Although the role of host movement in shaping infectious disease dynamics is widely acknowledged, methodological separation between animal movement and disease ecology has prevented researchers from leveraging empirical insights from movement data to advance landscape-scale understanding of infectious disease risk. To address this knowledge gap, we examine how movement behavior and resource utilization by white-tailed deer (Odocoileus virginianus) determine the distribution of blacklegged ticks (Ixodes scapularis) which depend on this host for dispersal in a highly fragmented New York City borough. Multi-scale hierarchical resource selection analysis and movement modeling provide insight into how deer’s individual movements construct the risk landscape for human exposure to the Lyme disease zoonotic hazard – infected I. scapularis. We conclude the distribution of tick-borne disease risk is the result of individual resource selection by deer across spatial scales in response to habitat fragmentation and anthropogenic disturbances.