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Key Points 15 

• A Hilbert-Huang transform is applied to the geomagnetic aa data to identify 16 

the solar cycle dependency in the data 17 

• Extreme value theory is applied to the aa data separately in solar minimum 18 

and maximum conditions 19 

• March 1989 (Quebec) event is shown to overall be a 1-in-25 year event. But a 20 

1-in-130 year event during solar minimum 21 



Abstract 22 

In this paper extreme value theory (EVT) has been used to estimate the return levels 23 

for geomagnetic activity based on the aa index. The aa index is the longest, 24 

continuously recorded, geomagnetic dataset (from 1868 – Present). This long, 150 25 

year, dataset is an ideal candidate for extreme value analysis. However the data are 26 

not independent and identically distributed as required for EVT since they are 27 

impacted by the approximately 11 year solar cycle. The Hilbert-Huang Transform 28 

has been used to identify the solar cycle component in the data and the data has 29 

been split into solar maximum and minimum times. In these two regimes the 30 

generalised extreme value distribution has been fit to the datasets. These have also 31 

been combined for an estimate of the overall return times. The results suggest that 32 

the largest event in the database (March 1989) is a one in 25 year event. However, 33 

considering separate solar maximum and minimum times has a large impact on the 34 

return times. During solar minimum conditions the return time of the March 1989 35 

event is 130 years. This suggests that the occurrence of extreme space weather 36 

events is conditionally dependent on where in the Solar Cycle we are. 37 

 38 

Introduction 39 

Geomagnetic storms are disturbances in the Earth’s magnetosphere. They are 40 

caused by changes in the solar wind which impact the magnetosphere. Two of the 41 

main causes for these changes in the solar wind are coronal mass ejections (CMEs) 42 

and high-speed solar wind streams (HSSs) [Schwenn, 2007]. CMEs usually have 43 

large speeds (approximately five times faster than the background solar wind), high 44 

energies and large magnetic field strengths [Riley and Love, 2017]. HSSs come from 45 



solar coronal holes and the fast wind from these regions interacts with the slower 46 

upstream wind which create co-rotating interaction regions (CIRs) [Garton et al., 47 

2018]. These regions have increased magnetic field strength and higher particle 48 

density [Schwenn, 2007]. A lot of the largest space weather impacts are associated 49 

with geomagnetic storms: geomagnetically induced currents, radio scintillation, solar 50 

energetic particle events and enhanced fluxes of relativistic electrons [Cannon, 51 

2013]. 52 

 53 

Indices are used to quantify the relative strength of geomagnetic events, these 54 

include Dst ([World Data Center for Geomagnetism Kyoto et al., 2015b]), Kp, Ap 55 

([Bartels, 1957]), AE, AO, AL, AU ([World Data Center for Geomagnetism Kyoto et 56 

al., 2015a]), am, as, an ([Mayaud, 1980]), aa and Aa ([Mayaud, 1972]). The indices 57 

are calculated at different cadences from hourly to daily. Of these, the Dst  index is 58 

used for identifying and quantifying the severity of a geomagnetic storms [e.g. Loewe 59 

and Prolss, 1997]. However the various indices are, for the most part, closely related 60 

to each other. 61 

 62 

Due to the impact of space weather events on human health and technology there is 63 

interest in estimating the return time for the most extreme events. A common 64 

reference point for extreme space weather events is the so called ‘Carrington event’ 65 

[Carrington, 1859], which was one of the largest space weather events in the last 66 

200 years [Cliver and Svalgaard, 2004]. A key question is what is the return time 67 

(likelihood) of extreme space weather events. This is a difficult question to answer 68 

satisfactorily as it requires investigating the tails of probability distributions, where 69 



there is little data. However, this can be done rigorously using extreme value 70 

theory/statistics (EVT). 71 

 72 

EVT is mathematical rigorous and provides sensible measures of uncertainty, which 73 

can be very large when there are few data points. Therefore one of the key 74 

difficulties associated with using EVT is the need for sets of large independent large 75 

samples. For example when looking at extreme temperatures (hot or cold) in 76 

meteorology the annual maxima or minima are suitable time scales since, on the 77 

whole, yearly temperatures are independent, whilst daily temperatures are not. In the 78 

space weather domain it would be ideal to take solar cycle (11 year) minima or 79 

maxima time series. Unfortunately there is not enough recorded data to have enough 80 

data points remaining for effective analysis.   81 

 82 

A number of authors have applied EVT to the space weather domain, including: 83 

[Elvidge and Angling, 2018; Koons, 2001; Meredith et al., 2015; Silbergleit, 1996; 84 

1999; Siscoe, 1976; Thomson et al., 2011; Tsubouchi and Omura, 2007]. Extreme 85 

space weather events have also been estimated using techniques other than EVT 86 

such as fitting power law distributions, log-normal distributions and generalized 87 

Pareto distribution [Chapman et al., 2020; Chapman et al., 2018; Riley, 2012; Riley 88 

and Love, 2017]. The overall goal of each of the papers is to try to quantify the 89 

statistics of a particular measurable associated with an extreme space weather 90 

event. 91 

 92 



In terms of investigating geomagnetic activity: Silbergleit [1996] and Tsubouchi and 93 

Omura [2007] used EVT to investigate extreme events in the DST index using 23 94 

and 44 years of data respectively, Koons [2001] used the Ap index using 66 years of 95 

data, Siscoe [1976] and Silbergleit [1999] variants of the aa index, using 91 and 124 96 

years of data, and Thomson et al. [2011] the rate of change of the magnetic field 97 

using 31 years. Riley and Love [2017] also estimated the probability of extreme DST 98 

events using 60 years of data. Of those, the 91 and 124 year datasets of Siscoe 99 

[1976] and Silbergleit [1999] are very useful for EVT since they capture the longest 100 

time period (8 – 11 solar cycles). However, as well as the length of the datasets, the 101 

number of data used is also crucial in reducing the uncertainty in the analysis. 102 

Siscoe [1976] performed EVT only using the three largest events in each solar cycle 103 

during the test period, resulting in 27 data points and Silbergleit [1999] used the 104 

maximum value from each solar cycle, resulting in 12 data points. Whilst these 105 

approaches break the data into suitable scale sizes, few data points remain which 106 

means there are substantial uncertainties in the results. 107 

 108 

In this paper the aa index (1868 – 2018; 150 years) is analysed using the annual 109 

maximum values. This results in the largest temporal span of data for EVT in the 110 

space weather domain. Recent work by Chapman et al. [2020] has used a linear 111 

“mapping” between the top few percent of the aa index and the annual minimum Dst 112 

index value to estimate the probability of extreme Dst values. This work takes 113 

advantage of the extra data points from this aa-to-Dst mapped set.  114 

Whilst geomagnetic storms tend to last between two and seven days, the annual 115 

maxima has been chosen to increase the likelihood of having independent, 116 



identically distributed data, a requirement for extreme value theory. Using, for 117 

example, weekly rather than annual maxima can introduce further dependencies in 118 

the dataset as individual events may, or may not, originate from the same solar 119 

active region. This could result in the analysed data not being identically distributed. 120 

However the disadvantage of using annual maxima is that the solar variability over 121 

the ~11 year cycle remains embedded in the data. This temporal dependence is 122 

accounted for by using the Hilbert-Huang transform [Huang and Wu, 2008] to split 123 

the data into solar maximum and minimum times. 124 

 125 

 126 

Extreme Value Theory 127 

EVT provides a sophisticated approach for estimating probability distribution 128 

functions, and specifically for looking at the tail of such distributions. The method 129 

avoids any starting assumption about the underlying distribution [Coles, 2001]. The 130 

key result from EVT is the Fisher-Tippett-Gnedenko (FTG) theorem which states that 131 

the maximum of an independent and identically distributed (iid) random variable 132 

converges to one of only three possible distributions: the Gumbel distribution 133 

[Gumbel, 1935], the Fréchet distribution [Fréchet, 1927], or the Weibull distribution 134 

[Weibull, 1951], which can be grouped into the generalized extreme value 135 

distribution. 136 

 137 

Specifically, for a sequence of iid random variables 𝑋1, 𝑋2, … , 𝑋𝑛 with common 138 

distribution function 𝐹 let 𝑀𝑛 = max⁡{𝑋1, … , 𝑋𝑛} and 𝑤 = sup⁡{𝑥: 𝐹(𝑥) < 1} then 139 



 140 

Pr(𝑀𝑛 ≤ 𝑥) = Pr(𝑋1 ≤ 𝑥,… , 𝑋𝑛 ≤ 𝑥) = 𝐹𝑛(𝑥)     (Equation 1) 141 

 142 

Then as 𝑛 → ∞, 𝐹𝑛(𝑥) → 0 if 𝑥 < 𝑤 and 𝐹𝑛(𝑥) → 1 otherwise, as such 𝑀𝑛 → 𝑤. To 143 

avoid a degenerate distribution 𝐹𝑛(𝑥) is normalised. Assuming there is a non-144 

degenerate distribution 𝐺 such that, for normalising constants 𝑎𝑛 > 0 and 𝑏𝑛: 145 

 146 

lim
𝑛→∞

𝐹𝑛(𝑎𝑛𝑥 + 𝑏𝑛) = 𝐺(𝑥)        (Equation 2) 147 

 148 

where 𝐺 is the generalized extreme value (GEV) distribution defined by 149 

 150 

𝐺(𝑥) = exp {−1 [1 + 𝜉 (
𝑥−𝜇

𝜎
)]

−
1

𝜉
}       (Equation 3) 151 

 152 

defined for 1 +
𝜉(𝑥−𝜇)

𝜎
> 0  and where 𝜇 is the location parameter, 𝜎 > 0⁡the scale 153 

parameter and 𝜉 the shape parameter [Coles, 2001]. For 𝜉 < 0 the GEV reduces to 154 

the Weibull distribution, for 𝜉 > 0 the Fréchet distribution and in the limit 𝜉 → 0, 𝐺(𝑥) 155 

reduces to 156 

 157 

𝐺(𝑥) = exp {−𝑒𝑥𝑝 (−
𝑥−𝜇

𝜎
)} ,       (Equation 4) 158 

 159 



the Gumbel distribution. 160 

 161 

The parameters of the GEV are usually estimated using a maximum log likelihood 162 

method [Coles, 2001]. However, the requirement that the variables must be iid is 163 

usually a barrier with using raw data directly and some form of pre-processing is 164 

normally required. 165 

 166 

 167 

Data 168 

The aa index is a global geomagnetic index which is based on the largest horizontal 169 

deviation of the magnetic field measured in nT. It is based on data from two nearly 170 

antipodal stations, one in the UK and another in Australia and has been continuously 171 

recorded since 1868. Over the 150 years the stations where the data have been 172 

recorded has changed. In order to maintain a constant value for the index the 173 

weighting of the different stations have varied over time (Table 1). 174 

 175 

Table 1: Weighting factors for the stations used to compile the aa index [International 176 

Service of Geomagnetic Indices, 2013]. 177 

Northern hemisphere station (UK) Southern hemisphere station (Australia) 

Time range Station Weighting 

factor 

Time range Station Weighting factor 

1868 - 1925 Greenwich 1.007 1868 - 1919 Melbourne 0.967 

1926 - 1956 Abinger 0.934 1920 - 1979 Toolangi 1.033 

1957 - Present Hartland 1.059 1980 - Present Canberra 1.084 

 178 



 179 

The main advantage of using the aa index for EVT is that it is the longest running 180 

planetary index of geomagnetic activity. This long sample time helps in reducing the 181 

uncertainties in the EVT extrapolation, however on this time scale the impact of the 182 

solar cycles becomes apparent, which has been shown to have an impact on the 183 

results of extreme value modelling [Riley and Love, 2017]. Figure 1 shows the time 184 

series of the aa index in the top panel (each point is the annual maximum aa value) 185 

and the bottom panel of the figure shows the periodogram created with a Hamming 186 

windowing function on the data. The large peak in the periodogram corresponds to 187 

10.7 years and is the solar cycle contribution to the data. To perform EVT on the 188 

dataset this temporal dependence should be accounted for. In this work the Hilbert-189 

Huang transform (HHT) is used to identify solar maximum and minimum times, which 190 

are assumed to each be iid, and EVT can be performed on each. 191 

 192 

The HHT decomposes a time series into intrinsic mode functions (IMFs) and then 193 

finds the instantaneous frequency of each IMF [Norden E Huang and Wu, 2008]. The 194 

first step of the HHT is to use empirical mode decomposition (EMD) [N. E. Huang et 195 

al., 1998]. Similar to the Fourier and Wavelet transform, EMD splits a signal into its 196 

components, called intrinsic mode functions (IMFs). An IMF is a function in which the 197 

number of extrema and zero-crossings differ by at most one and at each point the 198 

mean value of the envelopes, defined by the local maxima and minima, is zero. The 199 

sum of the IMFs reconstitute the original signal. Hilbert spectral analysis (HSA) can 200 

then be used by applying the Hilbert transform to each IMF to find the instantaneous 201 

frequency [N. E. Huang et al., 1998]. Unlike Fourier and Wavelet transforms HHT is 202 



an algorithmic approach rather than theoretical. However the main advantage of the 203 

HHT over Fourier and Wavelet is that it is suitable for nonlinear and non-stationary 204 

data. 205 

 206 

 207 

 208 

Figure 1. Top panel shows the time series of the annual maxima aa index. Bottom 209 
panel shows the periodogram of the series. 210 

 211 

 212 



Applying the HHT to the aa index data (top panel of Figure 1) results in nine IMFs 213 

shown in Figure 2. The top panel of the figure shows the original aa index values (in 214 

red), then each of the IMFs are shown in blue. Using HSA the envelope of each IMF 215 

has been found (shown in green) and the value of the instantaneous time period 216 

(ITP) (one over the instantaneous frequency) is shown in the upper left of each IMF 217 

plot. A single value for the ITP is found by fitting a linear polynomial through the data. 218 

In each case the polynomial was of order zero (as expected) and the constant term 219 

is shown. From the figure it can be seen that the third IMF has an ITP which 220 

corresponds to the peak time period from Figure 1. This provides confidence that this 221 

particular IMF corresponds to the sunspot cycle component in the aa index data. 222 

 223 

This particular IMF could be used in the fitting of the GEV as part of a temporally 224 

varying location and scale parameters [Coles, 2001]. However this requires 225 

propagation of the IMF forward in time. With only simplistic ways of interpolating the 226 

IMF forward in time (it is hard to predict the next solar cycle) it makes finding the 227 

return times difficult (a key attribute for extreme value modelling). 228 

 229 

Instead the aa variables can be made to be iid by separating the solar maximum and 230 

minimum conditions. In each of the the two cases it can be assumed that they are 231 

distributed according to the same function. Rather than using a separate dataset to 232 

try and determine when these times are, the third (solar cycle dependent) IMF can 233 

be used. The IMF is centred at zero and positive values can be used to describe 234 

solar maximum times, whilst negative values can be used as solar minimum times. 235 

Comparing the IMF estimated solar maximum/minimum times to the sunspot cycle 236 



(as independent verification of this approach) shows that the estimated maximum 237 

overlaps with the peak of the sunspot number as would be expected (Figure 3). 238 

 239 

Figure 2. aa index decomposed into its 9 IMFs. The original aa index is shown in the 240 

top panel (red) and each panel below shows an IMF (blue). For each IMF the 241 
envelope has been found using the Hilbert transform (green) and the dominant 242 

instantaneous frequency value is shown in the upper left of each IMF plot. 243 

 244 

 245 



Figure 3. Annual maximum sunspot number [SILSO World Data Center, 2018]. Solar 246 
maximum times (from the third IMF from the aa index) are shaded. 247 

 248 

Results 249 

 250 

Fitting the GEV to the solar maximum and minimum time series using least log 251 

likelihood results in the estimated 𝜇, 𝜎, 𝜉  (and standard errors) as shown in Table 2. 252 

One method for verifying the quality of the fit of the GEV distribution is by looking at 253 

the quantile plot which shows the pairs 254 

 255 

{𝐺−1 (
𝑖

𝑛+1
) , 𝑥𝑖} ,⁡⁡⁡⁡⁡𝑖 ∈ {1, … , 𝑛}       (Equation 5) 256 

 257 

for the ordered annual aa values {𝑥1, 𝑥2, … , 𝑥𝑛} and where 𝐺−1(𝑥) is the inverse of 258 

Equation 3, given by [Coles, 2001]: 259 

 260 

𝐺−1 (
𝑖

𝑛+1
) = 𝜇 −

𝜎

𝜉
(1 − (− log (

𝑖

𝑛+1
))

−𝜉
).      (Equation 6) 261 

 262 

The quantile plot for solar maximum and minimum times is shown in Figure 4. The 263 

plot being roughly linear is an indication of a good agreement between the model fit 264 

and the empirical data. 265 

 266 



Table 2. The GEV fit parameters for the solar maximum and minimum conditions, the 267 

standard error is shown in parenthesis. 268 

 Number data 

points 

𝜇 𝜎 𝜉 

Maximum 78 279 

(17.8) 

130 

(12.6) 

-0.03 

(0.12) 

Minimum 72 174 

(9.24) 

68.8 

(7.16) 

0.15 

(0.10) 

 269 

 270 

 271 

Figure 4. Quantile plot of the GEV fit for solar maximum and minimum times. 272 

 273 

 274 

Using the fitted GEV distributions the return time for any given event can be 275 

estimated for either solar maximum or minimum conditions using the values in Table 276 

2. However another useful return time would combine both solar maximum and 277 

minimum. The combined return time can be found by solving 278 



 279 

𝐺𝑚𝑎𝑥(𝑧𝑝)𝐺𝑚𝑖𝑛(𝑧𝑝) = 1 −
1

𝑝
        (Equation 7) 280 

 281 

for 𝑧𝑝, the return level with return period 1/𝑝 (𝑧𝑝 is expected to be exceeded by the 282 

annual maximum aa value with probability 𝑝), and where 𝐺𝑚𝑎𝑥, 𝐺𝑚𝑖𝑛 are the GEV 283 

distributions defined by the parameters in Table 2 [Coles, 2001]. The return levels for 284 

10, 50, 100, 500 and 1000 years are shown in Table 3, with the standard errors 285 

shown in parenthesis. It is interesting to note the difference in return times between 286 

solar maximum and minimum times. This suggests that the probability of an extreme 287 

event is conditionally based on what part of the solar cycle we are in. This is in 288 

agreement with the findings of Riley and Love [2017] who determined that, assuming 289 

a power law distribution, the probability of geomagnetic storm exceeding the 290 

Carrington event (in terms of Dst) was 1.4% during solar minimum conditions and 291 

28% for solar maximum conditions. 292 

 293 

Table 3. Return levels for 10, 50, 100, 500 and 1000 year return periods for solar 294 
maximum and minimum conditions as well combined results. The standard error is 295 
shown in parenthesis. 296 

 10-year 50-year 100-year 500-year 1000-year 

Maximum 611 (50) 873 (146) 989 (208) 1271 (408) 1399 (519) 

Minimum 365 (30) 565 (89) 670 (131) 969 (287) 1127 (386) 

Combined 631 (60) 898 (155) 1019 (216) 1321 (429) 1463 (562) 

 297 

 298 



 299 

These results have been compared to previous EVT work on the Ap index (an index 300 

similar to the aa index) undertaken by Koons [2001]. To compare the results, since 301 

the data are on different scales, they have been normalised by dividing through by 302 

the peak value of the March 1989 event [Feynman and Hundhausen, 1994]. This is 303 

the largest value in the aa index database (tied with the “Halloween” event of 2003) 304 

and the second largest in Ap (the largest is an event is from November 1960). Koons 305 

[2001] provides the fit parameters for the Gumbel distribution which was shown to 306 

have the best fit with the data. However no standard error was reported in the 307 

results. So for ease of comparison in this work the same 66 years of data was 308 

analysed and fit with the same Gumbel distribution as in Koons [2001] (𝜇 = 99.1409 309 

and 𝜎 = 42.9416). The normalised results for both the aa and Ap index data are 310 

shown in Table 4. 311 

 312 

Table 4. Return levels for this work as well as previous EVT work on Ap [Koons, 313 
2001]. The values are normalised by dividing through by the index value of the event 314 

in March 1989. 315 

 Normalised 

10-year 

Normalised 

50-year 

Normalised 

100-year 

Normalised 

500-year 

Normalised 

1000-year 

Aa 

(Combined) 

0.88 (0.08) 1.26 (0.21) 1.43 (0.30) 1.85 (0.60) 2.05 (0.79) 

Ap [Koons, 

2001] 

0.80 (0.08) 1.09 (0.17) 1.21 (0.22) 1.43 (0.34) 1.54 (0.42) 

 316 

 317 



Comparing the EVT results between the aa and Ap index show that they are very 318 

similar for ‘short’ return times (10 years) with values of 0.88 and 0.80 respectively. 319 

These differences widen as the return periods get longer. This is to be expected as 320 

in this work 150 years of aa data have been used for the estimates compared to 66 321 

years of Ap data from Koons [2001]. The extra data points should provide better 322 

estimates for the longer return periods, especially the 100-year return level. 323 

 324 

Conclusions 325 

 326 

Extreme value theory (EVT) has been used to estimate the return levels for 327 

geomagnetic activity based on the aa index. The aa index is the longest, 328 

continuously recorded, geomagnetic dataset. This long, 150 year, dataset is an ideal 329 

candidate for extreme value analysis. Whilst the aa index is not the most commonly 330 

used space weather index its close relationship with the more commonly used Dst 331 

index [Chapman et al., 2020] implies that similar geoeffective impacts of extreme Dst 332 

events would be felt during extreme aa events. However, the aa data are not 333 

independent and identically distributed (iid) as required for EVT as they are impacted 334 

by the approximately 11 year solar cycle. The Hilbert-Huang Transform has been 335 

used to identify the solar cycle component in the data and the data have been split 336 

into solar maximum and minimum times. In these two regimes the variables are 337 

assumed to be iid, and the generalised extreme value (GEV) distribution has been fit 338 

to the two datasets. These have also been combined for an estimate of the return 339 

times. 340 

 341 



The results suggest that the largest event in the database (March 1989 / October 342 

2003) is a one in 25 year event (but with a standard error of 86 years). Whilst this 343 

may seem counter-intuitive, since there are only two events of that size (aa of 715) in 344 

the 150 year database, there are in total eight events where the aa index exceeds 345 

650. Considering separate solar maximum and minimum times has a large impact on 346 

the return time. During solar minimum the return time of the March 1989 event is 130 347 

years (with a standard error of 145 years). This value seems reasonable since there 348 

is one event with an aa > 650 during solar minimum in the 150 year database 349 

(August 4th 1972; [Knipp et al., 2018]). However it is in contrast to the results of 350 

Riley and Love [2017] who report the probability as ~1-in-700 years during solar 351 

minimum (assuming a power law distribution). This demonstrates the uncertainty that 352 

can arise when extrapolating extreme events by using different underlying 353 

assumptions. Quantifying the impact of solar minimum is of particular importance in 354 

quantifying the likelihood associated with extreme space weather events if a period 355 

of extended solar minimum is entered. It has been estimated that there is a 15 - 20% 356 

chance of returning to Maunder Minimum-like conditions within the next 40 years 357 

[Ineson et al., 2015; Lockwood, 2010]. 358 

 359 
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