In this letter, the issue of mitigating strong co-channel interference (CCI) in communication systems is addressed. Unlike conventional model-based methods, a novel data-driven scheme is proposed. A recurrent neural network (RNN) is trained to directly demodulate the desired signal under strong CCI. Instead of inputting the original received signal, in-phase and quadrature interference-robust features (IRF) are extracted through preprocess. The RNN is then trained offline to implement sequence labelling, with the IRF sequences and known code sequences of the desired signal as inputs and ground-truth labels. Meanwhile, a guard zone is introduced when loading the IRF sequences to enable better contextual information exploitation by the RNN demodulator. Online tests validated the low bit error rate (BER) of the RNN demodulator, under strong CCI. Moreover, the proposed scheme outperformed existing model-based and data-driven interference mitigation schemes in terms of the BER, especially in low signal-to-interference ratio region. Inspiringly, the proposed data-driven scheme generalized well to varied unseen test conditions.