loading page

Unconventional Surface Charging within Deep Cavities on Airless Planetary Bodies: Particle-in-Cell Plasma Simulations
  • Jin Nakazono,
  • Yohei Miyake
Jin Nakazono
Graduate School of System Informatics, Kobe University

Corresponding Author:[email protected]

Author Profile
Yohei Miyake
Graduate School of System Informatics, Kobe University
Author Profile

Abstract

Surface charging properties of a non-conducting surface that has a deep cavity and is in contact with the solar wind plasma are investigated by means of the particle-in-cell plasma simulations. The modeled topography is intended with a portion of irregular surfaces found on solid planetary bodies. The simulations have revealed unconventional charging features in that the cavity bottom is charged up to positive values even without any electron emission processes such as photoemission, provided that the surface location is accessible to a portion of incoming solar wind ions. The major driver of the positive charging is identified as drifting ions of the solar wind plasma, and an uncommon current ordering where ion currents exceed electron currents is established at the innermost part of the deep cavity. This also implies that the cavity bottom surface may have a positive potential of several hundred volts, corresponding to the kinetic energy of the ions. The present study also clarifies the role of photoelectrons in developing the distinctive charging environment inside the cavity. The photoemitted electrons can no longer trigger positive charging at the cavity bottom, but rather exhibit the effect of relaxing positive potentials caused by the solar wind ions. The identified charging process, which are primarily due to the solar wind ions, are localized at the depths of the cavity and may be one possible scenario for generating intense electric fields inside the cavity.