References
  1. He, M.; Folland, T. G.; Duan, J; Alonso-González, P.; De Liberato, S.; Paarmann, A; Caldwell, J. D. Anisotropy and Modal Hybridization in Infrared Nanophotonics Using Low-Symmetry Materials, ACS Photonics 2022, 9 , 1078-1095. DOI: 10.1021/acsphotonics.1c01486
  2. Meng, Y., Chen, Y., Lu, L. et al. Optical meta-waveguides for integrated photonics and beyond. Light Sci Appl 2021 ,10 , 235. https://doi.org/10.1038/s41377-021-00655-x
  3. Yang, H.; Jussila, H.; Autere, A.; Komsa, H.-P.; Ye, G.; Chen, X.; Hasan, T.; Sun, Z. Optical Waveplates Based on Birefringence of Anisotropic Two-Dimensional Layered Materials. ACS Photonics2017, 4 , 3023-3030. DOI: 10.1021/acsphotonics.7b00507
  4. Silva-Guillén, J. A.; Canadell, E.; Guinea, F.; Roldán, R. Strain Tuning of the Anisotropy in the Optoelectronic Properties of TiS3.ACS Photonics 2018 , 5 , 3231-3237. DOI: 10.1021/acsphotonics.8b00467
  5. Valderrabano, M. Influence of Anisotropic Conduction Properties in the Propagation of the Cardiac Action Potential. Prog. Biophys.Mol. Biol. 2007 , 94 , 144–168.
  6. Street, R. A. The Benefit of Order. Nat. Mater. 2006 , 5, 171–172.
  7. Lee, S.-J.; Asheghali, D.; Blevins, B.; Timsina, R.; Esworthy, T.; Zhou, X.; Cui, H.; Hann, S. Y.; Qiu, X.; Tokarev, A.; Minko, S.; Zhang, L. G. Touch‐Spun Nanofibers for Nerve Regeneration. ACS Appl. Mat. & Int. 2020 , 12 , 2067‐2075. DOI: 10.1021/acsami.9b18614
  8. Vitiello, M.S.; Scalari, G.; Williams, B.; De Natale, P. Quantum cascade lasers: 20 years of challenges. Opt. Express.2015 , 23 , 5167–5182. DOI: 10.1364/OE.23.005167
  9. Hugi, A; Horvath, R.; Jouy, P. Advances of dual-comb spectroscopy based on QCL for environmental and water analysis. Proc. SPIE, Optical Fibers and Sensors for Medical Diagnostics, Treatment and Environmental Applications2021 , XXI , 1163511. DOI: 10.1117/12.2582911
  10. Hinrichs, K.; Shaykhutdinov, T.; Kratz, C.; Furchner, A. Brilliant mid-infrared ellipsometry and polarimetry of thin films: Toward laboratory applications with laser based techniques. J. Vac. Sci. & Technol. B 2019 , 37 , 060801. DOI: 10.1116/1.5122869
  11. Furchner, A.; Hinrichs, K. Mid-Infrared Laser Ellipsometry: A New Era Beyond FTIR. Adv. Opt. Technol. 2022, Article ASAP. DOI: 10.1515/aot-2022-0013.
  12. Akhgar, C.K.; Ramer, G.; Żbik, M.; Trajnerowicz, A.; Pawluczyk, J.; Schwaighofer, A.; Lendl, B. The Next Generation of IR Spectroscopy: EC-QCL-Based Mid-IR Transmission Spectroscopy of Proteins with Balanced Detection. Analytical Chemistry 2020 ,92 , 9901-9907. DOI: 10.1021/acs.analchem.0c01406
  13. Schwaighofer, A.; Brandstetter, M.; Lendl, B. Quantum cascade lasers (QCLs) in biomedical spectroscopy. Chem. Soc. Rev.2017 , 46 , 5903-5924. DOI: 10.1039/C7CS00403F
  14. Schönhals, A.; Kröger-Lui, N.; Pucci, A.; Petrich, W. On the role of interference in laser-based mid-infrared widefield microspectroscopy.J. of Biophotonics 2018 , 11 , e201800015. DOI: 10.1002/jbio.201800015
  15. Consolino, L.; Cappelli, F.; de Cumis, M. S.; De Natale, P. QCL-based frequency metrology from the mid-infrared to the THz range: a review.Nanophotonics 2019 , 8 , 181-204. DOI: 10.1515/nanoph-2018-0076
  16. Galán-Freyle, N. J.; Pacheco-Londoño, L. C.; Román-Ospino, A. D.; Hernandez-Rivera, S. P. Applications of Quantum Cascade Laser Spectroscopy in the Analysis of Pharmaceutical Formulations.Appl. Spectr. 2016 , 70 , 1511-1519. DOI: 10.1177/0003702816662609
  17. Wei, S.; Kulkarni, P.; Ashley, K.; Zheng, L. Measurement of Crystalline Silica Aerosol Using Quantum Cascade Laser–Based Infrared Spectroscopy. Sci. Rep. 2017 , 7 , 13860. DOI: 10.1038/s41598-017-14363-3
  18. Hinrichs, K.; Shaykhutdinov, T. Polarization-Dependent Atomic Force Microscopy–Infrared Spectroscopy (AFM-IR): Infrared Nanopolarimetric Analysis of Structure and Anisotropy of Thin Films and Surfaces.Appl. Spectr. 2018 , 72 , 817-832. DOI: 10.1177/0003702818763604
  19. Dazzi, A.; Prater, C. B.AFM-IR: Technology and Applications in Nanoscale Infrared Spectroscopy and Chemical Imaging. Chem. Rev. 2017 , 117 , 5146-5173. DOI: 10.1021/acs.chemrev.6b00448
  20. Wehmeier, L.; Lang, D.; Liu, Y.; Zhang, X.; Winnerl, S.; Eng, L. M.; Kehr, S.C. Polarization-dependent near-field phonon nanoscopy of oxides: SrTiO3, LiNbO3, and PbZr0.2Ti0.8O3. Phys. Rev. B2019 , 100 , 035444. DOI: 10.1103/PhysRevB.100.035444
  21. Yao, Z; Chen, X.; Wehmeier, L.; Xu, S.; Shao, Y; Zeng, Z; Liu, F.; Mcleod, A. S.; Gilbert Corder, S. N.; Tsuneto, M.; Shi, W.; Wang, Z.; Zheng, W.; Bechtel, H. A.; Carr, G. L., Martin, M. C.; Zettl, A.; Basov, D. N.; Chen, X.; Eng, L. M.; Kehr, S. C.; Liu., M. Probing subwavelength in-plane anisotropy with antenna-assisted infrared nano-spectroscopy. Nat. Commun. 2021 , 12 , 2649. DOI: 10.1038/s41467-021-22844-3
  22. Tong, L.; Huang, X.; Wang, P.; Ye, L.; Peng, M.; An, L.; Sun, Q.; Zhang, Y.; Yang, G.; Li, Z.; Zhong, F.; Wang, F.; Wang, Y.; Motlag, M.; Wu, W.; Cheng, G. J.; Hu, W. Stable mid-infrared polarization imaging based on quasi-2D tellurium at room temperature. Nat Commun. 2020 , 11 , 2308. DOI: 10.1038/s41467-020-16125-8
  23. Xu, S.; Rowlette, J.; Lee, Y. J. Imaging 3D molecular orientation by orthogonal-pair polarization IR microscopy. Opt. Express2022 , 30 , 8436-8447. DOI: 10.1364/OE.449667
  24. Freitag, S.; Baer, M.; Buntzoll, L.; Ramer, G.; Schwaighofer, A.; Schmauss, B.; Lendl, B. Polarimetric Balanced Detection: Background-Free Mid-IR Evanescent Field Laser Spectroscopy for Low-Noise, Long-term Stable Chemical Sensing. ACS Sensors2021 , 6 , 35-42. DOI: 10.1021/acssensors.0c01342
  25. Lüdeke, S.; Pfeifer, M.; Fischer, P. Quantum-cascade laser based vibrational circular dichroism. J. Am. Chem. Soc. 2011 ,133 , 5704−5707. DOI: 10.1021/ja200539d
  26. Bakir, G.; Girouard, B. E.; Wiens, R.; Mastel, S.; Dillon, E.; Kansiz, M.; Gough, K. M. Orientation Matters: Polarization Dependent IR Spectroscopy of Collagen from Intact Tendon Down to the Single Fibril Level. Molecules 2020 , 25 , 4295. DOI: 10.3390/molecules25184295
  27. Furchner, A.; Kratz, C.; Rappich, J.; Hinrichs, K. Multi-Timescale Infrared Quantum Cascade Laser Ellipsometry. Opt. Lett.2022 , 47 , 2834-2837. DOI: 10.1364/OL.457688
  28. Ebner, A.; Zimmerleiter, R.; Hingerl, K.; Brandstetter, M. Towards Real-Time In-Situ Mid-Infrared Spectroscopic Ellipsometry in Polymer Processing. Polymers 2022 , 14 , 7. DOI: 10.3390/polym14010007
  29. Furchner, A; Kratz, C.; Hinrichs, K. Sub-second infrared broadband-laser single-shot phase–amplitude polarimetry of thin films. Opt. Lett. 2019 , 44 , 4387–4390. DOI: 10.1364/OL.44.004387
  30. Picqué, N.; Hänsch, T. W. Frequency comb spectroscopy. Nature Photon 2019 , 13 , 146–157. DOI: 10.1038/s41566-018-0347-5
  31. Sumihara, K.A.; Okubo, S.; Okano, M.; Inaba, H; Watanabe, S. Polarization-sensitive dual-comb spectroscopy. J. Opt. Soc. Am. B 2017 , 34 , 154-159. DOI: 10.1364/JOSAB.34.000154
  32. Minamikawa, T.; Hsieh, Y. D.; Shibuya, K.; Hase, E.; Kaneoka, Y.; Okubo, S.; Inaba, H.; Mizutani, Y.; Yamamoto, H.; Iwata, T.; Yasui T. Dual-comb spectroscopic ellipsometry. Nat. Commun. 2017 ,8 , 610. DOI: 10.1038/s41467-017-00709-y
  33. Villares, G.; Hugi, A.; Blaser, S.; Faist, J. Dual-comb spectroscopy based on quantum-cascade-laser frequency combs.Nat. Commun. 2014 , 5 , 5192. DOI: 10.1038/ncomms6192
  34. Coddington, I.; Newbury, N.; Swann, W. Dual-comb spectroscopy.Optica 2016 , 3 , 414-426. DOI: 10.1364/OPTICA.3.000414
  35. Norahan, M. J.; Horvath, R.; Woitzik, N.; Jouy, P.; Eigenmann, F.; Gerwert, K.; Kötting, C. Microsecond-Resolved Infrared Spectroscopy on Nonrepetitive Protein Reactions by Applying Caged Compounds and Quantum Cascade Laser Frequency Combs. Anal. Chem. 2021 ,93 , 6779-6783. DOI: 10.1021/acs.analchem.1c00666
  36. Pinkowski, N. H.; Biswas, P.; Shao, J.; Strand, C. L.; Hanson, R. K. Thermometry and speciation for high-temperature and -pressure methane pyrolysis using shock tubes and dual-comb spectroscopy. Meas. Sci. Technol. 2021 , 32 , 125502.
  37. Muñoz-Pineda, E.; Järrendahl, K.; Arwin, H.; Mendoza-Galván, A. Symmetries and relationships between elements of the Mueller matrix spectra of the cuticle of the beetle Cotinis mutabilis. Thin Sol. Films 2014 , 571, 660-665. DOI: 10.1016/j.tsf.2013.11.144
  38. Hinrichs, K.; Eichhorn, K.-J. Chap. 1, 2, 3, 6, 7, 9, 12, 13, 19, 20, 21, 22 in Ellipsometry of Functional Organic Surfaces and Films , 2nd ed., Springer Ser. Surf. Sci. 52 , Springer International Publishing AG, 2018.
  39. Chalmers, J.M., Griffiths, P.R. eds.; A. Röseler, E.H. Korte, Chap. 2.8 in Handbook of Vibrational Spectroscopy ; John Wiley & Sons, Ltd, 2001.
  40. Gorodzha, S. N.; Surmeneva, M. A.; Surmenev, R. A. Fabrication and characterization of polycaprolactone cross-linked and highly-aligned 3-D artificial scaffolds for bone tissue regeneration via electrospinning technology. Mat. Sci. Eng. 2015 , 98 , 012024. DOI: 10.1088/1757-899X/98/1/012024
  41. Hinrichs, K.; Blevins, B.; Furchner, A.; Yadavalli, N. S.; Minko, S. Infrared polarimetry: Anisotropy of polymer nanofibers. Micro and Nano Engineering 2022 , 14 , 100116. DOI: 10.1016/j.mne.2022.100116
  42. Wang, Z.; Sun, B.; Lu, X.; Wang, C.; Su, Z. Molecular Orientation in Individual Electrospun Nanofibers Studied by Polarized AFM-IR.Macromolecules 2019 , 52 , 9639-9645. DOI: 10.1021/acs.macromol.9b01778
  43. Klocke, J. L.; Mangold, M.; Allmendinger, P.; Hugi, A.; Geiser, M.; Jouy, P.; Faist, J.; Kottke, T. Single-Shot Sub-microsecond Mid-infrared Spectroscopy on Protein Reactions with Quantum Cascade Laser Frequency Combs. Anal. Chem. 2018 , 90 , 10494-10500. DOI: 10.1021/acs.analchem.8b02531