Ross Maguire

and 11 more

On May 4th, 2022 the InSight seismometer SEIS recorded the largest marsquake ever observed, S1222a, with an initial magnitude estimate of Mw 4.7. Understanding the depth and source properties of this event has important implications for the nature of tectonic activity on Mars. Located ~37 degrees to the southeast of InSight, S1222a is one of the few non-impact marsquakes that exhibits prominent ratio surface waves. We use waveform modeling of body waves (P and S) and surface waves (Rayleigh and Love) to constrain the moment tensor and quantify the associated uncertainty. We find that S1222a likely resulted from dip-slip faulting in the mid-crust (source depth ~18 – 28 km) and estimate a scalar moment of 3.51015 – 5.01015 Nm (magnitude Mw 4.3 – 4.4). The best-fitting focal mechanism is sensitive to the choice of phase windows and misfit weights, as well as the structural model of Mars used to calculate Green’s functions. We find that an E-W to SE-NW striking thrust fault can explain the data well, although depending on the choice of misfit weighting, a normal fault solution is also permissible. The orientation of the best-fitting fault plane solutions suggests that S1222a takes place on a fault system near the martian crustal dichotomy accommodating relative motion between the northern lowlands and southern highlands. Independent constraints on the event depth and improved models of the (an)isotropic velocity structure of the martian crust and mantle could help resolve the ambiguity inherent to single-station moment tensor inversions of S1222a and other marsquakes.

Savas Ceylan

and 8 more

InSight’s seismometers recorded more than 1300 events. Ninety-eight of these, named the low-frequency family, show energy predominantly below 1 Hz down to ∼0.125 Hz. The Marsquake Service identified seismic phases and computed distances for 42 of these marsquakes, 26 of which have backazimuths. Hence, the locations of the majority of low-frequency family events remain undetermined. Here, we use an envelope shape similarity approach to determine event classes and distances, and introduce an alternative method to estimate the backazimuth. In our similarity approach, we use the highest quality marsquakes with well-constrained distance estimates as templates, including the largest event S1222a, and assign distances to marsquakes with relatively high signal-to-noise ratio based on their similarities to the template events. The resulting enhanced catalog allows us to re-evaluate the seismicity of Mars. We find the Valles Marineris region to be more active than initially perceived, where only a single marsquake (S0976a) had previously been located. We relocated two marsquakes using new backazimuth estimates, which had reported distances of ∼90o, in the SW of the Tharsis region, possibly at Olympus Mons. In addition, two marsquakes with little or no S-wave energy have been located in the NE of the Elysium Bulge. Event epicenters in Cerberus Fossae follow a North-South trend due to uncertainties in location, while the fault system is in the NW-SE direction; therefore, these events are re-projected along the observed fault system.

John-Robert Scholz

and 35 more

The instrument package SEIS (Seismic Experiment for Internal Structure) with the three very broadband and three short-period seismic sensors is installed on the surface on Mars as part of NASA’s InSight Discovery mission. When compared to terrestrial installations, SEIS is deployed in a very harsh wind and temperature environment that leads to inevitable degradation of the quality of the recorded data. One ubiquitous artifact in the raw data is an abundance of transient one-sided pulses often accompanied by high-frequency spikes. These pulses, which we term “glitches”, can be modeled as the response of the instrument to a step in acceleration, while the spikes can be modeled as the response to a simultaneous step in displacement. We attribute the glitches primarily to SEIS-internal stress relaxations caused by the large temperature variations to which the instrument is exposed during a Martian day. Only a small fraction of glitches correspond to a motion of the SEIS package as a whole caused by minuscule tilts of either the instrument or the ground. In this study, we focus on the analysis of the glitch+spike phenomenon and present how these signals can be automatically detected and removed from SEIS’ raw data. As glitches affect many standard seismological analysis methods such as receiver functions, spectral decomposition and source inversions, we anticipate that studies of the Martian seismicity as well as studies of Mars’ internal structure should benefit from deglitched seismic data.

Lucas Lange

and 11 more

Observations of the South Polar Residual Cap suggest a possible erosion of the cap, leading to an increase of the global mass of the atmosphere. We test this assumption by making the first comparison between Viking 1 and InSight surface pressure data that have been recorded with ~40 years of difference. Such a comparison also allows us to determine changes in the dynamics of the seasonal ice caps between these two periods. To do so, we first had to recalibrate the InSight pressure data because of their unexpected sensitivity to the sensor temperature. Then, we had to design a procedure to compare distant pressure measurements. We propose two surface pressure interpolation methods at the local and global scale to do the comparison. The comparison of Viking and InSight seasonal surface pressure variations does not show major changes in the CO2 cycle. Such conclusions are also supported by an analysis of the Mars Science Laboratory (MSL) pressure data. Further comparisons with images of the south seasonal cap taken by the Viking 2 orbiter and MARCI camera do not display significant changes in the dynamic of this cap within ~40 years. Only a possible larger extension of the North Cap after the global storm of MY 34 is observed, but the physical mechanisms behind this anomaly are not well determined. Finally, the first comparison of MSL and InSight pressure data suggests a pressure deficit at Gale crater during southern summer, possibly resulting from a large presence of dust suspended within the crater.

Clive Neal

and 25 more

In 2007, the National Academies designated “understanding the structure & composition of the lunar interior” (to provide fundamental information on the evolution of a differentiated planetary body) as the second highest lunar science priority that needed to be addressed. Here we present the current status of the planned response of the Lunar Geophysical Network (LGN) team to the upcoming New Frontiers-5 AO. The Moon represents an end-member in the differentiation of rocky planetary bodies. Its small size (and heat budget) means that the early stages of differentiation have been frozen in time. But despite the success of the Apollo Lunar Surface Experiment Package (ALSEP), significant unresolved questions remain regarding the nature of the lunar interior and tectonic activity. General models of the processes that formed the present-day lunar interior are currently being challenged. While reinterpretation of the Apollo seismic data has led to the identification of a lunar core, it has also produced a thinning of the nearside lunar crust from 60-65 km in 1974 to 30-38 km today. With regard to the deep mantle, Apollo seismic data have been used to infer the presence of garnet below ~500 km, but the same data have also been used to identify Mg-rich olivine. A long-lived global lunar geophysical network (seismometer, heat flow probe, magnetometer, laser retro-reflector) is essential to defining the nature of the lunar interior and exploring the early stages of terrestrial planet evolution, add tremendous value to the GRAIL and SELENE gravity data, and allow other nodes to be added over time (ie, deliver the International Lunar Network). Identification of lateral and vertical heterogeneities, if present within the Moon, will yield important information about the early presence of a global lunar magma ocean (LMO) as well as exploring LMO cumulate overturn. LGN would also provide new constraints on seismicity, including shallow moonquakes (the largest type identified by ALSEP with magnitudes between 5-6) that have been linked to young thrust fault scarps, suggesting current tectonic activity. Advancing our understanding of the Moon’s interior is critical for addressing these and many other important lunar and Solar System science and exploration questions, including protection of astronauts from the strong shallow moonquakes.
Seismic observations involve signals that can be easily masked by noise injection. For InSight, NASA's lander on Mars, the atmosphere is a significant noise contributor for two thirds of a Martian day, and while the noise is below that seen at even the quietest sites on Earth, the amplitude of seismic signals on Mars is also considerably lower requiring an understanding and quantification of environmental injection at unprecedented levels. Mars' ground and atmosphere provide a continuous coupled seismic system, and although atmospheric functions are of distinct origins, the superposition of these noise contributions is poorly understood, making separation a challenging task. We present a novel method for partitioning the observed signal into seismic and environmental contributions. Pressure and wind fluctuations are shown to exhibit temporal cross-frequency coupling across multiple bands, injecting noise that is neither random nor coherent. We investigate this through comodulation, quantifying the signal synchrony in seismic motion, wind and pressure. By working in the time-frequency domain, we discriminate the origins of underlying processes and provide the site's environmental sensitivity. Our method aims to create a virtual vault at InSight, shielding the seismometers with effective post-processing in lieu of a physical vault. This allows us to describe the environmental and seismic signals over a sequence of sols, to quantify the wind and pressure injection, and estimate the seismic content of possible Marsquakes with a signal-to-noise ratio that can be quantified in terms of environmental independence. Finally, we exploit the temporal energy correlations for source attribution of our observations.