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Abstract15

Most machine learning applications in Earth system modeling currently rely on gradient-16

based supervised learning. This imposes stringent constraints on the nature of the data17

used for training (typically, residual time tendencies are needed), and it complicates learn-18

ing about the interactions between machine-learned parameterizations and other com-19

ponents of an Earth system model. Approaching learning about process-based param-20

eterizations as an inverse problem resolves many of these issues, since it allows param-21

eterizations to be trained with partial observations or statistics that directly relate to22

quantities of interest in long-term climate projections. Here we demonstrate the effec-23

tiveness of Kalman inversion methods in treating learning about parameterizations as24

an inverse problem. We consider two different algorithms: unscented and ensemble Kalman25

inversion. Both methods involve highly parallelizable forward model evaluations, con-26

verge exponentially fast, and do not require gradient computations. In addition, unscented27

Kalman inversion provides a measure of parameter uncertainty. How learning about pa-28

rameterizations can be posed as an inverse problem and solved by ensemble Kalman meth-29

ods is illustrated through the calibration of an eddy-diffusivity mass-flux scheme for subgrid-30

scale turbulence and convection, using data generated by large-eddy simulations. We find31

the algorithms amenable to batching strategies, robust to noise and model failures, and32

efficient in the calibration of hybrid parameterizations that can include empirical clo-33

sures and neural networks.34

Plain Language Summary35

Artificial intelligence represents an exciting opportunity in Earth system model-36

ing, but its application brings its own set of challenges. One of these challenges is to train37

machine learning systems within Earth system models from partial data. Here we present38

algorithms, known as ensemble Kalman methods, that can be used to train such systems.39

We demonstrate their use in situations where the data used for training are noisy, only40

indirectly informative about the model to be trained, and may only become available se-41

quentially. As an example, we present training results for a state-of-the-art model for42

turbulence, convection, and clouds for use within Earth system models. This model is43

shown to learn efficiently from data in a variety of configurations, including situations44

where the model contains neural networks.45

1 Introduction46

The remarkable achievements of machine learning over the past decade have led47

to renewed interest in informing Earth system models with data (Schneider et al., 2017;48

Reichstein et al., 2019). The spotlight is often on creating or improving models of pro-49

cesses that are deemed important for the correct representation of the Earth system as50

a whole. Examples of these processes include moist convection (Brenowitz et al., 2020),51

cloud microphysical and radiative effects (Seifert & Rasp, 2020; Villefranque et al., 2021;52

Meyer et al., 2022), and evapotranspiration (Zhao et al., 2019), among others.53

Processes governed by poorly understood dynamics, such as cloud microphysics,54

are obvious candidates for representation by purely data-driven models. On the other55

end of the spectrum are fluid transport processes, which are governed by the Navier-Stokes56

equations. Uncertain representation of these processes comes from a lack of resolution,57

not lack of knowledge about the underlying dynamics. Hybrid modeling approaches that58

incorporate domain knowledge and augment it by learning from data are attractive for59

such processes, because they reduce what needs to be learned from data.60

For processes with known dynamics, data-informed models fall into three broad cat-61

egories according to their leverage of domain knowledge. In the first category are mod-62

els that try to learn the entire dynamics using a sufficiently expressive hypothesis set,63
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such as deep neural networks. This approach has proved successful for predicting pre-64

cipitation over short time horizons (Ravuri et al., 2021), and it has been explored for medium-65

range weather forecasting (Rasp & Thuerey, 2021; Pathak et al., 2022). An advantage66

of these models is that they are typically easy to implement and cheap to evaluate. They67

can afford very large time steps (Weyn et al., 2021), or they may learn directly mappings68

from the initial state to a probability distribution of final states with no need of time march-69

ing or ensemble forecasting (Sønderby et al., 2020). A deficiency of these models is that70

they often require an extreme amount of data to constrain the many (often > 106) pa-71

rameters in them and achieve acceptable performance.72

Methods in the second and third categories employ models of subgrid processes to73

solve the closure problem that arises when coarse-graining the known dynamics, which74

are retained. Retaining the coarse-grained equations of motion ensures conservation of75

mass, momentum, and energy, which is more difficult when using models in the first cat-76

egory (Beucler et al., 2021; Brenowitz et al., 2020). The second category encompasses77

methods that try to learn the functional form of these closures avoiding the use of em-78

pirical laws. For example, Zanna and Bolton (2020) use relevance vector machines to prune79

a library of functions and find a closed form expression of mesoscale eddy fluxes in ocean80

simulations; Ling et al. (2016) learn a neural network closure of the Reynolds stress anisotropy81

tensor while explicitly encoding rotational invariance, in the context of k−ε models of82

turbulence.83

Finally, the third category refers to methods that seek to learn the parameters that84

arise in empirical closures of subgrid processes. In general, models in the third category85

are more restrictive, and they may be expected to underperform with respect to those86

in the second category given sufficient data on the target distributions. However, the lim-87

ited parametric complexity of these closures makes them amenable to physical interpre-88

tation, robust to overfitting, and better suited for learning in the low-data regime. This89

may be attractive for Earth system models, for which online learning from limited high-90

resolution data may be a useful strategy to assimilate computationally generated data91

of the changing climate (Schneider et al., 2017).92

A barrier delimiting data-driven and empirical subgrid-scale closures is the access93

to practical calibration tools. Neural network parameterizations are easily calibrated us-94

ing stochastic gradient descent through backpropagation, which limits datasets to those95

including output labels, and models to those that afford automatic differentiation with96

respect to their parameters. Empirical closures, which may depend on time-evolving terms97

with memory (e.g., Lopez-Gomez et al., 2020) or yield unobservable outputs (e.g., tur-98

bulent versus dynamical entrainment in Cohen et al., 2020) cannot be trained using the99

same approach. Techniques developed to train empirical models are often computation-100

ally expensive and may scale poorly with the number of parameters (Couvreux et al.,101

2021), which can limit their application to data-driven closures with many parameters.102

Model-agnostic tools that enable fast calibration of subgrid-scale closures from diverse103

data are a necessary step toward the development of hybrid closures that leverage the104

strengths of all modeling approaches.105

With this goal in mind, we present calibration strategies for models of subgrid pro-106

cesses, formulating the learning task as an inverse problem (Kovachki & Stuart, 2019).107

Solutions to the inverse problem are sought using the ensemble and unscented Kalman108

inversion algorithms (Iglesias et al., 2013; Huang et al., 2022). Emphasis is given to prac-109

tical aspects of this specific inverse problem, which have not previously been explored110

in the literature. These include the construction of a domain-agnostic loss function from111

high-dimensional observations, a heuristic a priori estimate of model error, systematic112

handling of model failures, and the use of the Kalman inversion algorithms when only113

noisy evaluations of the loss function are available.114
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The strategies presented here are designed to have several attractive properties com-115

pared to other learning algorithms. First, framing learning as an inverse problem enables116

the use of partial observations or statistical summaries of the data. Second, calibration117

is performed using gradient-free methods, well suited for stochastic models and/or mod-118

els whose derivatives do not exist or are difficult to obtain. Finally, the strategies pre-119

sented are amenable to massive parallelization and the use of high-dimensional corre-120

lated observations. The last two properties draw heavily on the use of the recently de-121

veloped family of Kalman inversion algorithms to tackle the inverse problem. The meth-122

ods presented are applicable to models of subgrid-scale processes, within the second and123

third categories described above. They provide an alternative to learning algorithms that124

impose stringent requirements on either the model architecture or the nature of the train-125

ing data.126

The article is organized as follows. Section 2 casts learning about parameteriza-127

tions as an inverse problem, which can be solved through the minimization of a low-dimensional128

encoding of the data-model mismatch. Section 3 reviews the application of the ensem-129

ble and unscented Kalman inversion algorithms to inverse problems. Section 4 then ap-130

plies these ensemble Kalman algorithms to the calibration of closures within an eddy-131

diffusivity mass-flux (EDMF) scheme of turbulence and convection, using data gener-132

ated from large-eddy simulations (LES). The robustness of these learning strategies is133

demonstrated by calibrating the EDMF scheme using noisy loss evaluations and partial134

information, and their flexibility is emphasized by learning the parameters in a hybrid135

model containing both empirical and neural network closures. Finally, Section 5 ends with136

a discussion of the findings and some concluding remarks.137

2 Learning about parameterizations as an inverse problem138

We consider the problem of learning the parameters φ of a dynamical model Ψ(φ),139

using noisy observations y of the true dynamical system ζ that Ψ(φ) seeks to represent.140

In the context of subgrid parameterizations, Ψ(φ) represents a closed version of the coarse-141

grained dynamical system (e.g., the filtered Navier-Stokes equations), where closures are142

parameterized by φ. The model Ψ(φ) maps a user-defined initial state ϕ0 and a forcing143

Fϕ(t) to a state trajectory ϕ̃(t). Thus, our definition of Ψ(φ) can be interpreted as the144

iterative application of the resolvent operator on the initial field ϕ0 (Brajard et al., 2021).145

In the following, we denote any set of initial and forcing conditions collectively as the146

configuration xc = {ϕ0, Fϕ}c.147

For each configuration xc, the dynamical model can be related to the observations
yc by the observational map Hc, which encapsulates all averaging and post-processing
operations necessary to yield the model predictions associated with the observations. More
precisely, the relationship between the dynamical model, the true dynamics, and the ob-
servations for a given configuration may be expressed as

yc = Hc ◦ ζ(xc) + ηc = Hc ◦Ψ(φ;xc) + δ(xc) + ηc, (1)

where yc are the observations associated with xc, ζ is the true dynamical system, φ ∈148

Rp is the vector of learnable parameters, ηc is the observational noise associated with149

yc and δ(·) is the model error, which is a function of the configuration (Kennedy & O’Hagan,150

2001).151

Observations are taken to come from finite spatial and temporal averages of fields152

such as temperature. Learning from averages can help prevent overfitting to trajecto-153

ries in chaotic systems by focusing on the statistics of the dynamics (Morzfeld et al., 2018)154

and improve numerical stability when coupling to a parent model (Brenowitz & Brether-155

ton, 2018). Under this definition of observations, it is reasonable to assume the noise ηc156

to be additive and Gaussian, based on the central limit theorem (Cleary et al., 2021).157

In the following, we will further consider δ(·) to be a centered Gaussian, although this158
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constitutes a significantly stronger assumption (e.g., that the model is unbiased) and may159

not be appropriate for the characterization of posterior uncertainty. These assumptions160

enable us to write δ(xc) + ηc ∼ N (0,Γc).161

In general, we are interested in minimizing the mismatch between yc and the model
output for a wide range of configurations C = {xc, c = 1, . . . , |C|}, representative of
the conditions in which the model will operate. Therefore, the task of learning a set of
model parameters φ can be cast as the inverse problem

y = H ◦Ψ(φ) + δ + η, (2)

where y = [y1, . . . , y|C|]
T ∈ Rd, δ = [δ(x1), . . . , δ(x|C|)]

T , η = [η1, . . . , η|C|]
T , H ◦162

Ψ(φ) = [H1 ◦ Ψ(φ;x1), . . . ,H|C| ◦ Ψ(φ;x|C|)]
T and δ + η ∼ N (0,Γ). In addition, im-163

plicit in the definition of the dynamical model Ψ(φ) is a discrete resolution ∆. This de-164

pendence may be lifted if the closures are designed to be scale-aware or scale-independent,165

in which case the inverse problem (2) should be augmented by stacking copies of y and166

evaluating H ◦Ψ(φ,∆i) for different discretizations ∆i.167

In practice, the parameters φ are often defined over some subspace U ⊂ Rp, out-
side of which the trajectories given by Ψ(φ) are either unphysical or dominated by nu-
merical instabilities. Examples of these are parameters controlling the intensity of dif-
fusion or turbulent dissipation of a scalar field, for which negative values are not phys-
ically valid. On the other hand, many algorithms designed to solve inverse problems of
the form (2) assume φ ∈ Rp. This obstacle may be circumvented by defining a trans-
formation T : U → Rp (Dunbar et al., 2022), such that the inverse problem can be
defined in an unconstrained parameter space,

y = G(θ) + δ + η, (3)

where
G ≡ H ◦Ψ ◦ T −1, φ = T −1(θ). (4)

In expressions (3) and (4), θ ∈ Rp is the parameter vector in unconstrained space and168

G : Rp → Rd is the map from transformed parameters to model predictions, which in169

the context of the inverse problem (3) represents the forward model. Note that the ob-170

servational map Hc and the error covariance Γc defining the model-data relation (1) are171

yet to be defined. In the following subsections, we suggest definitions of these terms rel-172

evant to the calibration of models with an unknown error structure δ(·).173

2.1 Application to problems with high-resolution observations174

High-resolution data are becoming increasingly common, from PDE solvers such175

as LES (Pressel et al., 2015; Shen et al., 2022), reanalysis products (Muñoz-Sabater et176

al., 2021), and satellite imagery (Schmit et al., 2017). Although computationally gen-177

erated and thus suffering from their own limitations (e.g., microphysical processes still178

need to be parameterized even in LES), data from PDE solvers have some particularly179

desirable properties for the calibration of dynamical models:180

• All prognostic variables and tendencies appearing in the coarse-grained equations181

of motion are observable. As a consequence, the nature of the observational map182

H used to constrain the model is largely a design choice.183

• Data can be obtained systematically for all configurations xc of interest, which may184

be optimized to minimize parameter uncertainty (Dunbar et al., 2022). In con-185

trast, data drawn from physical experiments or field measurements are often sparse186

in the space of forcing and boundary conditions.187

High-resolution data are often high-dimensional, which poses particular difficulties re-188

garding the conditioning and tractability of linear systems of equations when solving in-189
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verse problem (3). The guidelines presented in this section are tailored to solve these is-190

sues, with a focus on synthetic data from high-fidelity solvers.191

2.1.1 Estimate of noise covariances192

The use of synthetic high-resolution data has implications for the noise structure193

of the inverse problem (3). Due to the tight coupling between resolution and accuracy194

of computational solvers, the observational noise on averaged quantities is typically small195

compared to the model error, so the leading order error in (3) comes from δ. However,196

since the structure of δ is unknown a priori, we must either parameterize it and calibrate197

it as well (Kennedy & O’Hagan, 2001), or use a heuristic to capture its magnitude. Here,198

we follow the second route and offer a heuristic that has worked well for us in practice.199

If we consider the uncertainty in xc to be negligible, and take Hc to be a measure-
ment of the state aggregated over a time interval τ , we can write (1) as

ϕobs(t)− ϕ0 = ϕ̃(t)− ϕ0 + δ(xc) + ηc, (5)

where ϕobs(t) and ϕ̃(t) are the observed and predicted measures centered at time t, re-
spectively. If we consider a model with no predictive power such that ϕ̃(t) ≈ ϕ0 for all
times t, and take the covariance of (5) from t = 0 to t = TΓ � τ ,

Γc = Var(ϕobs) ≈ Var(δ(xc)) + Var(ηc), (6)

The aggregate noise ηc + δ(xc) ∼ N (0,Γc) is estimated from the variability of the ob-200

served field ϕobs over a time interval TΓ from known initial conditions ϕ0. Note that for201

non-stationary conditions or finite-time averages, Γc depends on TΓ. We emphasize that202

the heuristic (6) is most appropriate when observations yc are obtained from a synthetic203

system ζ that accepts the same configuration xc as model Ψ(φ), as is the case when ζ204

is a high-fidelity PDE solver.205

2.2 Design of the observational map206

2.2.1 Metric-based calibration and model calibration207

The observations y in (3) can be chosen to represent a summary of the data ob-
tained through some engineered transformation H whose definition involves domain-specific
knowledge (Couvreux et al., 2021). This is natural when trying to optimize a particu-
lar metric, like cloud cover, for which we denote this approach metric-based calibration.
In contrast, we define model calibration as the minimization of the mismatch between
the observed coarse-grained dynamics and the dynamics induced by the model. We will
use this definition to construct a domain-agnostic map H. As an example, consider a sys-
tem ζ with coarse-grained dynamics

∂ϕ̄

∂t
+ v̄ · ∇ϕ̄+∇ · (v′ϕ′) = Fϕ, (7)

where (̄·) denotes spatial filtering, (·)′ subfilter-scale fluctuations, and Fϕ is the forcing.208

The field v̄ is prescribed and v′ϕ′ is the term parameterized in Ψ(φ). Let S(t) = [ϕ̄(t), v′ϕ′(t)]T209

be the true closed state, and S̃(t) the closed state predicted by the model. For a com-210

pressible fluid model, S(t) would contain the fluid density, momentum, energy and the211

subgrid advective fluxes of these fields.212

We define model calibration as finding the minimizer of the expected data mismatch213

E[S̃−S] with respect to some norm and time interval, for known initial conditions and214

forcing Fϕ. We minimize the expected mismatch to allow for the calibration of stochas-215

tic models. Observations of the closed state S(t) are not always available, and so this216

definition of model calibration is representative of the ideal learning scenario. In any other217

scenario, we will consider S(t) to be formed by all relevant observable spatial fields.218
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2.2.2 Observations in physical space219

Following our definition of model calibration, we preliminarily define the observa-
tions in the model-data relation (1) as finite-time averages of the normalized observed
state sc for a set of configurations C,

ỹc =
1

Tc

∫ tc

tc−Tc

sc(τ)dτ, sc =

 ṽc,1. . .
ṽc,nc

 =

 σ−1
c,1 Ṽc,1
. . .

σ−1
c,nc

Ṽc,nc

 , c = 1, . . . |C|, (8)

where Tc is the averaging time, ṽc,j ∈ Rhc are the normalized spatial fields compris-
ing sc, Ṽc,j the components of the state Sc prior to normalization, nc is the number of
fields observed in configuration xc, and hc is the number of degrees of freedom of each
field. As an example, the first configuration’s observed state S1 may include as fields at-
mospheric soundings of temperature and specific humidity (n1 = 2) measured at h1 ver-
tical locations above the surface, and the second configuration’s state S2 may include
these fields as well as horizontal velocity profiles, measured at h2 different locations. Nor-
malization of the observed state Sc is performed using the pooled time variance σ2

c,j of

each field Ṽc,j ,

ṽc,j = σ−1
c,j Ṽc,j , σ2

c,j = h−1
c tr

[
Cov(Ṽc,j)

]
, (9)

where covariances are computed over a time interval tc ≥ Tc following the heuristic of
Section 2.1 to capture the expected magnitude of the data mismatch,

Cov(Ṽc,j) =
1

tc

∫ tc

0

Ṽc,j Ṽ
T
c,jdτ −

1

t2c

(∫ tc

0

Ṽc,jdτ
)(∫ tc

0

Ṽc,jdτ
)T
. (10)

We resort to pooled normalization, instead of normalizing each of the dimensions of the220

observed state Sc by their standard deviation, because some of the dimensions of the spa-221

tial fields Ṽc,j may be unaffected by a given forcing. For example, in the atmospheric bound-222

ary layer, observations of liquid water specific humidity will always be zero below the223

lifting condensation level.224

Stacking the observations from all configurations together, the full observation vec-
tor ỹ appearing in the global inverse problem (3) is

ỹ =

 ỹ1

. . .
ỹ|C|

 ∈ Rd̃, d̃ =

|C|∑
c=1

d̃c =

|C|∑
c=1

nchc. (11)

Following again the heuristic in Section 2.1, the noise covariance associated with each
observation vector ỹc is Γ̃c = Cov(sc), computed as in equation (10). Given that the
noise is constructed over configurations, the observational noise covariance is the block
diagonal matrix

Γ̃ =

Γ̃1 0
. . .

0 Γ̃|C|

 ∈ Rd̃,d̃, Γ̃c = Cov(sc) ∈ Rd̃c,d̃c , (12)

where Γ̃c is the observational covariance matrix of configuration c, corresponding to data225

ỹc ∈ Rd̃c .226

2.2.3 Observations in a reduced space227

Each covariance matrix Γ̃c, possibly associated with high-dimensional observations228

and a finite sampling interval, is likely to be approximate rank-deficient and have a large229

condition number κ = σ2
1/σ

2
r , where σ2

i is the i-th largest eigenvalue and r is the ap-230

proximate rank of the matrix (Hansen, 1998). Rank-deficient problems arise when d̃c is231
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greater than or equal to the number of samples used to construct Γ̃c, or when there ex-232

ist eigenvalues σ2
i such that σ2

i /σ
2
1 . εm, where εm is a measure of data or machine pre-233

cision.234

An efficient regularization method for rank-deficient problems is to project the data
from each configuration onto a lower dimensional encoding. If the lower dimensional en-
coding is obtained through principal component analysis (PCA),

yc = PTc ỹc, Γ†c = PTc Γ̃cPc, (13)

where yc ∈ Rdc , Pc is the projection matrix formed by the dc leading eigenvectors of235

Γ̃c, and dc should be chosen such that dc ≤ rc ≤ d̃c, where rc is the approximate rank236

of Γ̃c. The actual value of dc may be chosen through the discrepancy principle, gener-237

alized cross validation, or based on the preservation of a given fraction of the total vari-238

ance, among other criteria (Reichel & Rodriguez, 2013). Projection (13) enables the use239

of the domain-agnostic ỹ by regularizing the associated inverse problem and lowering its240

computational cost. It also allows extending the observation vector to include linearly241

dependent data after appropriate normalization, such that ỹc in expression (8) may in-242

clude normalized time integrals of all observed fields. Furthermore, since Γ̃ in (12) is block243

diagonal, the eigenvalue problem can be solved in parallel for different configurations.244

Note that projection (13) maximizes the projected variance for each configuration; it is245

different than performing PCA on Γ̃ in that it does not discriminate based on the to-246

tal variance of each configuration. Disparities between the two approaches are further247

discussed in Appendix A.248

Although projection (13) regularizes each Γ̃c, the resulting global covariance ma-
trix may be ill-conditioned if truncation is performed between eigenvalues that are close
in value, or if the range of configuration variances tr(Γ̃c) is large (Hansen, 1990). In this
case, Tikhonov regularization can be used to limit the condition number κ of the global
covariance matrix. The regularized projection can then be written as

yc = PTc ỹc, Γc = dcP
T
c Γ̃cPc + κ−1

∗ σ2
1Idc , (14)

where κ∗ is the limiting condition number of the global covariance matrix, σ2
1 is the lead-

ing eigenvalue of the unregularized global covariance and Idc is the identity matrix. The

condition number should be chosen to be κ∗ < ε
−1/2
m . In (14), since the number of re-

tained principal modes may be different among configurations for a given truncation cri-
terion, each block covariance matrix is scaled by dc. Finally, the observation vector and
noise covariance matrix read

y =

 y1

. . .
y|C|

 ∈ Rd, Γ =

Γ1 0
. . .

0 Γ|C|

 ∈ Rd, (15)

which define a regularized inverse problem of the form (3). A schematic of the inverse249

problem construction process is given in Figure 1. The construction of yc from each dy-250

namical system configuration ζ(xc) defines the observational map Hc, used to obtained251

the forward model evaluation Gc(·) from the dynamical model. The construction of each252

(yc,Γc) pair, and the evaluation of Gc(·), can be done in parallel.253

2.3 Loss function254

Given the observations constructed through equations (11)–(15), the solution θ∗

to the inverse problem (3) is the minimizer of the loss function

L(θ; y) =
1

|C|
||y − G(θ)||2Γ =

1

|C|

|C|∑
c=1

L(θ; yc) =
1

|C|

|C|∑
c=1

||yc − Gc(θ)||2Γc
, (16)
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Figure 1: Schematic of the strategy used to construct a regularized inverse problem
from observations of a dynamical system ζ. From left to right: (a) the observed state is
obtained following Section 2.2.1 or from any observable fields; (b) the observed state is
normalized; (c) mean and covariance of the normalized state are computed; (d) ỹc and Γ̃c
are projected onto a lower dimension and regularized; (e) the statistical summaries of each
configuration are aggregated, defining the global inverse problem (3).

that is,
θ∗ = arg min

θ
L(θ; y), (17)

where ||·||Γ denotes the Mahalanobis norm 〈·,Γ−1·〉. The optimum θ∗ arises as the max-255

imum a posteriori (MAP) estimator in the Bayesian formulation of the inverse problem256

(3) using an uninformative prior (Kovachki & Stuart, 2019). The loss (16) represents the257

average configuration data misfit, and it is equivalent to using an error covariance |C|·258

Γ. Although the |C|−1 scaling may be regarded as a nuisance for minimization, it en-259

ables the use of mini-batch surrogates of the total loss in the calibration process.260

The regularizing effect of projection (14) becomes apparent when the gradient of
the loss (16) with respect to the forward map G is considered,

∇L(θ; y) ∝ (DG(θ))TΓ−1(G(θ)− y). (18)

Here, DG(θ) ∈ Rd×p is the Jacobian matrix of G evaluated at θ. Projection (14) reg-261

ularizes the linear system Γ−1(G(θ)−y) in expression (18). This is crucial for conver-262

gence with gradient-based optimization methods. Although the ensemble Kalman algo-263

rithms presented in Section 3 do not compute the gradient (18) explicitly, they do rely264

on approximations of it, so this regularization effect still applies.265

2.3.1 Mini-batch loss evaluations266

Iterative optimization methods require the evaluation of L(θ; y) at each iteration,
which entails evaluating the dynamical model Ψ(φ) in all configurations C and can be
very computationally demanding. A less onerous alternative is to evaluate the loss for
a mini-batch of configurations B ⊂ C at each iteration,

L(θ; yB) =
1

|B|

|B|∑
c=1

||yc − Gc(θ)||2Γc
, (19)

and use L(θ; yB) to update θ instead. The use of L(θ; yB) in lieu of L(θ; y) may be re-267

garded as using noisy evaluations of the total loss for each parameter update. As in equa-268

tion (16), the mini-batch loss (19) represents the average configuration data misfit. To269
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estimate the total data misfit over C, we would multiply expressions (16) and (19) by270

|C|.271

Mini-batch optimization is widely employed in the field of deep learning, where it272

has been shown to help avoid convergence to sharp minima that generalize poorly (M. Li273

et al., 2014; Keskar et al., 2016). Understanding the behavior of optimizers when using274

mini-batches is crucial for online learning, where observations become available sequen-275

tially and the total loss (16) cannot be sampled. Moreover, it provides insight into the276

appropriateness of training sequentially on seasonal or geographically sparse data in Earth277

system modeling applications. We explore the effect of mini-batching on the solution of278

the inverse problem in Section 4.2, training sequentially on randomly sampled config-279

urations with markedly different dynamics.280

3 Ensemble Kalman methods for optimization281

We consider two highly-parallelizable gradient-free optimization algorithms based282

on the extended Kalman filter: ensemble Kalman inversion (EKI, Iglesias et al., 2013)283

and unscented Kalman inversion (UKI, Huang et al., 2022). Both algorithms draw heav-284

ily on Gaussian conditioning for their derivation, such that underlying their update rules285

is the approximation of the parameter distribution as Gaussian (Huang et al., 2022).286

EKI seeks a solution to the inverse problem (3) by evolving an ensemble of J pa-287

rameter vectors θ(j) ∈ Rp, which is used to obtain empirical estimates of covariances288

in parameter space at each step of the algorithm. UKI instead relies on deterministic quadra-289

ture rules for covariance estimation, using 2p + 1 parameter vectors in each iteration.290

Both methods have been used succesfully in a wide variety of inverse problems (Cleary291

et al., 2021; Huang et al., 2022). We demonstrate them here in the context of training292

models that may experience numerical instabilities for a priori unknown parameter com-293

binations, starting with a brief review of the algorithms.294

3.1 Ensemble Kalman inversion (EKI)295

Ensemble Kalman inversion searches for an optimal solution (17) to the inverse prob-

lem (3) through iterative updates of an initial parameter ensemble Θ0 = [θ
(1)
0 , . . . , θ

(J)
0 ].

This initial ensemble is taken to be randomly sampled from a Gaussian prior N (m0,Σ0)
in parameter space. The EKI update equation for the ensemble at iteration n is (Schillings
& Stuart, 2017)

Θn+1 = Θn + Cov(θn,Gn)
[
Cov(Gn,Gn) + ∆t−1Γ

]−1
ε(Θn), (20)

where Θn ∈ Rp×J , ∆t is a nominal learning rate of the algorithm, and ε(Θn) ∈ Rd×J
encodes the mismatch between the forward model evaluations and the data,

ε(Θn) = [y
(1)
n+1 − G(θ(1)

n ), . . . , y
(J)
n+1 − G(θ(J)

n )], (21)

where
y

(j)
n+1 = y + ξ

(j)
n+1, ξ

(j)
n+1 ∼ N (0,∆t−1Γ). (22)

All covariances in (20) are estimated as sample covariances from the J ensemble mem-
bers,

Cov(θn,Gn) =
1

J

(
Θn −

1

J

∑
j

θ(j)
n 1T

)(
GΘn
− 1

J

∑
j

G(θ(j)
n )1T

)T
, (23)

Cov(Gn,Gn) =
1

J

(
GΘn
− 1

J

∑
j

G(θ(j)
n )1T

)(
GΘn
− 1

J

∑
j

G(θ(j)
n )1T

)T
, (24)

where GΘn = [G(θ
(1)
n ), . . . ,G(θ

(J)
n )], and 1 ∈ RJ is the all-ones vector. Note that the296

sample covariances (23) and (24) have at most ranks min(min(d, p), J−1) and min(d, J−297
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1), respectively. From definitions (14) and (15), rank(Γ) = d by construction, so the298

linear system in (20) is well-defined even for J < d.299

Through iterative application of the update equation (20), the ensemble Θ min-300

imizes the projection of the model-data mismatch on the linear span of its members. This301

emphasizes the importance of using J > p ensemble members to span the whole pa-302

rameter space. In this study, we limit the use of EKI and UKI to the calibration of dy-303

namical models for which J ∼ p is feasible. For models with a large number of param-304

eters, localization techniques can be used to maintain performance with J � p (Tong305

& Morzfeld, 2022).306

The update rule (20) drives the ensemble toward consensus, in the sense that |Cov(θn,Gn)| →307

0 as n → ∞. This collapse property precludes obtaining information about parame-308

ter uncertainties directly from EKI. However, the sequence of parameter-output pairs309

{Θn,GΘn
} can be used to train emulators for uncertainty quantification (Cleary et al.,310

2021).311

3.1.1 Addressing model failures within the ensemble312

For some models Ψ(·), we may not know a priori the parameter space region U for313

which trajectories remain physical or numerically stable. For instance, the Courant–Friedrichs–Lewy314

condition in parameterized fluid solvers may change nonlinearly with model parameters,315

or the initialized weights from a non-interpretable neural network parameterization may316

lead to unstable trajectories. In such situations, we need to modify update (20) to ac-317

count for model failures within the ensemble.318

Here we propose a failsafe EKI update based on the successful parameter ensem-
ble. Let Θs,n = [θ

(1)
s,n, . . . , θ

(Js)
s,n ] be the successful ensemble, for which each model Ψ(θ

(j)
s,n)

provides physical trajectories, and let θ
(k)
f,n be the ensemble members for which the model

Ψ(θ
(k)
f,n) fails. We update the successful ensemble Θs,n to Θs,n+1 using expression (20),

and each failed ensemble member as

θ
(k)
f,n+1 ∼ N (ms,n+1,Σs,n+1) , (25)

where

ms,n+1 =
1

Js

Js∑
j=1

θ
(j)
s,n+1, Σs,n+1 = Cov(θs,n+1, θs,n+1) + κ−1

∗ σ2
s,1I. (26)

Here, κ∗ is a limiting condition number and σ2
s,1 is the largest eigenvalue of the sample319

covariance Cov(θs,n+1, θs,n+1). This update has proved very effective for us in practice,320

even in situations where Js < J/2, and is used throughout Section 4. It may be com-321

bined with other conditioning techniques at initialization. For instance, the initial en-322

semble Θ0 may be drawn recursively from the prior N (m0,Σ0) until the number of failed323

members is reduced below an acceptable threshold.324

3.2 Unscented Kalman inversion (UKI)325

The UKI algorithm updates estimates of the mean and covariance of the param-
eter distribution, initialized from an initial guess N (m0,Σ0). Several variants of the al-
gorithm have been developed, with different properties (Huang et al., 2022). In this ar-
ticle, we employ the update rules

mn+1 = mn + Covq(θn,Gn)
[
Covq(Gn,Gn) + 2∆t−1Γ

]−1
ε(mn), (27)

Σn+1 = (1 + ∆t)Σn − Covq(θn,Gn)
[
Covq(Gn,Gn) + 2∆t−1Γ

]−1
Covq(θn,Gn)T , (28)

where mn and Σn are the estimates of the parameter mean and covariance after n it-
erations of the algorithm, and ε(mn) = y−G(mn) is the data-model mismatch of the

–11–



manuscript submitted to Journal of Advances in Modeling Earth Systems

mean prediction. The covariances Covq(θn,Gn) and Covq(Gn,Gn) in (27) and (28) are
computed through quadratures over 2p+ 1 sigma points defined as

θ̂(j)
n = mn + a

√
p[
√

Σn(1 + ∆t)]j , 1 ≤ j ≤ p, (29)

θ̂(j+p)
n = mn − a

√
p[
√

Σn(1 + ∆t)]j , 1 ≤ j ≤ p,
where [

√
Γ]j is the j-th column of the Cholesky factor of Γ, a = min(

√
4/p, 1) is a hy-

perparameter defined in Huang et al. (2022), and θ̂
(0)
n = mn is the central sigma point.

The quadratures are then defined as

Covq(θn,Gn) =

2p∑
j=1

wj(θ̂
(j)
n −mn)(G(θ̂(j)

n )− G(mn))T , (30)

Covq(Gn,Gn) =

2p∑
j=1

wj(G(θ̂(j)
n )− G(mn))(G(θ̂(j)

n )− G(mn))T , (31)

where wj are the quadrature weights,

wj = (2a2p)−1, j ≥ 1. (32)

In contrast to EKI, the update equations of UKI are deterministic given an initial
guess N (m0,Σ0). A limitation of this algorithm is that the number of sigma points scales
linearly with p, which precludes its use when training models with a large number of pa-
rameters. However, for situations where using an ensemble of 2p+1 members is tractable,
UKI improves upon EKI by providing information about parameter uncertainty. UKI
does not drive the 2p + 1 parameter vectors toward consensus; their relative location
is defined by the covariance Σn. The particular variant of UKI used here ensures that
the steady-state estimate of Σn in the limit n → ∞ converges towards an estimate of
the parametric error covariance matrix, given d ≥ p (Huang et al., 2022),

Σ∞ ≈ Covq(θ∞,G∞) [∆t · Covq(G∞,G∞) + 2Γ]
−1

Covq(θ∞,G∞)T . (33)

As shown next, the condition d > p is satisfied by construction when L2 regularization326

is added to UKI. The fact that the limit (33) does not depend on Σ0 has two important327

consequences. On one hand, it precludes the interpretation of N (m0,Σ0) as a Bayesian328

prior. On the other hand, this avoids the need to find a wide enough prior in parame-329

ter space, which can prove difficult for parameters θ without physical interpretation, and330

tends to increase the fraction of model failures within the ensemble. For parameters for331

which a Bayesian interpretation is considered beneficial, a prior can still be enforced through332

L2 regularization. A modification of the UKI dynamics robust to model failures, sim-333

ilar to the one proposed for EKI, is discussed in Appendix B.334

3.3 L2 regularization in ensemble Kalman methods335

The EKI algorithm implicitly regularizes the inverse problem by searching for the
optimal solution (17) over the finite-dimensional space spanned by the initial ensemble.
Although the UKI algorithm does not share this property, both the EKI and UKI algo-
rithms described in Sections 3.1 and 3.2 can be equipped with L2 regularization by con-
sidering the augmented inverse problem (Chada et al., 2020)[

y
mp

]
=

[
G(θ)
θ

]
+

[
δ + η
λ

]
, (34)

where mp ∈ Rp is the parameter prior mean, λ ∼ N (0,Λ) is artificial noise in the pa-
rameters θ, and Λ is the covariance matrix that defines the degree of regularization in
parameter space. The solution to the inverse problem (34) then satisfies

θ∗ = arg min
θ

[
L(θ; y) + ||θ −mp||2Λ

]
. (35)
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A Bayesian perspective to the optimization problem suggests the use of the prior vari-336

ance to define the regularizer Λ. This perspective is particularly interesting for the UKI337

algorithm, which provides estimates of the parameter sensitivities in the calibration pro-338

cess (Huang et al., 2022).339

4 Application to an atmospheric subgrid-scale model340

In this section, the framework and algorithms discussed in Sections 2 and 3 are used341

to learn closure parameters within an EDMF scheme of atmospheric turbulence and con-342

vection. The EDMF scheme is derived by spatially filtering the Navier-Stokes equations343

for an anelastic fluid, and then decomposing the subgrid flow into n > 1 distinct sub-344

domains with potentially moving boundaries (Tan et al., 2018; Cohen et al., 2020). We345

retain second-order moments for one of the subdomains, the environment. Covariances346

within the other subdomains (updrafts) are neglected, which circumvents the need for347

turbulence closures therein. In the end, the EDMF equations require closure for the tur-348

bulent diffusivity and dissipation in the environment, and the mass, momentum, and tracer349

fluxes between environment and updrafts. In what follows, we consider an EDMF scheme350

with a single updraft.351

We consider the EDMF scheme discussed in Cohen et al. (2020); Lopez-Gomez et352

al. (2020); He et al. (2021), which is implemented in a single-column model (SCM). Within353

this SCM, we first seek to learn 16 closure parameters: 5 describing turbulent mixing,354

dissipation, and mixing inhibition by stratification (Lopez-Gomez et al., 2020), 3 describ-355

ing the momentum exchange between subdomains (He et al., 2021), 7 describing entrain-356

ment and detrainment fluxes from the updrafts and into the environment (Cohen et al.,357

2020), and another one defining the surface area fraction occupied by updrafts. In Sec-358

tion 4.4, we substitute the empirical dynamical entrainment/detrainment closure pro-359

posed in Cohen et al. (2020) by a neural network and train the resulting physics-based360

machine-learning model.361

The name, prior range U , and reference to the definition of each parameter in the362

literature are given in Table 1. The prior mean is taken to be equal to the parameter val-363

ues used in Lopez-Gomez et al. (2020); Cohen et al. (2020). The prior in unconstrained364

space necessary to initialize the calibration algorithms, N (m0,Σ0), is obtained from the365

prior mean and range through the use of a transformation T : U → Rp defined in Ap-366

pendix C. In all cases, we employ the failsafe modifications of the EKI and UKI algo-367

rithms (Section 3.1.1 and Appendix B) equipped with regularization, solving the aug-368

mented inverse problem (35) with mp = m0 and Λ = I, unless otherwise specified. This369

regularization is consistent with the prior in Table 1 and the transformation T used for370

the parameters.371

4.1 Description of LES data and model configurations372

The data used for training and testing the EDMF scheme are taken from the LES373

library described in Shen et al. (2022). This library contains high-resolution simulations374

of low-level clouds spanning the stratocumulus-to-cumulus transition in the East Pacific375

Ocean. The large-scale forcing used for these simulations is derived from the cfSites out-376

put of the HadGEM2-A model, retrieved from the Coupled Model Intercomparison Project377

Phase 5 (CMIP5) archive. In particular, the monthly climatology of the cfSites output378

is computed over the 5-year period 2004-2008, and used to initialize and force large-eddy379

simulations for a period of 6 days. Radiative forcing is computed interactively using the380

Rapid Radiative Transfer Model (RRTM, Mlawer et al., 1997).381

The SCM runs are initialized from the coarse-grained LES fields after 5.75 days of
simulation, and run for 6 hours. This runtime was chosen to be much longer than the
equilibration time of the SCM to the steady forcing; experiments using a runtime of 12
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Table 1: Parameters φ considered for calibration in this study. The prior mean values are
taken from LG2020 (Lopez-Gomez et al., 2020), C2020 (Cohen et al., 2020) and H2021
(He et al., 2021), where a physical description of the parameters may be found.

Symbol Description Prior range Prior mean

cm Eddy viscosity coefficient (0.01, 1.0) 0.14, LG2020
cd Turbulent dissipation coefficient (0.01, 1.0) 0.22, LG2020
cb Static stability coefficient (0.01, 1.0) 0.63, LG2020
Prt,0 Neutral turbulent Prandtl number (0.5, 1.5) 0.74, LG2020
κ∗ Ratio of rms turbulent velocity to friction velocity (1.0, 4.0) 1.94, LG2020
cε Entrainment rate coefficient (0, 1) 0.13, C2020
cδ Detrainment rate coefficient (0, 1) 0.51, C2020
cγ Turbulent entrainment rate coefficient (0, 10) 0.075, C2020
β Detrainment relative humidity power law (0, 4) 2.0, C2020
µ0 Entrainment sigmoidal activation parameter (10−6, 10−2) 4 · 10−4, C2020
χi Updraft-environment buoyancy mixing ratio (0, 1) 0.25, C2020
cλ Turbulence-induced entrainment coefficient (0, 10) 0.3, C2020
as Updraft surface area fraction (0.01, 0.5) 0.1, C2020
αb Updraft virtual mass loading coefficient (0, 10) 0.12, H2021
αa Updraft advection damping coefficient (0, 100) 0.001, H2021
αd Updraft drag coefficient (0, 50) 10.0, H2021

hours only resulted in a doubling of the forward model computational cost. Large-scale
forcing is identical to that of the LES, and the radiative heating rates are given by the
horizontal mean of the rates experienced by the high-resolution simulations. The obser-
vational map used to define the inverse problem follows the guidelines of Section 2.2, us-
ing time and horizontally averaged vertical profiles from the last Tc = 3 hours of sim-
ulation, at a vertical resolution of ∆z = 50 m. Following the notation in Section 2.2,
we consider the state

Sc = [ū, v̄, s̄, q̄l, q̄t, w′q′t, w
′s′]T , (36)

where (̄·) denotes time and horizontal averaging, ū and v̄ are the horizontal velocity com-382

ponents, s̄ is the entropy, q̄t is the total specific humidity, w′q′t and w′s′ are vertical fluxes383

of moisture and entropy, and q̄l is the liquid water specific humidity. The pooled vari-384

ances for normalization and the covariance matrix Γ are obtained from the full 6 day statis-385

tics of the large-eddy simulations to capture the internal variability of the system. Fi-386

nally, a low-dimensional encoding is obtained from the state vector (36) through trun-387

cated PCA, truncating the dimension of the noise covariance matrix so as to preserve388

99% of the total noise variance. Calibration results using fewer observed fields at a coarser389

resolution are discussed in Section 4.3.390

In the training data we include a total of 60 LES configurations from the Atmo-391

spheric Model Intercomparison Project (AMIP) experiment, spanning the months of Jan-392

uary, April, July and October. Results are also shown for a validation set, which includes393

January and July simulations from the AMIP4K experiment, where sea surface temper-394

ature is increased by 4 K with respect to AMIP (Shen et al., 2022). Validation results395

are representative of the generalizability of the trained model for the simulation of a warm-396

ing climate; the model was not trained on these warmer conditions.397
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4.2 Calibration using mini-batch loss evaluations398

To demonstrate the effectiveness of Kalman inversion in practical settings where399

evaluating all configurations of interest per iteration may be too expensive or impossi-400

ble (e.g., due to sequential data availability), we present calibration results using mini-401

batches. Batching introduces noise in the loss evaluations due to sampling error. For this402

reason, the behavior of Kalman inversion algorithms using mini-batches is representa-403

tive of their robustness to other sources of noise, such as noise in the data or stochas-404

ticity of the dynamical model. Sampling noise also has implications for uncertainty quan-405

tification with UKI, since additional noise leads to a larger uncertainty estimate Σn. If406

we are interested in capturing the uncertainty given the full training set, we can correct407

for the sampling error by using ∆t = |C|/|B|, which effectively reduces Γ in updates408

(20) and (27). This is the approach we take in this work.409

For training, data are fed to the algorithm by drawing |B| configurations randomly410

and without replacement from the training set at every iteration. Configurations are reshuf-411

fled at the end of every epoch (i.e., every full pass through the training set). Figure 2412

shows the evolution of the training and validation errors for UKI and EKI, using train-413

ing batches of 5 and 20 configurations; the dependence of EKI results on ensemble size414

is explored in Section 4.4. Since the total number of configurations in the training set415

is 60, an epoch requires 12 iterations when using |B| = 5 and 3 when using |B| = 20.416

For many geophysical applications, the cost of evaluating an ensemble of long-term statis-417

tics G(·) from a forward model is significantly higher than performing the inversion up-418

dates (20) or (27). In these situations, a training epoch has similar computational over-419

head for any value of |B|.420

The training error is evaluated here in normalized physical space with respect to
the current batch,

MSE(θ; ỹB) =
1

d̃B
||ỹB − G̃B(θ)||2, (37)

where ỹB ∈ Rd̃B . The validation error is defined similarly, but it is computed over the421

entire validation set at every iteration. Thus, variations in the validation error are only422

due to changes in the model parameters; there is no random data sampling. The train-423

ing and validation errors decrease sharply during the first epoch. Subsequent epochs fine-424

tune the model parameters, further reducing the data-model mismatch. It is remarkable425

and important that the validation error decreases by about the same magnitude as the426

training error, demonstrating that the parameterization approach that leverages a phys-427

ical model generalizes successfully out of the present-climate training sample to a warmer428

climate.429

Both EKI and UKI display efficient training in the low batch-size regime: the val-430

idation error tends to be lower for smaller batches after a fixed number of epochs. Hence,431

decreasing batch size in EKI and UKI can help reduce the computational cost of model432

calibration. The optimal batch size will depend on the CPU and wall-clock time con-433

straints of the user. Although using smaller batches reduces CPU time, it requires more434

serial operations, so using larger batches can reduce wall-clock time.435

The sampling noise due to the use of different configurations (e.g., stratocumulus436

versus cumulus regimes) increases for smaller batches. Although both algorithms achieve437

convergence for a wide range of batch sizes, we find that EKI is more robust than UKI438

to high levels of noise. This is shown in the inset of Figure 2b for |B| = 5, and in Ap-439

pendix D for |B| = 1. Other differences between UKI and EKI may be observed in Fig-440

ure 2. The consensus property of EKI leads to a collapse of the model error spread af-441

ter a few iterations, converging to a point estimate. On the other hand, the UKI ensem-442

ble converges to an MSE spread characteristic of the parameter space region defined by443

the distribution N (mn,Σn).444
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Figure 2: Batch (a) training and (b) validation mean squared error as defined in equa-
tion (37). Lines represent the error of the ensemble mean θ̄, MSE(θ̄, ỹB), and the shading
represents the ensemble standard deviation of MSE(θ; ỹB). All errors are normalized with
respect to the largest initial MSEv(θ̄, ỹB), so they can be compared. Results are shown
for calibration with EKI and UKI, using J = 2p + 1 and training batch sizes |B| = 5, 20.
Errors for |B| = 5 are averaged using a rolling mean of 20 configurations to enable com-
parison with |B| = 20. In (b), the inset focuses on the validation error evolution for a
longer training period.

The evolution of the parameter estimate (mn,Σn) is depicted in Figure 3 through445

the turbulent dissipation cd, updraft advection damping αa and surface area fraction as.446

The UKI estimate provides information about parameter uncertainty, whereas EKI only447

provides a point estimate (i.e., mn). From the UKI estimate we can observe that the train-448

ing set constrains the likely values of the turbulent dissipation (cd) and surface area frac-449

tion (as) to a significantly smaller region than the prior. However, the magnitude of up-450

draft advection damping (αa) is not identifiable using this dataset. For non-identifiable451

parameters, the corresponding diagonal elements of Σn converge to the prior variance452

used in the regularized problem (34), as shown for αa in Figure 3b.453

The covariance estimate Σn also provides information about correlations between454

model parameters and total reduction of uncertainty, as shown in Figure 4. For the cur-455

rent stratocumulus-to-cumulus transition dataset, our EDMF model shows moderate cor-456

relations between parameters regulating the turbulence kinetic energy budget in the bound-457

ary layer (cb, cm, cd, see Lopez-Gomez et al., 2020). We also find entrainment to be neg-458

atively correlated to surface updraft area fraction, detrainment and drag. These corre-459

lations can be used to improve parameterizations at the process level.460

Vertical profiles of q̄l, w′q′t and ū from the validation set are compared to the ref-461

erence LES profiles in Figure 5. The calibrated model yields smoother and more accu-462

rate profiles than the model before training. In particular, calibration significantly re-463

duces biases in liquid water specific humidity and moisture transport for both stratocu-464

mulus and cumulus cloud regimes in the 4 K-warmer AMIP4K experiment. These re-465

sults confirm that the dynamical model can be trained using a low-dimensional encod-466

ing of the time statistics, as proposed in Section 2. They also highlight the generalizabil-467

ity of sparse physics-based models.468
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Figure 3: Evolution of the parameter estimate components corresponding to turbulent
dissipation (cd), updraft advection damping (αa) and surface area fraction (as). All val-
ues are given in physical (constrained) space. The solid lines describe the trajectories of
the mean estimate, T −1(mn). For UKI, the marginal ±σ uncertainty band is included in
shading. This uncertainty is equal to ±T −1(

√
(Σn)i,i) for the i-th parameter. The black

dashed lines are the ±σ uncertainty bands of the prior used for regularization. Legend as
in Figure 2.

4.3 Calibration using partial observations469

Another application of synthetic high-resolution data is the study of calibration sen-470

sitivity to data resolution and partial loss of information. Such sensitivity studies can471

inform the technical requirements of future observing systems or field campaigns (Suselj472

et al., 2020), and are easily implemented with ensemble and unscented Kalman inver-473

sion through modifications of the observational map H.474

Here, we employ the EKI and UKI algorithms for this task by using coarser train-475

ing data at a vertical resolution of ∆z = 200 m. In addition, we consider only a sub-476

set of fields for which real observational data may be obtained in practice: the liquid wa-477

ter potential temperature θ̄l, the total water specific humidity q̄t and the liquid water478

specific humidity q̄l (National Academies of Sciences, Engineering, and Medicine, 2018;479

Suselj et al., 2020). Figure 6 compares calibration results using this reduced setup with480

the results obtained using the full high-resolution observations of Section 4.2. The loss481

of information is evident in the inability of the algorithms to find the same minimum reached482

with richer observations. Nevertheless, Kalman inversion reduces significantly the val-483

idation error from the prior even with sparser data and a limited number of fields.484

The identifiability of individual parameters as a function of the observational map485

H can be inferred from the UKI Σn diagnostic. Figure 6 shows that the partial obser-486

vations of temperature and humidity are enough to constrain the entrainment coefficient487

in the EDMF scheme considered. However, the loss of information with respect to the488

original observations leads to much poorer constraints on the turbulent dissipation co-489

efficient. The same comparison can be performed for any parameter of interest to inform490

observational requirements to constrain models at the process level. This diagnostic is491

an important advantage of UKI over EKI; identifiability is not directly inferable from492

ensemble Kalman inversion due to the ensemble collapse. Nevertheless, this information493

can be recovered through the emulation of the forward map (Cleary et al., 2021).494

–17–



manuscript submitted to Journal of Advances in Modeling Earth Systems

c d b i
Pr t

, 0 a c * a s c c b c d c m c

b
iPrt, 0
a

c
*

as
c
cb

c
d

cm
c

0

(a)

0 25 50 75 100
Iteration

2

4

6

8

10

tr(
n)

(b)

UKI20
UKI10
UKI5

0.6

0.4

0.2

0.0

0.2

0.4

Co
rre

la
tio

n

Figure 4: Parameter correlations estimated from UKI using |B| = 20 (a), and evolution
of the total parameter variance from UKI using |B| = 20, 10 and 5. For comparison, the
prior variance, encoded in UKI through the augmented system (34), is tr(Λ) = 16. Note
that the initial covariance estimate used in UKI (with tr(Σ0) = 1) is decoupled from the
prior. Symbols follow Table 1.

The use of partial observations also highlights the benefits of learning from time495

statistics instead of tendencies. Learning from statistics not only ensures that the cal-496

ibrated dynamical model is stable, which requires a leap of faith when training on in-497

stantaneous tendencies (Bretherton et al., 2022). It also couples the evolution of ther-498

modynamic and dynamical fields, which can improve the forecast of fields unseen dur-499

ing training. An example is shown in Figure 7. The model calibrated using thermody-500

namic profiles improves upon the prior model in the forecast of horizontal velocities within501

the boundary and cloud layers. A common reason to use tendencies for calibration is the502

use of supervised learning techniques that are easy to implement for neural network ar-503

chitectures (e.g., Bretherton et al., 2022). In the next subsection, we demonstrate the504

power of UKI and EKI to calibrate hybrid models with embedded neural network pa-505

rameterizations.506

4.4 Calibration of a hybrid model with embedded neural network clo-507

sures508

We consider now a hybrid EDMF scheme that substitutes the dynamical entrain-
ment and detrainment closures proposed by Cohen et al. (2020) with a three-layer dense
neural network; see Cohen et al. (2020) for a review of how these terms affect the EDMF
scheme dynamics. We define the fractional entrainment (ε) and detrainment (δ) rates
as [

ε
δ

]
=

1

z
NN3(Π1, . . . ,Π6), (38)

where z is the height, and the hidden layers of NN3 have 5 and 4 nodes, from input to
outputs. Our closure (38) seeks to learn local expressions for the z-normalized entrain-
ment/detrainment rates, which have been shown to vary weakly in empirical studies of
shallow cumulus convection (Siebesma, 1996; de Roode et al., 2000). The neural network
inputs Π1, . . . ,Π6 are 6 nondimensional groups on which entrainment and detrainment
may depend, defined as

Π1 =
z(bup − ben)

(wup − wen)2 + w2
d

, (39a)
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Figure 5: Prior, posterior and LES profiles of liquid water specific humidity (q̄l), subgrid-
scale moisture flux (w′q′t) and zonal velocity (ū) for cfSites 5 (top) and 14 (bottom) using
July forcing from the AMIP4K experiment as in Shen et al. (2022). The shading repre-
sents the internal variability of the LES simulations over 6 days of steady forcing, and
the full lines represent 3-hour time-averaged profiles. Prior and posterior results are point
estimates evaluated at the parameter vector closest to the ensemble mean of an EKI
calibration process with |B| = 5 and J = 2p+ 1.

Π2 =
aupw

2
up + (1− aup)w2

en

2(1− aup)een + aupw2
up + (1− aup)w2

en

, (39b)

Π3 =
√
aup, (39c)

Π4 = RHup − RHen, (39d)

Π5 = z/Hup, (39e)

Π6 = gz/RdTref . (39f)

In expressions (39), wd is the Deardorff convective velocity, g is the gravitational accel-509

eration, Rd is the ideal gas constant for dry air and Tref is a reference temperature. The510

subscripts up and en denote updraft and environment, respectively. aup is the updraft511

area fraction, Hup the updraft top height and een the environmental turbulence kinetic512

energy. The relative humidity RH, vertical velocity with respect to the grid mean w, and513

buoyancy b are defined for both updraft and environment.514

The neural network closure (38) introduces 63 additional coefficients with respect515

to the entrainment and detrainment closure calibrated in Sections 4.2 and 4.3, for a to-516

tal of 79 parameters. As the closure complexity increases, it is most practical to use EKI517
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Figure 6: Evolution of the validation error (a) and estimates of the turbulent dissipation
(b) and entrainment coefficient (c) for calibration processes using observations of the state
(36) at 50 m resolution (UKIf , EKIf ), or from θ̄l, q̄t and q̄l at 200 m resolution (UKIo,
EKIo). All inversion processes use |B| = 20. Shading is defined as in Figures 2 and 3.

for calibration, since it enables the use of ensembles with J < 2p+ 1. In Figure 8, we518

present training and validation errors for the hybrid model using J = 50, 100 and 159,519

and for the empirical EDMF scheme with J = 2p + 1 = 33 ensemble members. We520

initialize the neural network weights as θNN ∼ N (θ0
NN, I) with θ0

NN ∼ U(−0.05, 0.05).521

In all cases, we use L2 regularization as discussed in Section 4.2 for all parameters ex-522

cept for those pertaining to entrainment and detrainment. We do this to showcase the523

regularization provided by the compact support property of EKI (Schillings & Stuart,524

2017). We calibrate all parameters of the empirical and hybrid models, to compare the525

optimal performance of both closures.526

Both the empirical and hybrid EDMF schemes generalize well to the validation set,527

with training and validation errors reaching levels of about 5% of the largest a priori val-528

idation error. The strong generalization to 4 K-warmer cloud regimes contrasts with re-529

sults from approaches that try to learn unresolved tendencies directly, without encod-530

ing the physics (Rasp et al., 2018). Using a physics-based approach, all learned closures531

are consistently placed within the coarse-grained dynamics of the system (Cohen et al.,532

2020), which also vastly reduces the need to overparameterize unknown processes. Fur-533

ther, targeting closure terms which isolate a single physical process lends itself to inter-534

pretability in a manner difficult for purely machine-learning based parameterizations that535

simultaneously model many physical processes. After training, relationships between EDMF536

variables and targeted physical quantities like entrainment can be teased out using par-537

tial dependence plots or ablation studies. In addition, the learned relationships are point-538

wise and causal.539

The inset in Figure 8b shows how the higher-complexity hybrid model moderately540

overfits to the training set after ∼ 10 epochs, a behavior that is not observed with the541

empirical model. Hence, in the low-data regime (d . p), adoption of techniques such542

as early stopping (Prechelt, 1998) or sparsity-inducing regularization (Schneider et al.,543

2020) becomes necessary. The compact support property of EKI, which mandates that544

the solution be in the linear span of the initial ensemble, also regularizes the learned hy-545

brid model with decreasing J ; for J = 50 < p overfitting is minimal. Thus, reducing546

the ensemble size is an efficient regularization technique when training large machine-547
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Figure 7: Prior, posterior and LES profiles of liquid water specific humidity (q̄l), vertical
moisture flux (w′q′t) and zonal velocity (ū) for cfSite 3 using July forcing (top) and cfSite
14 using January forcing (bottom) from the AMIP4K experiment (Shen et al., 2022).
Posterior results are shown for a model calibrated using the high-resolution state (36)
(Full), and coarse-resolution observations of θ̄l, q̄t and q̄l (Partial). Shading and legend as
in Figure 5. Results obtained using UKI with |B| = 20.

learning models that tend to overfit. Additional EKI-specific regularization techniques548

for deeper networks are discussed in Kovachki and Stuart (2019).549

Another difference between the empirical and the hybrid models is that for the lat-550

ter, we do not know a priori the parameter ranges for which the model trajectories re-551

main physical. During the training sessions shown in Figure 8, the hybrid models expe-552

rienced a maximum of 25 (J = 50), 30 (J = 100) and 72 (J = 159) failures in a sin-553

gle iteration, all occurring during the first epoch. The use of the modified failsafe up-554

date proposed in Section 3.1.1 proved crucial to enable training in the presence of model555

failures, and it reduced the number of failures to a small fraction of J after a few EKI556

iterations.557

Profiles of q̄l, q̄t and w′q′t are shown in Figure 9 for the trained empirical and hy-558

brid EDMF models. To produce the profiles with the hybrid model, we retain the pa-559

rameters learned at the iteration with lowest validation error from a training session span-560

ning 25 epochs, effectively similar to early stopping. As expected from the validation er-561

ror, the hybrid model slightly improves upon the skill of the empirical model, predict-562
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Figure 8: Batch (a) training and (b) validation normalized mean squared error for the
hybrid and empirical EDMF models. Lines, shading and inset as in Figure 2. Results are
shown for calibration with EKI, using J = 50, 100 and 2p + 1 = 159 ensemble members
for the hybrid model. The empirical model training uses J = 2p + 1 = 33. All inversion
processes use batch size |B| = 10.

ing more accurate profiles of q̄l within the cloud layer. This is, of course, at the cost of563

a significantly higher parameter complexity of the closure.564

As shown here, ensemble Kalman inversion allows for rapid prototyping and com-565

parison of closures within an overarching black-box model. Importantly, this compari-566

son can be done in terms of the online performance of the fully calibrated overarching567

model.568

5 Discussion and conclusions569

Ensemble Kalman methods such as ensemble and unscented Kalman inversion are570

powerful tools for training possibly expensive models. They do not impose any constraint571

on the data used for learning, or the architecture of the closures to be calibrated. This572

means that ensemble Kalman methods can be used to learn all parameters within ar-573

bitrarily complex overarching models, regardless of where those parameters appear in574

the formulation of the model.575

This enables training physics-based machine-learning parameterizations, as demon-576

strated here by substituting an internal component of the EDMF model by a neural net-577

work, which required no change in the data or framework used for training. The ben-578

efits of combining physics and data are evinced by the performance of our trained hy-579

brid closure in simulations of clouds typical of conditions 4 K warmer than the clouds580

in the training set.581

In order to use these algorithms, parameter learning must be framed as an inverse582

problem. This allows great flexibility, but raises the problem of choosing a reasonable583

observational map H and prior covariance Γ to define an inverse problem when we have584

access to high-dimensional data. Through a domain-agnostic strategy and a reasonable585

heuristic about the expected model error, we have demonstrated a systematic way of con-586

structing a well-defined inverse problem from high-dimensional data. This strategy is de-587

signed to maximize the information content through a lossy principal component encod-588

ing H and to allow the use of time averages as observations, making it amenable to har-589
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Figure 9: Prior, posterior and LES profiles of liquid water specific humidity (q̄l), total
water specific humidity (q̄t) and vertical moisture flux (w′q′t) for cfSite 14 using July
forcing (top) and cfSite 8 using January forcing (bottom) from the AMIP4K experiment
(Shen et al., 2022). Definitions of prior, posterior and shading as in Figure 5. Posterior
results are shown for the EDMF model with empirical closures (Empirical), and with the
neural network entrainment closure (38) (Hybrid), using early stopping and 25 epochs of
training. Results obtained using EKI with |B| = 10.

nessing, e.g., satellite observations in addition to computationally generated data. The590

success of this strategy is demonstrated in a variety of settings, using empirical and hy-591

brid models.592

Nevertheless, the flexibility of the inverse problem allows to define the observational593

map H through any observable diagnostic of the model, be it differentiable or not. For594

instance, Barthélémy et al. (2021) use a neural network as the mapping H, to train a low-595

resolution dynamical model directly from features at high resolution. One could also en-596

vision the construction of H through other statistics of the model dynamics, such as the597

variance or skewness. These choices may be preferable for particular tasks, such as the598

prediction of extreme events or the correct representation of emergent phenomena.599

Given an inverse problem, we have shown that EKI and UKI are robust to noise600

and amenable to batching strategies. This establishes the ability of the Kalman algo-601

rithms to train models using sequentially sampled data. The same robustness can be ex-602

pected for other sources of noise, such as stochasticity in the model, as shown by Schneider603

et al. (2021). In addition, we have proposed modifications of the EKI and UKI updates604
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that enable calibrating models that may fail during training, which is often the case for605

Earth system models.606

Although similar, each inversion algorithm presents its own relative strengths in607

our analysis. Calibration through EKI appears to be more robust to noise, and the num-608

ber of ensemble members may be chosen to be lower than for UKI when the parameter609

space is high-dimensional. Indeed, Kovachki and Stuart (2019) show successful results610

for EKI when the number of parameters (e.g., p ∼ 106) is two orders of magnitude higher611

than the ensemble size. Using fewer ensemble members than parameters also introduces612

a regularization effect. On the other hand, UKI provides information about paramet-613

ric uncertainty and correlations, which can be used to improve models at the process level,614

and to rapidly compare the added value of increasingly precise observing systems. Other615

ensemble Kalman methods, such as the sparsity-inducing EKI (Schneider et al., 2020)616

or the ensemble Kalman sampler (Garbuno-Inigo et al., 2020), can provide solutions to617

the inverse problem with other useful properties. In addition, all these ensemble meth-618

ods generate parameter-output pairs that can be used to train emulators for uncertainty619

quantification (Cleary et al., 2021).620

Finally, ensemble Kalman methods may be used for the rapid comparison of pa-621

rameterizations in terms of the online skill of an overarching Earth system model. The622

same framework could be used to train Gaussian processes, random feature models (Nelsen623

& Stuart, 2020), Fourier neural operators (Z. Li et al., 2020), or stochastic closures (Guillaumin624

& Zanna, 2021), for example. These are some of the exciting research avenues that we625

will be exploring in the future.626

Appendix A Configuration-based principal component analysis627

Performing PCA on each configuration allows retaining principal modes from low-628

variance configurations while filtering out trailing modes from high-variance configura-629

tions. The importance of this is demonstrated in Figure A1 for three configurations of630

our LES solver (Pressel et al., 2015) based on observational campaigns of a stable bound-631

ary layer, a stratocumulus-topped boundary layer, and shallow cumulus convection (Beare632

et al., 2006; Stevens et al., 2005; Siebesma et al., 2003). Performing global PCA is equiv-633

alent to using a cutoff σ2 > σ2
∗ in Figure A1a, where we need to choose between ne-634

glecting most modes from certain configurations (e.g., GABLS in Figure A1a) or retain-635

ing highly oscillatory modes from others (e.g., Bomex), as measured by the number of636

zero-crossings of the eigenmode (Hansen, 1998). Highly oscillatory modes may have a637

disproportionate contribution to the loss when calibrating imperfect models. On the other638

hand, performing PCA on each Γ̃c alleviates this problem by aligning the eigenspectra639

before applying the cutoff, as shown in Figure A1b. Appropriate conditioning of the global640

covariance matrix is still enforced when applying configuration-based PCA through the641

Tikhonov regularizer in equation (14).642

Appendix B Addressing model failures with unscented Kalman inver-643

sion644

In the presence of model failures, we perform the UKI quadratures over the suc-
cessful sigma points. Consider the set of off-center sigma points {θ̂} = {θ̂s}∪{θ̂f} where

θ̂
(j)
s , j = 1, . . . , Js are successful members and θ̂

(k)
f are not. For ease of notation, con-

sider an ordering of {θ̂} such that {θ̂s} are its first Js elements, and note that we deal
with the central point θ̂(0) separately. We estimate the covariances Covq(Gn,Gn) and Covq(θn,Gn)
from the successful ensemble,

Covq(θn,Gn) ≈
Js∑
j=1

ws,j(θ̂
(j)
s,n − θ̄s,n)(G(θ̂(j)

s,n)− Ḡs,n)T , (B1)
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Figure A1: (a) Scatter plot of covariance eigenvalues σ2 and the number of zero-crossings
of their corresponding eigenmode for three different configurations of an LES solver. (b)
The same plot, with eigenvalues normalized by the leading eigenvalue of each configura-
tion (σ2

max). Trailing eigenvalues are associated with high-wavenumber oscillatory modes
with frequent sign changes.

Covq(Gn,Gn) ≈
Js∑
j=1

ws,j(G(θ̂(j)
s,n)− Ḡs,n)(G(θ̂(j)

s,n)− Ḡs,n)T , (B2)

where the weights at each successful sigma point are scaled up, to preserve the sum of
weights,

ws,j =

( ∑2p
i=1 wi∑Js
k=1 wk

)
wj . (B3)

In equations (B1) and (B2), the means θ̄s,n and Ḡs,n must be modified from the orig-
inal formulation if the central point θ̂(0) = mn results in model failure,

θ̄s,n =

mn if successful,
1

Js

∑Js
j=1 θ̂

(j)
s,n otherwise,

(B4)

Ḡs,n =

G(mn) if successful,
1

Js

∑Js
j=1 G(θ̂

(j)
s,n) otherwise.

(B5)

These modified UKI quadrature rules are used throughout Section 4 to deal with model645

failures. Since UKI can be initialized from a tighter prior than EKI, due to the absence646

of ensemble collapse, failures are much easier to avoid than with EKI.647

Appendix C Parameter transformation and prior648

Given a prior range [φi, φf ] for a parameter φ ∈ R, we define the transformation

θ = T (φ) = ln
φ− φi
φf − φ

, (C1)

such that the interval midpoint is mapped to θ = 0, and the bounds to ±∞. An un-
constrained Gaussian prior may then be defined for θ given the prior mean in physical
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(constrained) parameter space φp as

θ0 ∼ N (T (φp), σ
2
0), (C2)

where σ2
0 is a free parameter controlling the size of the region within the interval [φi, φf ]649

containing most of the probability. This means that the magnitude of σ is already nor-650

malized with respect to the prior range, so we will generally choose σ ∼ O(1). The p−dimensional651

prior N (m0,Σ0) is then constructed as an uncorrelated multivariate normal with marginal652

distributions given by expression (C2). The normalization induced by (C1) also enables653

the use of isotropic regularization in equation (35), even though the physical parame-654

ters φ may differ in order of magnitude. For more examples of parameter transforma-655

tions in the context of EKI and UKI, see Huang et al. (2022) and Dunbar et al. (2022).656

Appendix D Calibration using very noisy loss evaluations657

The Kalman inversion results are expected to deteriorate above some noise thresh-658

old, as the signal-to-noise ratio in the training process decreases. We explored the sen-659

sitivity of UKI and EKI to noise by sampling a single configuration per iteration from660

the training set described in Section 4.2. As shown in Figure D1, UKI fails to converge661

to the minimum found with larger batches in this limit. The validation error is charac-662

terized by large oscillations due to strong changes in the value of model parameters like663

the entrainment coefficient cε or the eddy diffusivity coefficient cm. On the other hand,664

EKI proves robust to noise even in this limit, converging to the minimum found by UKI665

employing larger batches.666

In the context of Kalman inversion, decreasing the step size ∆t is equivalent to in-667

creasing the noise variance, as shown in updates (20) and (27). We investigate the time668

step role in the small batch limit by performing the ensemble Kalman inversion with ∆t =669

|C|−1 = 1/60. The smaller time step increases the parameter uncertainty, which leads670

to a reduction in parameter oscillations and estimates closer to the prior. This is accom-671

panied by a moderate reduction in validation error oscillations. We performed additional672

inversions using even smaller time steps, which resulted in a convergence of the param-673

eter estimates towards the prior and a minor reduction in validation error with respect674

to the initialization. We conclude that decreasing ∆t in UKI can reduce oscillations due675

to high levels of noise, but it does not result in the same robustness as EKI.676
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