As the COVID-19 continues to mutate, the number of infected people is increasing dramatically, and the vaccine is not enough to fight the mutated strain. In this paper, a SEIR-type fractional model with reinfection and vaccine inefficacy is proposed, which can successfully capture the mutated COVID-19 pandemic. The existence, uniqueness, boundedness and nonnegativeness of the fractional model are derived. Based on the basic reproduction number R 0 , locally stability and globally stability are analyzed. The sensitivity analysis evaluate the influence of each parameter on the R 0 and rank key epidemiological parameters. Finally, the necessary conditions for implementing fractional optimal control are obtained by Pontryagin's Maximum Principle, and the corresponding optimal solutions are derived for mitigation COVID-19 transmission. The numerical results show that humans will coexist with COVID-19 for a long time under the current control strategy. Furthermore, it is particularly important to develop new vaccines with higher protection rates.