Chloé Tilliette

and 9 more

Iron (Fe) is an essential micronutrient for phytoplankton, particularly diazotrophs, which are abundant in the Western Tropical South Pacific Ocean (WTSP). Their success depends on the numerous trace metals, particularly iron, released from shallow hydrothermal vents along the Tonga Arc. This study aimed to explore the impact of hydrothermal fluids on particulate trace metal concentrations and biological activity. To identify the composition of sinking particles across a wide area of the WTSP, we deployed sediment traps at various depths, both close and further west of the Tonga Arc. Seafloor sediments were cored at these deployment sites, including at a remote location in the South Pacific Gyre. The sinking particles were composed of a large amount of biological material, indicative of the high productivity of the Lau Basin. A significant portion of this material was lithogenic of hydrothermal origin, as revealed through Al-Fe-Mn tracing. The sinking material showed similar patterns between lithogenic and biogenic fractions, indicating that hydrothermal input within the photic layer triggered surface production. A hydrothermal fingerprint was suggested in the sediments due to the high sedimentation rates and the presence of large, heterogeneous, trace metal-rich particles. The presence of nearby active deep hydrothermal sources was suspected near the Lau Ridge due to the large particle size and the significant enrichment of Fe and Mn. Overall, this study revealed that deep and shallow hydrothermal sources along with submarine volcanism have a significant influence on the biogeochemical signature of particles in the Lau Basin at large spatial and temporal scales.

Chloé Tilliette

and 12 more

In the Western Tropical South Pacific, a hotspot of N2-fixing organisms has recently been identified. The survival of these species depends on the availability of dissolved iron (dFe). dFe was measured along a transect from 175 °E to 166 °W near 19-21 °S. The distribution of dFe showed high spatial variability: low concentrations (~0.2 nmol kg-1) in the South Pacific gyre and high concentrations (up to 50 nmol kg-1) west of the Tonga arc, indicating that this arc is a clear boundary between iron-poor and iron-rich waters. An optimal multiparameter analysis was used to distinguish the relative importance of physical transport relative to non-conservative processes on the observed dFe distribution. This analysis demonstrated that distant sources of iron play a minor role in its distribution along the transect. The high concentrations observed were therefore attributed to shallow hydrothermal sources massively present along the Tonga-Kermadec arc. Nevertheless, in contrast to what has been observed for deep hydrothermal plumes, our results highlighted the rapid decrease in dFe concentrations near shallow hydrothermal sources. This is likely due to a shorter residence time of surface water masses combined with several biogeochemical processes at play (e.g., precipitation, photoreduction, scavenging, biological uptake). This study clearly highlights the role of shallow hydrothermal sources on the dFe cycle within the Tonga-Kermadec arc where a strong link to biological activity in surface waters can be assessed. It also emphasizes the need to consider the impact of these shallow hydrothermal sources for a better understanding of the global iron cycle.