary layer turbulence, shallow convec-58

tion, and deep convection have been represented by separate parameterization schemes.59

This leads to a discontinuous representation of processes that lie on a physical contin-60

uum. It also results in a proliferation of correlated parameters (e.g., separate entrain-61

ment rates for shallow and deep convection), which complicates the calibration of cli-62

mate models. Considerable efforts have been made to develop a unified parameteriza-63
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tion that synthesizes the SGS turbulence and convection processes into one single scheme64

without artificial switches between different regimes (Lappen & Randall, 2001a, 2001c,65

2001b; Larson & Golaz, 2005; Golaz et al., 2002b, 2002a; Soares et al., 2004; Siebesma66

et al., 2007; Park, 2014a, 2014b; Tan et al., 2018; Thuburn et al., 2018, 2019; Weller &67

McIntyre, 2019; Cohen et al., 2020; Lopez-Gomez et al., 2020). A challenge in the de-68

velopment of such a unified scheme is closing the representation of various physical pro-69

cesses that emerge in the development of the scheme. In the case of mass-flux param-70

eterizations, one of the key terms requiring closure is the perturbation pressure gradi-71

ent, which is the focus of this work.72

Perturbation pressure, defined as the departure of pressure from a reference pro-73

file in hydrostatic balance with a reference density, plays an important role in the de-74

velopment of convective systems (Holton, 1973; Schumann & Moeng, 1991; Jeevanjee &75

Romps, 2015, 2016; Morrison, 2016). It is an essential source/sink term for vertical mo-76

mentum (Holton, 1973) and contributes to the redistribution of turbulence kinetic en-77

ergy (TKE) (Heinze et al., 2015). It is typically diagnosed from a 3D Poisson equation78

in large-eddy simulations (LES), and its closure remains challenging for parameteriza-79

tion schemes (Holland & Rasmusson, 1973; Morrison, 2016; Peters, 2016; Tarshish et al.,80

2018).81

Some studies explicitly account for the perturbation pressure in modelling convec-82

tive system, which usually requires a full set of equations that solves both vertical and83

horizontal motions (Holton, 1973; Lappen & Randall, 2006; Morrison, 2016; Leger et al.,84

2019). Most parameterization schemes, however, do not explicitly solve for the pressure85

gradient term in their equation sets. Instead, the perturbation pressure gradient is for-86

mulated semi-empirically as a combination of various physical processes: a virtual mass87

effect that effectively reduces buoyancy, a momentum sink proportional to entrainment,88

and a drag term inversely proportional to the horizontal scale of the updraft (Simpson89

& Wiggert, 1969; Siebesma et al., 2007; de Roode et al., 2012; Tan et al., 2018; Han &90

Bretherton, 2019; Suselj et al., 2019).91

The formulation as summarized in de Roode et al. (2012) represents a pure sink92

for the vertical momentum of convective systems. However, in an LES study, Jeevanjee93

and Romps (2015) decomposed the perturbation pressure into a buoyancy perturbation94

pressure and a dynamic perturbation pressure. They showed that the dynamic pressure95

is a significant momentum source at low levels of convective systems. Peters (2016) ob-96

served a similar positive momentum forcing from the dynamic perturbation pressure in97

a deep convective system. These results are in contradiction to the typical pressure clo-98

sures that serve merely as a momentum sink. In this paper, we demonstrate that a ver-99

tical momentum source owing to the perturbation pressure gradient is important for cap-100

turing the dynamics of an idealized rising dry bubble, and this translates to shallow and101

deep convective systems.102

We derive a novel closure for the perturbation pressure in the extended eddy-diffusivity103

mass-flux (EDMF) framework (Tan et al., 2018; Cohen et al., 2020). The closure explic-104

itly recognizes the roles of the perturbation pressure as a vertical momentum source and105

sink and in TKE redistribution. The extended EDMF framework and its entrainment106

and detrainment closures are presented in Cohen et al. (2020), and the eddy diffusivity107

and mixing length closures are discussed in Lopez-Gomez et al. (2020). Together with108

the perturbation pressure closure, these closures make the extended EDMF a unified frame-109

work that successfully simulates a wide range of turbulent and convective regimes, from110

stable boundary layers to deep convection, without altering any of the equation compo-111

nents nor parameter values. Moreover, we show here that the extended EDMF scheme112

is also able to simulate individual convective bubbles, albeit with changes in the param-113

eters and some additions to the formulation of the entrainment and detrainment closures.114

The need for these changes is discussed in the context of the general difference between115

convective updrafts and convective bubbles.116
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Section 2 lays out the analytical derivation for the perturbation pressure in a 2D117

rising bubble, with the 3D counterpart given in Appendix B. Section 3 briefly reviews118

the extended EDMF framework and implements the perturbation pressure closure in it.119

Section 4 describes the setups of a dry bubble experiment and moist convective test cases120

in LES and a single column model (SCM). Simulation results are discussed in Section121

5. Finally, Section 6 ends with the conclusions.122

2 Vertical Perturbation Pressure Gradient123

The momentum equation in the Boussinesq approximation is written as

∂v

∂t
+ v · ∇v = bk̂−∇

(
p†

ρh

)
+ Sv, (1)

where t is time, v = (u, v, w) is the 3D velocity vector, k̂ is the vertical unit vector, ρh
is a constant reference density, and Sv represents 3D momentum sources other than buoy-
ancy and the pressure gradient force. The buoyancy is defined as

b = −g ρ− ρh
ρ

,

where g is the gravitational acceleration. The perturbation pressure is defined as

p† = p− ph,

where ph(z) is the reference pressure profile in hydrostatic balance with the reference den-124

sity ρh, i.e., k̂ · ∇ph = −ρhg.125

2.1 Pressure Poisson Equation126

With the Boussinesq approximation, replacing the density by the time-independent
reference density in the continuity equation implies that the 3D velocity v is nondiver-
gent. Therefore, taking the divergence of the momentum equation (1) and ignoring the
source term Sv leads to a Poisson equation for the perturbation pressure

∇2

(
p†

ρh

)
=
∂b

∂z
−∇ · (v · ∇v) . (2)

To simplify notation, we define a pressure potential as

P =
p

ρh
. (3)

In the remainder of this paper, we use the pressure potential P , which we generally re-127

fer to as “pressure” as it plays a similar role in the vertical momentum equation. We de-128

rive a closure for the gradient of the perturbation pressure potential, ∇P †, with the dag-129

ger again denoting perturbations relative to the reference pressure potential.130

It is common to decompose the perturbation pressure into the buoyancy pertur-
bation pressure (Pb) and the dynamic perturbation pressure (Pd), associated with the
two terms on the right-hand side of (2),

∇2Pb =
∂b

∂z
,

∇2Pd =−∇ · (v · ∇v) .
(4)

In the derivations that follow, we consider for simplicity a 2D Cartesian geometry.
An analogous derivation for an axisymmetric thermal bubble in cylindrical coordinates
is given in Appendix B. In the 2D geometry, with v = (u,w) and ∇2

x,z = ∂2/∂x2 +
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∂2/∂z2 implemented and the continuity equation applied, the Poisson equations (4) be-
come

∇2
x,zPb =

∂b

∂z
, (5)

∇2
x,zPd = −2

[(
∂w

∂z

)2

+
∂u

∂z

∂w

∂x

]
. (6)

Considerable efforts have been made to understand the buoyancy perturbation pres-131

sure and its impact on the effective buoyancy (Jeevanjee & Romps, 2015; Peters, 2016;132

Tarshish et al., 2018). For example, Tarshish et al. (2018) draw similarities between the133

effective buoyancy and buoyancy perturbation pressure of the fluid and the magnetic charge134

and potential in magnetostatics. They obtain an analytical solution for the buoyancy135

perturbation pressure from a homogeneous thermal with added randomness. However,136

they do not account for the dynamic perturbation pressure induced by the velocity field.137

Here we solve the pressure Poisson equation accounting for both the buoyancy and138

the dynamic perturbation pressure. We consider a rising bubble and make a single nor-139

mal mode assumption. Although the single normal mode assumption is made for sim-140

plicity, it has proven to be successful in simulating convective systems. For example, Holton141

(1973) adopted the single normal mode for the horizontal direction when solving for the142

perturbation pressure from a diagnostic Poisson equation. Morrison (2016) derived a sin-143

gle normal mode solution for the buoyancy perturbation pressure, making the same as-144

sumption as in Tarshish et al. (2018) that the dynamic perturbation pressure is negli-145

gible. The derivation in Morrison (2016) shows a dependency of the pressure forcing term146

on the dimensionality of the convection: the pressure forcing is slightly stronger in a 2D147

Cartesian setup than that in the 3D axisymmetric setup.148

2.2 Single Normal Mode Solution149

In this subsection, we derive a single normal mode solution for both the buoyancy150

and dynamic perturbation pressure. The solution for a 2D thermal in Cartesian coor-151

dinates is laid out in this section; the derivation for a 3D axisymmetric thermal in cylin-152

drical coordinates is provided in Appendix B.153

Assuming a rising dry thermal with a compensating descending environment, the
buoyancy and velocities can be simply decomposed using a trigonometric basis, assum-
ing a single normal mode structure

u = uA sin (2mz) sin (kx),

w = wA sin (mz) cos (kx),

b = bA sin (mz) cos (kx).

(7)

Here, uA, wA, and bA are the wave amplitudes; m = π/H and k = π/(2R) are the
vertical and horizontal wavenumbers; and H and R are the vertical and horizontal ex-
tents of the bubble. From the continuity equation, uA and wA follow the relationship

2kuA sin(mz) = mwA.

2.2.1 Buoyancy Perturbation Pressure154

With the ansatz (7), the Pb Poisson equation (5) reduces to

∇2
x,zPb =

∂b

∂z
= mbA cos (mz) cos (kx). (8)

The buoyancy perturbation pressure Pb then needs to have the same trigonometric struc-
ture as the right-hand side of (8), i.e.,

Pb = P0bA cos (mz) cos (kx). (9)
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The coefficient P0 is obtained by substituting this form for Pb into (8), leading to

∇2
x,zPb = P0bA

[
−
(
m2 + k2

)
cos (mz) cos (kx)

]
= mbA cos (mz) cos (kx).

This gives

P0 = − m

m2 + k2
.

Therefore, the single normal mode solution for the buoyancy perturbation pressure
is

Pb = − m

m2 + k2
bA cos (mz) cos (kx), (10)

and the buoyancy perturbation pressure gradient needed in the vertical momentum equa-
tion is

∂Pb

∂z
=

m2

m2 + k2
bA sin (mz) cos (kx) =

m2

m2 + k2
b. (11)

2.2.2 Dynamic Perturbation Pressure155

Similarly, we make the trigonometric ansatz (7) for the solution of the Poisson equa-
tion (6) for the dynamic perturbation pressure, leading to

∇2
x,zPd = −2

[(
∂w

∂z

)2

+
∂u

∂z

∂w

∂x

]
=
m2

2
w2
A cos (2mz) cos (2kx)

− m2

2
w2
A cos (2kx)− 3m2

2
w2
A cos (2mz)− m2w2

A

2
. (12)

The first three terms on the right-hand side suggest a trigonometric structure for the dy-
namic perturbation pressure. The last term implies a drag-like quadratic term in the mo-
mentum equation (arising from a quadratic trigonometric identity). We write Pd in the
same trigonometric structure as the right-hand side of (12), i.e.,

Pd = P1w
2
A cos (2mz) cos (2kx) + P2w

2
A cos (2kx) + P3w

2
A cos (2mz) + F, (13)

where P1, P2, and P3 are dimensionless coefficients that depend on the horizontal and
vertical wavenumbers k and m. The function F satisfies ∇2

x,zF = −m2w2
A/2 and rep-

resents the drag effects. The coefficients P1, P2, and P3 are obtained by substituting this
form for Pd into (12), leading to

∇2
x,zPd = −4P1(m2 + k2)w2

A cos (2mz) cos (2kx)

− 4P2k
2w2

A cos (2kx)− 4P3m
2w2

A cos (2mz) +∇2
x,zF. (14)

This gives

P1 = − m2

8(m2 + k2)
,

P2 =
m2

8k2
,

P3 =
3

8
,

∇2
x,zF = −m

2w2
A

2
.

(15)

Therefore, the single normal mode solution for the dynamic perturbation pressure
is

Pd = − m2

8(m2 + k2)
w2
A cos (2mz) cos (2kx) +

m2

8k2
w2
A cos (2kx) +

3

8
w2
A cos (2mz) + F. (16)
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The vertical gradient of the dynamic perturbation pressure is

∂Pd

∂z
= −3m

4
w2
A sin (2mz) +

m3

4(m2 + k2)
w2
A sin (2mz) cos (2kx) +

∂F

∂z
, (17)

where F is the solution of ∇2
x,zF = −m2w2

A/2.156

This formulation of the perturbation pressure gradient was derived based on the157

normal-mode solution of an idealized thermal. In the following section, we briefly present158

the EDMF framework, which is based on conditional averages of the equations of mo-159

tion, and we discuss how the normal-mode solution can form the basis of a closure for160

the perturbation pressure in the EDMF scheme.161

3 Perturbation Pressure in the Extended EDMF162

In the EDMF framework, a GCM grid box is divided into subdomains that con-
sist of coherent updrafts/downdrafts and an isotropic environment. Following Cohen et
al. (2020), the conditional average of a property φ in the i-th subdomain is denoted by
φ̄i, with ai as the area fraction occupied by the subdomain. The fluctuation around the
subdomain average is denoted by φ′i = φ−φ̄i. We use i = 0 for the turbulent isotropic
environment and i ≥ 1 for coherent updrafts and downdrafts. Angle brackets 〈φ〉 de-
note the grid-mean average of φ, and φ∗ = φ−〈φ〉 denotes the fluctuation around the
grid mean. It is also convenient to define the difference between the subdomain average
and the grid box average as φ

∗
i = φ̄i − 〈φ〉. Finally, the grid box average is related to

the subdomain average by the area-weighted average over all subdomains:

〈φ〉 =
∑
i

aiφ̄i. (18)

Using Reynolds averaging rules and this subdomain decomposition, SGS vertical
fluxes are decomposed into the sum of subdomain-average components and components
owing to fluctuations within the subdomains:

〈w∗φ∗〉 =
∑
i

ai(w
∗
iφ
∗
i + w′iφ

′
i). (19)

The first term is represented by mass flux closures while the second term is taken to be163

nonzero only for the turbulent environment (i = 0) and is modeled as downgradient164

eddy diffusion, as in the name of the eddy-diffusivity mass-flux (EDMF) scheme. Ac-165

curate parameterization of this SGS vertical flux is the key goal of the EDMF scheme.166

The full set of equations solved by the extended EDMF scheme is discussed in Cohen167

et al. (2020). For the purpose of understanding the role of perturbation pressure, here168

we briefly lay out the vertical momentum equation for updrafts/downdrafts, and the TKE169

equation for the environment, in which the perturbation pressure arises.170
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3.1 Updraft Vertical Velocity and Environmental TKE in the Extended171

EDMF172

The vertical momentum equation for the i-th subdomain is

∂(ρaiw̄i)

∂t
+∇h · (ρai〈uh〉w̄i) +

∂(ρaiw̄iw̄i)

∂z
=

∂

∂z

(
ρaiKw,i

∂w̄i
∂z

)
︸ ︷︷ ︸

turbulent flux

+
∑
j 6=i

[(
Eij + Êij

)
w̄j −

(
∆ij + Êij

)
w̄i

]
︸ ︷︷ ︸

entrainment/detrainment

+ ρaib̄
∗
i + ρai〈b〉︸ ︷︷ ︸

buoyancy

−ρai
(
∂P †

∂z

)∗
i

− ρai
∂〈P †〉
∂z︸ ︷︷ ︸

perturbation pressure

,

(20)

where uh is the horizontal component of the velocity vector, whose subdomain value is173

taken to be equal to its grid-mean value. The exchange of mass is represented by dynam-174

ical entrainment, Eij , dynamical detrainment, ∆ij , and turbulent entrainment, Êij ; see175

Cohen et al. (2020) for details. Vertical turbulent fluxes are represented by the down-176

gradient eddy diffusivity Kw,i (Lopez-Gomez et al., 2020).177

The subdomain buoyancy is defined as

b̄i = −g ρ̄i − ρh
ρ

.

It is decomposed into a contribution from the grid-mean buoyancy

〈b〉 = −g ρ− ρh
ρ

,

and a departure from the grid mean

b̄∗i = −g ρ̄
∗
i − ρh
ρ

.

Similarly, the perturbation pressure gradient is decomposed into a grid-mean com-
ponent and a departure from the grid mean, i.e.,

−
(
∂P †

∂z

)
i

= −
∂
〈
P †
〉

∂z
−
(
∂P †

∂z

)∗
i

.

In the GCM setting, the grid-mean buoyancy 〈b〉 and perturbation pressure gra-178

dient −∂〈P †〉/∂z are provided by the dynamical core; in the SCM setting, they are bal-179

anced as in Eq. (47) in Cohen et al. (2020). The subdomain buoyancy relative to the grid180

mean, b
∗
i , is computed from the density using a nonlinear saturation adjustment; see the181

appendix in Pressel et al. (2015). Here we develop a closure scheme for the subdomain182

perturbation pressure, −(∂P †/∂z)
∗
i .183
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The subdomain TKE is defined as ēi = 0.5(u′2i +v′2i +w′2i ), and the environmen-
tal TKE equation is

∂(ρa0ē0)

∂t
+∇h · (ρa0〈uh〉ē0) +

∂(ρa0w0ē0)

∂z
=

∂

∂z

(
ρa0Km,0

∂ē0

∂z

)
︸ ︷︷ ︸

turbulent transport

+ ρa0Km,0

[(
∂〈u〉
∂z

)2

+

(
∂〈v〉
∂z

)2

+

(
∂w̄0

∂z

)2]
︸ ︷︷ ︸

shear production

+
∑
i>0

(
−Ê0iē0︸ ︷︷ ︸

turb. entrainment

+ w̄∗0Ê0i(w̄0 − w̄i)︸ ︷︷ ︸
turb. entrainment production

)
+
∑
i>0

(
−∆0iē0︸ ︷︷ ︸

dyn. detrainment

+
1

2
E0i(w̄0 − w̄i)(w̄0 − w̄i)︸ ︷︷ ︸
dyn. entrainment production

)

+ ρa0w′0b
′
0︸ ︷︷ ︸

buoyancy production

− ρa0

[
u′0

(
∂P †

∂x

)′
0

+ v′0

(
∂P †

∂y

)′
0

+ w′0

(
∂P †

∂z

)′
0

]
︸ ︷︷ ︸

pressure work

− ρa0D̄e,0︸ ︷︷ ︸
dissipation

, (21)

with TKE dissipation denoted by D̄e,0. Closure schemes for the shear production, en-184

trainment and detrainment, turbulent transport, buoyancy production, and dissipation185

are discussed in Cohen et al. (2020) and Lopez-Gomez et al. (2020).186

The pressure work in the environment can be computed using

−ρa0

[
w′0

(
∂P †

∂z

)′
0

+ u′0

(
∂P †

∂x

)′
0

+ v′0

(
∂P †

∂y

)′
0

]
=
∑
i≥1

ρai (w̄∗i − w̄∗0)

(
∂P †

∂z

)∗
i

, (22)

once the perturbation pressure gradient is closed for the momentum equations in the up-187

drafts and downdrafts. This equation assumes that subdomain covariance within updrafts188

and downdrafts are negligible, a general assuption in EDMF schemes. A derivation of189

this relation is provided in Appendix A, given the assumption that pressure perturba-190

tions only redistribute TKE between subdomains and do no work on the grid mean (Tan191

et al., 2018). It is noteworthy that (22) is different from how the pressure work term is192

closed in higher-order turbulence schemes (e.g., Bretherton and Park (2009)), which usu-193

ally combines the pressure work into the turbulent TKE transport and parameterizes194

the entire transport term diffusively.195

3.2 Implementation of Perturbation Pressure Closure in the Extended196

EDMF Scheme197

Equation (11) provides the buoyancy perturbation pressure forcing under the sin-
gle normal mode assumption. It applies to the vertical momentum equation for any point
within a rising thermal. To use this within the EDMF scheme, we apply a conditional
average to evaluate the integrated effect of the pressure gradient forcing on a rising ther-
mal. Let the conditional average over the thermal be denoted as

φ̄thm(z) =
1

2R

∫ R

−R
φ(x, z) dx .

Then, the vertical gradient of the buoyancy perturbation pressure (11) at height z is(
∂Pb

∂z

)
thm

=
1

2R

∫ R

−R

m2

m2 + k2
bdx =

m2

m2 + k2
b̄thm =

1

1 +
(
H
2R

)2 b̄thm. (23)

This is proportional to the buoyancy of the thermal and hence modifies the buoyancy198

term in the vertical momentum equation. This virtual mass effect makes the effective199
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buoyancy a thermal experiences smaller than the buoyancy computed from density fluc-200

tuations (Davies-Jones, 2003; Jeevanjee & Romps, 2015). Consistent with LES simula-201

tions (Romps & Charn, 2015; Tarshish et al., 2018), the virtual mass contribution de-202

pends on the aspect ratio R/H of the convective system.203

An analogous derivation for an axisymmetric thermal is provided in Appendix B.
The same trigonometric basis is chosen in the vertical, but Bessel functions Jα(·) replace
the trigonometric functions in the horizontal. This leads to the same solution as in (11)
but with a different value of k ≈ 2.4/R, which ensures J0(kR) = 0. Consequently, the
coefficient that describes the strength of the virtual mass is modified to[

1 +

(
c0
H

2R

)2
]−1

. (24)

For an axisymmetric thermal bubble, c0 ≈ 2.4/π corresponds to the first root of the204

Bessel function J0(kx) = 0. In general, then, the nondimensional group c0H/(2R), with205

a fitting parameter c0, can be taken as a geometric factor appearing in the modifier (24)206

for the effective buoyancy of a rising thermal.207

Similarly, Equation (17) gives the dynamic perturbation pressure forcing with the
single normal mode; it is applicable pointwise within the rising thermal. As for the buoy-
ancy pressure gradient, we take a conditional average on the dynamic pressure gradient,(

∂Pd

∂z

)
thm

=
1

2R

∫ R

−R
−3m

4
w2
A sin (2mz) dx︸ ︷︷ ︸

A

+
1

2R

∫ R

−R

m3

4(m2 + k2)
w2
A sin (2mz) cos (2kx) dx︸ ︷︷ ︸
B

+
1

2R

∫ R

−R

∂F

∂z
dx︸ ︷︷ ︸

C

. (25)

The first right-hand side term in the equation above integrates to

A = − 1

2R

∫ R

−R

3m

4
w2
A sin (2mz) dx = −3m

4
w2
A sin (2mz) = −3π2

8
w̄thm

dw̄thm

dz
. (26)

This advective term does not show up in other pressure closure formulae. It stands out
as the only term that can serve as a source of momentum in a buoyancy bubble, and the
resulting acceleration is an important term in the vertical momentum budget in the lower
half of the bubble. The second term integrates to

B =
1

2R

∫ R

−R

m3

4(m2 + k2)
w2
A sin (2mz) cos (2kx) dx = 0. (27)

This term integrates to zero in the 2D derivation but remains non-zero and adds to the208

advective term in the axisymmetric thermal bubble, as shown in Appendix B.209

The last term in the dynamic pressure gradient expression (25), C, comes from ∇2
x,zF =210

−m2w2
A/2 = −π2w2

A/(2H
2). It does not have a wave structure in z like the other terms.211

Instead, it represents a drag (like the last term in equation (3) of Simpson et al. (1965)).212

Aerodynamic drag on an object immersed in a fluid has the form FD = ρv2CdA/2, where213

A is the cross-sectional area of the object, v the relative velocity of the object, and Cd214

as a drag coefficient. As stated in Romps and Charn (2015),
∮
V
dV ∂zP = cdAw

2 where215

w is the relative velocity between the fluid and the moving object and A is the area of216

the cross section perpendicular to the moving direction. The average pressure gradient217

force can then be obtained as cd(A/V )w2 dividing by the volume on both sides of the218

equation, with the inverse length scale A/V representing the inverse vertical scale 1/H.219

An analogous drag on a thermal can be written in terms of the effective speed of the ther-220

mal center wA, or locally in terms of the velocity w at each height z. Therefore, C is the221
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drag term commonly adopted in the momentum equation (e.g., Simpson and Wiggert222

(1969); de Roode et al. (2012); Tan et al. (2018)).223

As shown in Appendix B, the axisymmetric thermal derived from the cylindrical
coordinate system has a similar form of perturbation pressure except that its advective
term also depends on the aspect ratio. The pressure forcing for the thermal bubble gen-
eralizes to

−
(
∂P †

∂z

)
thm

= − b̄thm

1 + α( H2R )2
+ αaw̄thm

∂w̄thm

∂z
− αd

w̄2
thm

Hthm
, (28)

where α represents the dependency of the virtual mass effect on the geometry of the ther-224

mal bubble; αa and αd are dimensionless parameters that describe the contributions from225

the momentum advection and the drag terms, respectively.226

The implementation of (28) in the EDMF framework requires several modifications.227

Equation (28) is derived for a rising thermal embedded in a compensating descending228

environment that is equivalent to the removal of grid-mean properties in the EDMF frame-229

work. Thus, the first modification is to remove the grid mean of each of the variables,230

that is, φ̄thm in the thermal bubble formulation is replaced by φ̄∗i for the i-th subdomain231

in the EDMF framework. The second modification is needed for the drag formula. Drag232

only occurs between two neighboring subdomains with different vertical velocities. It is233

assumed that updrafts/downdrafts only interact with the environment and the drag term234

decelerates them. Therefore, the difference between updraft/downdraft velocity and en-235

vironment velocity is used in the drag formulation. The vertical extent of the bubble is236

replaced by the height of the updraft/downdraft (Hi) in the EDMF scheme. The drag237

term is thus formulated as −(wi − w0)|wi − w0|/Hi.238

With the two modifications applied, the pressure gradient force for the i-th sub-
domain is formulated as

−
(
∂P †

∂z

)∗
i

= −αbb̄∗i + αaw̄
∗
i

∂w̄∗i
∂z
− αd

(w̄∗i − w̄∗0) |w̄∗i − w̄∗0 |
Hi

, (29)

where αb represents the contribution from the virtual mass effect. A significant change239

in the drag formula is that the vertical extent of the convective system rather than the240

horizontal radius (as in Tan et al. (2018) or Simpson et al. (1965)) is used as the length241

scale. It is shown in Section 5 that this is a key modification that allows the EDMF model242

to correctly capture the onset time for deep convection.243

The pressure formulation presented in (29) has three non-dimensional tunable pa-244

rameters: a virtual mass parameter (αb), an advective parameter (αa), and a drag pa-245

rameter (αd). The virtual mass parameter (αb) is dependent on the shape of the bub-246

ble. As the bubble gets wider and shallower, a stronger virtual mass effect leads to a weaker247

effective buoyancy, consistent with the solution for an idealized spherical bubble with248

homogeneous buoyancy distribution (Tarshish et al., 2018). The advective parameter (αa)249

in the 2D Cartesian thermal bubble only depends on the vertical wavenumber, while in250

the axisymmetric thermal it also depends on its aspect ratio (see the derivation in Ap-251

pendix B). The drag parameter (αd) modulates the strength of the drag effect. Romps252

and Charn (2015) determined the drag coefficient for a spherical thermal to be 0.6. Tan253

et al. (2018) took into account this drag formula and adjusted the coefficient for the spher-254

ical thermal to that of a cylindrical plume. Here, we take it as an empirical parameter255

to be learned from data.256

4 Experimental Setups in LES and SCM257

The extended EDMF framework is implemented in the single column model as de-258

scribed in Tan et al. (2018) and Cohen et al. (2020). We take (29) as the pressure clo-259

sure for the updraft vertical momentum equation and (22) as the pressure work for the260
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Figure 1. Initial profiles of the rising bubble experiments in LES. a: Contours of θl with

intervals of 0.2 K. The black contour is at 300 K and it outlines the edge of the initial bubble

that is used for the conditional average computation. b: Initial vertical profiles of θl conditionally

averaged over the bubble (black solid line) and the environment (blue dashed line), as well as the

grid-mean θl (red dotted line). c: Initial profile of the bubble area fraction.

environmental TKE equation. The performance of the EDMF scheme is compared with261

LES. The LES experiments are performed with PyCLES (Pressel et al., 2015), an anelas-262

tic atmospheric LES code with entropy and total water specific humidity as prognostic263

variables, designed to simulate boundary layer turbulence and convection. We examine264

the structure of a dry rising bubble following the benchmark test in Bryan and Fritsch265

(2002), but also compare it to individually selected thermals in observationally motivated266

test cases of moist convection.267

4.1 2D Rising Bubble268

4.1.1 LES Setup269

The rising bubble experiment runs on a 2D domain of 10 km in height and 20 km
in width. The initial liquid water potential temperature (θl) distribution over the do-
main is

θl(x, z) =

{
300 K + 2 K cos2 (0.5πL(x, z)), if L < 1,

300 K, if L ≥ 1.
(30)

where

L =

√(
x− xc
xr

)2

+

(
z − zc
zr

)2

(31)

represents the normalized distance from the point (x, z) to the bubble center xc = 10 km270

and zc = 2 km, and xr = zr = 2 km represent the initial radius of the bubble. This271

initial θl distribution is unstable near xc and stable far from it (Figure 1a). The ther-272

mal bubble contains the strongest warm anomaly in the bubble center, which decays to-273

ward the edge of the bubble. The liquid water potential temperature θl is homogeneous274

outside the bubble, creating an almost neutral environment. Both the environment and275

the bubble are initially at rest. The buoyancy force associated with the perturbed θl field276

provides the initial momentum source for the bubble to rise.277

4.1.2 SCM Setup278

The SCM simulation is initialized by taking the conditional average over the bub-279

ble from the LES initial setup. The buoyant bubble is identified by the 300 K θl-contour280

(black contour in Figure 1a). The initial updraft area fraction is computed as the ratio281

of the horizontal extent of the bubble over the horizontal LES domain size as shown in282
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Figure 1c. Initial θl for the updraft is computed as the conditional average of θl within283

the perturbed area, shown in Figure 1b. Also shown are the grid-mean and environmen-284

tal profiles of initial θl. This initial θl profile introduces a positively buoyant bubble into285

a negatively buoyant environment. The updraft velocity is initialized as zero through-286

out the column, consistent with the resting initial state in LES. No external forcing is287

applied along the simulation.288

As discussed in Cohen et al. (2020), subdomain horizontal velocities are assumed
equal to the grid-mean horizontal velocity and changes in area fraction due to horizon-
tal mass exchange are attributed to dynamical entrainment and detrainment. A rising
bubble results in a large mass and momentum convergence at the bubble bottom and
divergence at the top (Sánchez et al., 1989). This requires an additional divergence term
in addition to the dynamical entrainment and detrainment. Therefore, the entrainment
and detrainment rates for the bubble test case are modified as

Eij = Ẽij + ρcdiv max

(
d(aiwi)

dz
, 0

)
, (32)

∆ij = ∆̃ij + ρcdiv max

(
− d(aiwi)

dz
, 0

)
, (33)

where cdiv = 0.4 is a scaling coefficient, and Ẽij and ∆̃ij are the entrainment and de-289

trainment rates proposed by Cohen et al. (2020). The second term is an addition for the290

bubble test case only; it has been implemented in an EDMF scheme for simulating oceanic291

convection (Giordani et al., 2020) and a multi-fluid framework for the thermal bubble292

(Weller et al., 2020). The bubble test case is an initial value problem that is different293

from the typical boundary value problems for turbulence and convection that a SGS model294

needs to simulate in a climate model, and hence the introduction of these additional terms,295

not present in Cohen et al. (2020) and Lopez-Gomez et al. (2020), may be justified.296

4.2 Moist Convection297

Atmospheric convective systems consist of large numbers of thermal bubbles (Morrison,298

2017), which can be identified by their dynamical and thermodynamic properties (e.g.,299

Romps and Charn (2015)). A convective parameterization attempts to represent the sta-300

tistical mean of these bubbles. Here we test the EDMF framework with the proposed301

pressure closure against a shallow convection case from the Barbados Oceanographic and302

Meteorological Experiment (BOMEX, Holland and Rasmusson (1973)) and a deep con-303

vection case from the Tropical Rainfall Measurement Mission Large-scale Biosphere-Atmosphere304

experiment (TRMM-LBA, Grabowski et al. (2006)). The LES and SCM simulations for305

BOMEX and TRMM-LBA follow the experimental setups described in Cohen et al. (2020).306

The pressure closure takes (29) with (αb, αa, αd) = (0.12, 0.1, 10.0) as the scaling con-307

stants. The closures for entrainment and detrainment are given in equations (31) and308

(32) in Cohen et al. (2020), that is, without the divergence term as described above for309

the bubble case. The eddy diffusivity and mixing length in the environment are closed310

as in Lopez-Gomez et al. (2020). At the same time, the results in these companion pa-311

pers rely on the pressure closure derived in this work.312

Following Couvreux et al. (2010), a passive tracer is added for the LES simulation.313

A 3D mask that identifies updrafts in moist convection is obtained based on criteria on314

the vertical velocity, tracer concentration, and liquid water specific humidity as described315

in Cohen et al. (2020). We compute the bulk properties of convective plumes by taking316

the conditional average over the updraft mask. Against these bulk properties, we com-317

pare the performance of the updraft profiles in the SCM simulations.318

To investigate the structure of individual thermal bubbles in moist convection, we319

manually identify bubbles from the 3D field outputs for the last simulation timestep. The320
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Figure 2. Snapshots of the rising bubble in 200-second intervals. The black contour in each

contour plot traces the bubble boundary. From left to right are bubbles at 200, 400, 600, 800,

and 1000 seconds into the simulation. The first 3 rows from top to bottom are buoyancy, vertical

velocity, and perturbation pressure potential P †. The bottom row shows conditional averages

of the perturbation pressure gradient force −∂zP † and its decomposition into the buoyancy and

dynamic components.

thermal bubbles are identified by sweeping over the 3D fields. We search from the cloud-321

top level down to the cloud-base level for BOMEX. For TRMM-LBA, we search for con-322

vective thermals that grow above 3 km. To exclude negatively buoyant structures, which323

can occur near cloud top when convective overshoots occur, from being identified as up-324

drafts, we remove regions of negative buoyancy from the tracer-based updraft identifi-325

cation. In the end, we identify 13 convective thermals from BOMEX and 8 from TRMM-326

LBA for a composite study.327

A composite of the thermal bubbles is created to illustrate their robust structures328

in w, buoyancy, P † and −∂zP †. First, for each bubble, an azimuthal average is computed329

around the vertical axis that goes through the location of the maximum w in the bub-330

ble. Then, the composite is created by aligning the 2D azimuthal averages of each bub-331

ble by their locations of maximum w.332
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Figure 3. Comparison of bubble structures between LES and SCM simulations. a: Time

evolution of the bubble area fraction in LES. Contours from blue to red represent [0.06, 0.08,

. . . , 0.30]. b: Time evolution of the bubble area fraction in SCM. Contours from blue to red

represent [0.06, 0.08, . . . , 0.40]. c: Vertical profiles of area fraction for the last time step of the

LES (solid) and SCM (dashed) simulations. d: Time evolution of the bubble buoyancy in LES.

Contours from blue to red represent [0.005, 0.010, . . . , 0.045] m s−2. e: Time evolution of the

bubble buoyancy in SCM. Contours from blue to red represent [0.005, 0.010, ..., 0.030] m s−2.

f: As in c but for buoyancy. g: Time evolution of the bubble vertical velocity in LES. Contours

from blue to red represent [1, 2, ..., 9] m s−1. h: Time evolution of the bubble vertical velocity

in SCM. Contours from blue to red represent [1, 2, ..., 8] m s−1. i: As in c but for vertical veloc-

ity. j: Time evolution of the bubble −∂zP † in LES. Contours from blue to red represent [-0.05,

-0.045, ..., 0.045] m s−2. k: Time evolution of the bubble −∂zP † in LES. Contours from blue to

red represent [-0.01, -0.008, ..., 0.01] m s−2. l: As in c but for −∂zP †.
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5 Results333

5.1 2D Rising Bubble334

Snapshots of the bubble structure from LES are shown in Figure 2. Similar to Fig-335

ure 1a, the bubble is outlined by black contours with zero buoyancy. Given this initial336

buoyancy distribution, the upward vertical velocity builds up quickly inside the bubble,337

while compensating downdrafts are established and closely wrap the rising bubble. This338

is a robust structure in convective elements and captures well the vertical fluxes of heat339

and moisture in convective systems (Gu et al., 2020). Meanwhile, a negative perturba-340

tion pressure is established below the maximum buoyancy level, while a positive pertur-341

bation pressure is established above it. As the buoyancy center is pushed upward as the342

bubble rises, the zero perturbation pressure contour line moves toward the bubble top,343

and negative P † dominates the majority of the bubble. A peak in negative P † develops344

at the center of the bubble, which results in a momentum source from the perturbation345

pressure gradient below this level and a momentum sink above it. The bottom panels346

in Figure 2 show the conditional average of the pressure gradient force and its decom-347

position into buoyancy and dynamic components. At the bottom and mid-levels of the348

bubble, −∂zP †d dominates and is a momentum source at the lower part of the bubble and349

a sink at its top. The buoyancy component, −∂zP †b , contributes primarily as a sink off-350

setting the buoyancy field.351

During the early stages of the simulation (i.e., before 600 s), the 2D structure of352

the buoyancy and velocity fields resemble the trigonometric structure assumed in (7).353

Therefore, the single normal mode assumption is a reasonable simplification. The per-354

turbation pressure exhibits a dumbbell structure in the lower bubble, which indicates355

the dynamic perturbation pressure associated with velocity plays an essential role at these356

levels. Toward the end of the simulation, when the bubble deforms, the underlying as-357

sumption of a single normal mode structure becomes problematic as the strong buoy-358

ancy is pushed to the bubble’s top while the maximum vertical velocity falls into the lower359

half of the bubble. However, a close investigation of the moist convective cases in the360

next subsection shows that individual bubbles in the convective system resemble the ris-361

ing bubble structures during the early stages, which validates the single normal mode362

assumption made in the derivation.363

The SCM with the extended EDMF parameterization and the pressure closure sim-364

ulates well the time evolution of a rising thermal bubble, with greater success at early365

stages, as shown in Figure 3. The time evolution shows a rising bubble that for the most366

part detaches from the surface and maintain a coherent buoyancy anomaly. As the bub-367

ble rises, the maximum buoyancy level in the SCM simulation shifts from the bubble’s368

center to its top, in agreement with the LES results. The area fraction shows a slightly369

sharper gradient at the top of the bubble at around 400 seconds. The SCM also roughly370

captures the vertical velocity evolution in the LES. At the last time step of the simu-371

lations, the SCM produces a top-heavy vertical velocity profile with too high velocities372

at the bubble’s top and too low velocities at its bottom. The area fraction profile in the373

SCM struggles to maintain the bubble structure and develops a spike at about 4.5 km.374

In spite of these differences, the SCM produces a bubble that has many key features of375

the LES bubble, such as the area fraction, vertical extent, and the top and base heights376

(see Figure 3c).377

Overall, this demonstrates the capability of the EDMF framework with the pres-378

sure closure to simulate a rising bubble.379

5.2 Moist Convection380

Thermal bubbles identified from the BOMEX and TRMM-LBA LES experiments381

demonstrate similar structures to the early stage of the rising thermal bubble experiment.382
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Figure 4. Average structures of bubble composites identified from LES simulations for

BOMEX (left two columns) and TRMM-LBA (right two columns). Contour plots represent

the azimuthally averaged structures of w, buoyancy, P †, and −∂zP †. The x and y axis in the

contour plots represent the relative distances from the location of maximum vertical velocity.

Column 2 (BOMEX) and 4 (TRMM-LBA) show the horizontal average of the bubble properties.

Rows from top to bottom show vertical velocity, buoyancy, P †, and −∂zP †.
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Figure 6. Comparisons of the TRMM-LBA cloud top evolution between LES (grey solid line)
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tic plume radius as length scale in the pressure drag, as given by (34), are shown in the colored
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Figure 4 shows the vertical velocity, buoyancy, perturbation pressure potential, and −∂zP †383

profiles for a composite of bubbles selected in the BOMEX and TRMM-LBA test cases.384

The buoyancy profiles resemble an early-stage bubble. The perturbation pressure fields385

show the clear pattern of low pressure at the middle and lower levels of the bubble and386

high pressure at the top. The dumbbell structure characterizing the later stages of the387

rising bubble experiment does not show up in the composite (averaged) fields in Figure388

4; however, they do show up if one looks into the individual bubbles instead of the com-389

posite. They are smoothed out when averaged over several bubbles with various hori-390

zontal and vertical extents. Averaged over many bubbles, the momentum source from391

−∂zP † at bottom of the bubble and the sink at the top remain similar to the structure392

found in the rising bubble experiment. The resemblance between the composite of bub-393

bles from moist convection and the idealized bubble experiment justifies the implemen-394

tation of the single normal mode solution in the EDMF framework.395

Cohen et al. (2020) demonstrate the capability of the EDMF framework to repre-396

sent dynamic and thermodynamic properties within the updrafts, as well as their first,397

second, and third moments. Here we focus on the performance of the pressure closure398

(29) in the BOMEX and TRMM-LBA cases through comparison between the LES and399

SCM simulations (Figure 5). Comparing the pressure closure profiles in the SCM (dashed)400

with that diagnosed from (29) in LES (dotted), the SCM pressure closures represent the401

LES vertical profile quite well for the BOMEX case. For the TRMM-LBA case, the pres-402

sure gradient profile in SCM represents a much larger momentum sink compared to the403

LES. This is primarily due to an overestimation of the buoyancy variations in the SCM,404

which leads to a larger sink in the buoyancy perturbation pressure component. The com-405

pensation between these two in the end gives a reasonable representation of the verti-406

cal velocity profile, as shown in Cohen et al. (2020). Comparing the pressure gradient407

profiles as diagnosed from (29) (dotted) with that solved from the LES Poisson solver408

(solid), the former is about twice the magnitude of the latter. This is due to a consid-409

erable drag effect (αd = 10.0). The large drag effect is needed as a stabilization require-410

ment (Weller & McIntyre, 2019). Unlike for the rising bubble, the pressure gradient force411

for the bulk updrafts in BOMEX and TRMM-LBA acts primarily as a momentum sink.412

An advantage of the current pressure closure manifests when examining the diur-
nal cycle of deep convection in SCM simulations and LES. Simulating the diurnal cy-
cle is a major challenge for many parameterization schemes (Dai & Trenberth, 2004; Holt-
slag et al., 2013). Here we show the effect of the length scale used in the denominator
of the pressure drag on the timing of deep convection. When using a fixed scale, e.g., the
updraft radius (Simpson & Wiggert, 1969; Tan et al., 2018), a trade-off arises between
improving the onset timing of convection and improving the cloud top height. In Tan
et al. (2018), the pressure drag term in the i-th subdomain is written as

−

(
∂P †d
∂z

)∗
i

= −αd
(w̄∗i − w̄∗0)|w̄∗i − w̄∗0 |

rd
√
ai

, (34)

where rd = 500 m is the typical distance between neighboring plumes in shallow con-413

vection; thus, rd
√
ai gives a characteristic plume radius. However, our derivation indi-414

cates that the drag effect scales with the vertical scale of the convective system. Figure415

6 compares the evolution of updraft tops in SCM and LES. The SCM simulations have416

fixed coefficients αb = 0.12 and αa = 0.1. We compare the drag term in (29) with that417

in (34) as in Tan et al. (2018). The value rd = 500 m reproduces shallow convection418

as in Tan et al. (2018), but it leads to too early onset and too low updraft tops for the419

deep convective case. A simple increase in rd results in a universal decrease in the drag420

contribution and produces higher updraft tops. However, this does not solve the prob-421

lem of the onset timing. Physically, convection in the TRMM-LBA case requires a large422

drag in the early stages, so that the convection is not initiated too early, and a gradu-423

ally decreasing drag later, so that convection can grow high enough. The height of the424

updraft top, which arises in the normal mode derivation above, is therefore a natural scale.425
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The timing of the onset and the height of the updraft are both substantially improved426

when using the updraft height as a length scale. The same value of αd can be used for427

both shallow and deep convection.428

6 Conclusion429

We have derived an analytical formula for the perturbation pressure for convective430

systems under the single normal mode assumption. LES results show that the normal431

mode assumption is justified both for an idealized thermal bubble and for a composite432

average over thermal bubbles in moist convection. We have implemented the perturba-433

tion pressure formula in an extended EDMF framework, which unifies the parameter-434

ization of turbulence and convection across dynamical regimes. The extended EDMF frame-435

work with this pressure closure reproduces a dry rising bubble benchmark—an initial436

value problem (rather than a boundary value problem) that can only be consistently sim-437

ulated in a time dependent parameterization (Tan et al., 2018; Thuburn et al., 2018; Weller438

et al., 2020).439

The pressure closure derived here consists of three components: a virtual mass term,440

a momentum advection term, and a drag term. The virtual mass and drag terms have441

been considered before (Simpson et al., 1965; de Roode et al., 2012; Siebesma et al., 2007;442

Tan et al., 2018; Han & Bretherton, 2019; Davies-Jones, 2003; Doswell III & Markowski,443

2004; Jeevanjee & Romps, 2015) and represent momentum sinks. However, the advec-444

tion term is novel in our formulation and represents an essential momentum source at445

the bottom of convective systems (Schumann & Moeng, 1991; Jeevanjee & Romps, 2015;446

Morrison, 2016). The LES results confirm the perturbation pressure as an important mo-447

mentum source for thermal bubbles as well as in shallow and deep moist convection. The448

momentum advection term is important for the dynamics of transient convective bub-449

bles, but less so in terms of bulk average properties. This indicates that inclusion of the450

advection term may be important for simulating transient processes. The drag term is451

consistent with previous LES diagnostics (Romps & Charn, 2015). Thuburn et al. (2019)452

and Weller and McIntyre (2019) have additionally shown that it is essential for numer-453

ical stability of EDMF-like schemes. The key modification in our drag formula relative454

to other parameterizations is to replace the horizontal scale by the vertical scale of the455

updraft. This enables an improved representation of the diurnal cycle of deep convec-456

tion.457

An interesting distinction between a rising bubble and a coherent plume is that the458

bubble gets detached from the surface at some point in time. As the discontinuous bot-459

tom of the bubble rises, the perturbation pressure plays a key role as a momentum source460

at the bottom. On the other hand, a plume remains continuous from the surface upward461

and does not have a strong momentum source from the perturbation pressure. Mass-flux462

models for clouds and convection are normally designed based on assuming plumes and463

have difficulties simulating a rising bubble. The time-dependent parameterization scheme464

circumvents the distinction between plumes and bubbles (Yano, 2014) and can capture465

both (Weller et al., 2020).466

The extended EDMF scheme has the potential to unify SGS parameterizations of467

turbulence and convection, given proper closures. The pressure closure presented in this468

paper, the entrainment and detrainment closures presented in Cohen et al. (2020), and469

the mixing length closure presented in Lopez-Gomez et al. (2020), allow this parame-470

terization to represent a wide spectrum of different atmospheric boundary layers and con-471

vective motions.472
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Appendix A Pressure Work for Environmental TKE473

As assumed in Tan et al. (2018), pressure does not do work on the grid-mean TKE,
but rather redistributes TKE between the subdomains, that is,

−

〈
ρu∗

(
∂P †

∂x

)∗
+ ρv∗

(
∂P †

∂y

)∗
+ ρw∗

(
∂P †

∂z

)∗〉
= 0. (A1)

Following (19) and neglecting covariance terms φ′iψ
′
i except in the environment (i.e., i =

0), the grid-mean flux is decomposed into the ED and MF components

−ρa0

[
w′0

(
∂P †

∂z

)′
0

+ u′0

(
∂P †

∂x

)′
0

+ v′0

(
∂P †

∂y

)′
0

]
−
∑
i:i≥0

ρaiw̄
∗
i

(
∂P †

∂z

)∗
i

= 0. (A2)

Separating the environmental and plume contributions from the second term, mov-
ing them to the right-hand side and using the relationship

∑
i:i≥0 aiφ̄

∗
i = 0 leads to

− ρa0

[
w′0

(
∂P †

∂z

)′
0

+ u′0

(
∂P †

∂x

)′
0

+ v′0

(
∂P †

∂y

)′
0

]

= ρa0w̄
∗
0

(
∂P †

∂z

)∗
0

+
∑
i:i≥1

ρaiw̄
∗
i

(
∂P †

∂z

)∗
i

= −ρw̄∗0
∑
i:i≥1

ai

(
∂P †

∂z

)∗
i

+
∑
i:i≥1

ρaiw̄
∗
i

(
∂P †

∂z

)∗
i

=
∑
i:i≥1

ρai (w̄∗i − w̄∗0)

(
∂P †

∂z

)∗
i

. (A3)

Appendix B Single Normal Mode Solution for Axisymmetric Ther-474

mals475

In the axisymmetric cylindrical coordinate system, the mass continuity equation
is

∂(ur)

∂r
+
∂(wr)

∂z
= 0, (B1)

where r and u denote the radial direction originating from thermal’s central axis and the476

radial velocity, z and w denote the vertical direction and vertical velocity.477

The pressure Poisson equation in the axisymmetric cylindrical coordinate system
is

∇2
r,zP

† =
∂b

∂z
−

[(
∂u

∂r

)2

+
(u
r

)2

+

(
∂w

∂z

)2
]
− 2

∂u

∂z

∂w

∂r
. (B2)

Using the mass continuity equation, it simplifies to

∇2
r,zP

† =
∂b

∂z
− 2

[(
∂w

∂z

)2

+
∂u

∂z

∂w

∂r
− u

r

∂u

∂r

]
, (B3)

where

∇2
r,z =

1

r

∂

∂r
r
∂

∂r
+

∂2

∂z2
.

Similarly, the perturbation pressure potential is decomposed into the sum of buoy-
ancy and dynamic perturbation pressure, i.e., P † = Pb + Pd such that

∇2
r,zPb =

∂b

∂z
,

∇2
r,zPd =− 2

[(
∂w

∂z

)2

+
∂u

∂z

∂w

∂r
− u

r

∂u

∂r

]
.

(B4)
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For a rising thermal, a trigonometric basis is used for the vertical wave structure,
as for the 2D derivation, while Bessel functions of the first kind Jα(·) are used for the
horizontal structure, to exploit eigenfunctions of the Laplacian operator. That is

w = wA sin(mz)J0(kr),

b = bA sin(mz)J0(kr),

u = uA cos(mz)J1(kr),

(B5)

where m = πH−1 is the vertical wavenumber, and k = 2.4R−1 ensures kR is the first
zero of the Bessel function, J0(kR) = 0. Then, the mass continuity gives

kuA +mwA = 0, (B6)

which is essential in simplifying the following derivation.478

B1 Buoyancy Perturbation Pressure479

The buoyancy perturbation pressure satisfies

∇2
r,zPb = mbA cos (mz)J0(kr). (B7)

With the eigenfunction ansatz, this can be solved to give

Pb = − m

m2 + k2
bA cos (mz)J0(kr), (B8)

which gives the buoyancy perturbation pressure gradient as

∂Pb

∂z
=

m2

m2 + k2
bA sin (mz)J0(kr) =

m2

m2 + k2
b. (B9)

Therefore, the conditional average of the buoyancy perturbation pressure over the
rising thermal is(

∂Pb

∂z

)
thm

=
1

R

∫ R

0

m2

m2 + k2
br dr =

m2

m2 + k2
b̄thm =

1

1 +
(

2.4
π

H
2R

)2 b̄thm. (B10)

B2 Dynamic Perturbation Pressure480

In cylindrical coordinates, the dynamic pressure includes a third term arising from
the curvature of the coordinate system. The expansion of the dynamic perturbation pres-
sure is done separately for each of the three terms as follows:(

∂w

∂z

)2

= (mwA cos (mz)J0(kr))
2

=
m2

2
w2
A (1 + cos (2mz)) J2

0 (kr),

(B11)

∂u

∂z

∂w

∂r
= [−muA sin (mz)J1(kr)] [wA sin (mz) (−kJ1(kr))]

=mkuAwA sin2mzJ2
1 (kr),

(B12)

−u
r

∂u

∂r
=−

[uA
r

cos (mz)J1(kr)
] [
uA cos (mz)

(
kJ0(kr)− J1(kr)

r

)]
=− u2

A

2
(1 + cos (2mz))

(
kJ0(kr)J1(kr)

r
− J2

1 (kr)

r2

)
.

(B13)
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Using these expansions, the Poisson equation for dynamic perturbation pressure is writ-
ten as

∇2
r,zPd =−m2w2

A (1 + cos (2mz)) J2
0 (kr) +m2w2

A (1− cos (2mz)) J2
1 (kr)

+ u2
A (1 + cos (2mz))

(
kJ0(kr)J1(kr)

r
− J2

1 (kr)

r2

)
=−m2w2

A

[
J2

0 (kr)− J2
1 (kr)

]
−m2w2

A cos (2mz)
[
J2

0 (kr) + J2
1 (kr)

]
+ u2

A (1 + cos (2mz))

[
kJ0(kr)J1(kr)

r
− J2

1 (kr)

r2

]
︸ ︷︷ ︸

Jr

=−m2w2
A

1 + 3J0(2kr)

4
−m2w2

A cos (2mz)
3 + J0(2kr)

4
+ Jr

=− m2

4
w2
A cos (2mz)J0(2kr)− 3m2

4
w2
A cos (2mz)− 3m2

4
w2
AJ0(2kr)

−m
2

4
w2
A + Jr.

(B14)

Similar to (12), the first three terms in (B14) have a wave structure while the fourth term,
−m2w2

A/4, represents a drag. Therefore, we make the ansatz that Pd has a structure con-
sisting of a combination of cos (2mz) and J0(2kr), plus a drag function, F . The Jr term
in (B14) arises from d2J2

1 (kr)/ dr2. Since d2J2
1 (kr)/dr2 is a function of J0(2kr), we can

simply assume an extra J2
1 (kr) term in Pd first, and later combine it with the J0(2kr)

in the original assumption. Therefore, we write Pd = Pd1+Pd2 where Pd1 corresponds
to Jr and Pd2 is the remaining combination of cos (2mz) and J0(2kr). By comparing Jr
and d2J2

1 (kr)/ dr2, we have

Pd1 =− m2w2
0

4k2
(1 + cos (2mz)) J2

1 (kr)

Pd2 =P1 cos (2mz)J0(2kr) + P2J0(2kr) + P3 cos (2mz) + F,
(B15)

where F represents the drag, as in the 2D derivation. P1, P2, and P3 are the magnitude481

of the three modes.482

The Poisson equation for dynamic perturbation pressure becomes

∇2
r,zPd =∇2

r,zPd1 +∇2
r,zPd2

=−
[
4(m2 + k2)P1 +

3m2

8
w2
A +

m2

4
u2
A

]
cos (2mz)J0(2kr)

−
(

4k2P2 +
3m2

8
w2
A

)
J0(2kr)−

(
4m2P3 +

m2

8
w2
A −

m2

4
u2
A

)
cos (2mz)

+∇2
r,zF −

3m2

8
w2
A + Jr.

(B16)

Comparison with the corresponding terms in (B14) leads to

P1 =− m2(k2 + 2m2)

32k2(k2 +m2)
w2
A,

P2 =
3m2

32k2
w2
A,

P3 =
5k2 + 2m2

32k2
w2
A.

(B17)

The dynamic perturbation pressure becomes

Pd =Pd1 + Pd2 = −m
2w2

0

4k2
(1 + cos (2mz)) J2

1 (kr) + P1 cos (2mz)J0(2kr) + P2J0(2kr) + P3 cos (2mz) + F

=
m2

32(m2 + k2)
w2
A cos (2mz)J0(2kr) +

5m2

32k2
w2
AJ0(2kr) +

5

32
w2
A cos (2mz) + F − m2

16k2
w2
A,

(B18)
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and the dynamic perturbation pressure gradient is

∂Pd

∂z
= − m3

16(m2 + k2)
w2
A sin (2mz)J0(2kr)− 5m

16
w2
A sin (2mz) +

∂F

∂z
. (B19)

The conditional average of a scalar over the rising thermal is computed as

φ̄thm =
1

πR2

∫ 2π

0

dθ

∫ R

0

φrdr =
2

R2

∫ R

0

φrdr.

Therefore, the dynamic perturbation pressure averaged over the rising thermal is(
∂Pd

∂z

)
thm

=− 2

R2

∫ R

0

m3

16(m2 + k2)
w2
A sin (2mz)J0(2kr)r dr︸ ︷︷ ︸

A

− 2

R2

∫ R

0

5m

16
w2
A sin (2mz)r dr︸ ︷︷ ︸
B

+
2

R2

∫ R

0

∂F

∂z
r dr︸ ︷︷ ︸

C

.

(B20)

The first term on the right-hand side integrates to

A =− 2

R2

∫ R

0

m3

16(m2 + k2)
w2
A sin (2mz)J0(2kr)r dr

=− m3

8(m2 + k2)

w2
A

R2
sin (2mz)

∫ R

0

J0(2kr)rdr

=− m3

8(m2 + k2)

w2
A

R2
sin (2mz)

R

2k
J1(2kR)

=− m3

16(m2 + k2)

w2
A

kR
sin (2mz)J1(2kR)

=− m2

32(m2 + k2)

kRJ1(2kR)

J2
1 (kR)

w̄thm
dw̄thm

dz
,

(B21)

where kR ≈ 2.4 corresponds to the zero J0(kr) = 0. The second term integrates to

B =− 2

R2

∫ R

0

5m

16
w2
A sin (2mz)r dr

=− 5m

16
w2
A sin (2mz)

=− 5k2R2

32J2
1 (kR)

w̄thm
dw̄thm

dz
.

(B22)

Therefore. the sum of the first two terms on the right-hand side, A+B, gives the483

advective term. In the axisymmetric system, the advective term is also dependent on the484

shape of the thermal, i.e., k/m which is different from the 2D Cartesian bubble. This485

is mainly due to the fact that cos (2kx) integrates to zero from −R to R, as in term B486

of (25), while J0(2kx) does not integrate to zero, as in term A of (B20).487

Term C is the drag term and can be justified in the same way as in the 2D deriva-488

tion.489

Therefore, the perturbation pressure gradient force in a 3D bubble consists of the490

same three contributions as derived from the 2D bubble: the virtual mass term, a mo-491

mentum advection term, and a drag term.492
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