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Abstract. In this paper, the problem of state estimation for a fractional-order neural networks system with
uncertainties is studied by a sampled-data controller. First, considering the convenience of digital field, such
as anti-interference, not affected by noise, a novel sampled-data controller is designed for the fractional-order
neural network system of uncertainties with changeable sampling time. In the light of the input delay approach,
the sampled-data control system of fractional-order is simulated by the delay system. The main purpose of
the presented method is to obtain a sampled-data controller gain K to estimate the state of neurons, which
can guarantee the asymptotic stability of the closed-loop fractional-order system. Then, the fractional-order
Razumishin theorem and linear matrix inequalities (LMIs) are utilized to derive the stable conditions. Improved
delay-dependent and order-dependet stability conditions are given in the form of LMIs. Furthermore, the
sampled-data controller can be acquired to promise the stability and stabilization for fractional-order system.
Finally, two numerical examples are proposed to demonstrate the effectiveness and advantages of the provided
method.
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1. Introduction

Neural network (NNs) is a classic complicated system made of the interconnected neurons, which has been
focused by many scholars. An artificial NNs is made up of artificial neurons or nodes in the modern science. The
NNs is a network system consisting of interlinked nodes, which simulates the function of neurons in the brain.
It is widely applied to help people solve various problems, for example, image processing, pattern recognition,
convex optimization, robot manipulator in [1]-[6], etc. It should be noted that these problems have an significant
relationship with their interior dynamics and the dynamical behavior of NNs, such as stability, multi-stability,
synchronization, etc. Now, NNs have attracted numerous attention and become a related research field.

With the development of society, fractional calculus is introduced to replace integer order with some non-
integer order. In recent years, the calculus and the control systems of fractional-order (FO) systems have
attracted much attention from researchers in control theory. It is worth mentioning that the order of FO
calculus is not integer, which can overcome the disadvantage that the differential equation model of integer
order can not accurately describe the complex system. And fractional derivatives can better describe the
dynamic behavior of neurons. Fractional derivatives have non-local characteristics, and FO has more accurate
memory and genetic properties compared with integer order. Although fractional calculus has not yet emerged,
it has recently attracted the attention of researchers, and it remains a great field of study. So far, some excellent
results have been presented on the dynamic analysis of FO systems in [7]-[9]. Many important and interesting
conclusions have been acquired in fractional-order neural networks (FONNs) systems and all kinds of issues
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have been investigated by many authors in [10]-[17]. From these results, it can be proved that the FONNs can
more correctly depict and imitate the neurons than the traditional integer neural networks in the human brain.
Because fractional calculus has the advantages of infinite memory and genetic characteristics when representing
system models in biological engineering, neural network, fluid dynamics and other fields, it has received more
and more concern. It is well known that the long memory properties have been ignored in NNs. Additionally,
previous studies have indicated that electrical conductivity of biological cell membranes are FO systems [32].
Therefore, it is extraordinarily proper and accurate to use FO differential equations to simulate and study the
dynamics of real NNs.

It is well known that stability is the most important issue in control systems, and it is the primary condition
for the dynamical systems. For FO systems, numerous interesting conclusions have been obtained in the
literature of proving system stability by Lyapunov function, containing asymptotic stability [20], consistent
stability [21], stability [22], Hopf-Bifurcation research [23, 24], Mittage-Leffler stability [18, 19]. At present,
the FO systems have been attracted more and more attention on the robustness and performance, specially for
FONN systems with uncertainties. For instance, the delay-dependent stability and stabilization for a kind of
FONNs with uncertainty and time-varying delays are discussed in [10]. The asymptotic stability condition for
the FONNs is derived by the Lyapunov method, a neural network property and the FO Razumikhin theorem.
In [12], sufficient conditions that ensure the stability of a estimated fractional uncertain neural network error
system are established by the fractional Lyapunov method.

From the engineering point of view, it is necessary to scheme a controller to make the closed-loop system
stable. In recent years, most scholars design state feedback controller to stabilize the system in previous
literature. For example, asymptotic stability and stabilization of FO linear systems with time-varying structured
uncertainties and time-varying delay are discussed in [7]. The stabilization criterion of the system is derived by
a state feedback controller. During the implementation of state feedback control, the controller gain inevitably
produces a certain degree of inaccuracy due to the degradation of the actuator, the aging of the components
or the requirements of controller gain adjustment. It has been shown that relatively small perturbations in
controller parameters could even destabilize the closed-loop system. Therefore, it is necessary to design a non-
fragile controller that can tolerate the component variation of the controller to a certain extent. The non-fragile
controller design of a class of FO linear delayed systems assumed to have structured uncertainties in both the
plant and the controller is addresses in [8]. And a non-fragile feedback controller is designed to make the
system asymptotically stable. Since most systems are nonlinear in real life, the linear systems are conservative
in the above literatures. To solve this problem, some scholars address the delay-dependent stability and the
stabilization of a class of FO memristive neural networks with time-varying delay in [10]. However, for NNs,
it is often difficult to obtain the state information of all neurons due to network congestion, packet loss or
measurement loss. Therefore, it is an important method to evaluate the neuronal state using the available
network output. Later, some scholars estimate the state of neurons by the available output measurements, and
then design feedback controllers to make FONNs asymptotically stable in [12]. However, although the above
controllers effectively make the system stable, the system receives data in real time, which may increase the
burden of the network channel. As high-speed computing technology develops, the sampled data controller [25]
has been widely used in industry due to its low price, high reliability, convenient preservation. Compared with
the state feedback control, this method greatly improves the bandwidth utilization and reduces the pressure
of receiving information for system. But because the control input is invariant in the following sampling time
interval, it is not easy to acquire the stability criteria for the control system. So researcher have put forward
numerous ways to research it, and the input delay method [26] has been a well-prevalent way for the past few
years. Through the input delay method, the system can be considered as a sequential system with time-varying
delay produced by a zero-order holder (ZOH). In addition, for all we know, there are few results on the stability
for state estimation of FONNs by sampled-data control. Therefore, motivated by the reasons above, we will
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focus on the asymptotic stability for state estimation of the FONNs with uncertainty by sampled-data controller.
Compared with [12], this paper reduces the conservatism.

Determining the sampling period is an important issue for the stability of FONNs system by using sampled
data controller. We note that a large sampling period may be advantageous, for instance, fewer informational
communication, less controller drivers, and fewer channel occupancy. Then, a large sampling period is obtained
by using some methods to stabilize the FONNs system. In most cases, because the characteristics of the plant
are hard to judge precisely, the internal parameters of the system are unpredictable, which can change with the
variations of the outside situation. Consequently, FONNs system has parameter uncertainty and interference.
And the stability is easily destroyed for FONNs system with parameter uncertainty and interference. Although
much effort has been made in the existing literature. The research is rarely studied at present about sampled
data controller for FONNs systems with uncertainties, which is also the purpose of this paper.

In this paper, some new stability criteria are proposed for state estimation of FONNs system with uncer-
tainties under the sampled data controller. The sampling periods are changeable and smaller than a known
maximal admissible upper bound. The order-dependent criteria with lower conservativeness are gained by a set
of LMIs. Compared with the now available studies, the main contributions of this study are as follows:

i) In practical application, the influence of parameter uncertainties always exist, which affects robust
stability. Since most system states are not measurable, state information is not available. Therefore, the state
estimation of uncertain FONNs is studied and a sampled-data controller with variable period is designed to
stabilize the FONNs in this paper. Different from the previous methods, instead of continuous measurement,
the method of sampling measurement is used to estimate the state of neurons. By the input delay method, the
sampled-data controller can be used to assure that the uncertain FONNs is asymptotically stable.

ii) Order-dependent and delay-dependent stability criteria are developed for uncertain FONNs by Razu-
mikhin theorem and LMIs. Moreover, in order to stabilize the FONNs system, a design method of the sampled-
data control is presented.

iii) The sampling intervals generated by ZOH are time-varying stochastically for FONNs. The alterable
sampling peculiarity can be displayed in the simulation example.

The organization of the article is shown as follows: The model, definition and lemmas needed for the
stability of FONNs system with uncertainties are given in the section II; The stability conditions for FONNs
system with uncertainties are proposed and a sampled-data controller is designed in the section III; A numerical
example confirms the validity of the theoretical approach in the section IV and the conclusion is reached in the
section V.

2. Problem statement and preliminary

Consider the following n-dimensional FONNs system with parameter uncertainties described by{
Dγx(t) = −Ãx(t) + B̃f(x(t)),

y(t) = Cx(t),
(1)

where x(t) = (x1(t), . . . , xn(t))
T ∈ Rn represents the state vector; f(x(t)) = (f1(x(t)), ..., fn(x(t)))

T ∈ Rn

represents the activation function; y(t) = (y1(t), ..., ym(t))T ∈ Rm denotes the measurement output; γ ∈ (0, 1);
Ã = A+∆A(t); B̃ = B +∆B(t); A = diag{a1, a2, ..., an} is the positive definite diagonal matrix; B ∈ Rn×n is
the constant matrix; C is a constant matrice of appropriate dimensions; ∆A(t), ∆B(t) are time-varying matrices
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with compatible dimensions satisfying:

[∆A(t) ∆B(t)] =ME(t)[N1 N2], (2)

where M,N1 and N2 are given constant matrices; unidentified matrix function E(t) is fulfilled as follows:

ET (t)E(t) ≤ I. (3)

Firstly, in order to facilitate the calculation of the derivative of order γ, we propose the definition as follows:
Definition 1. [27]. The Caputo derivative of FO α of function x(t) is described as follows:

Dαx(t) =
1

Γ(n− α)

∫ t

t0

(t− τ)n−α−1x(n)(τ)dτ, (4)

where n− 1 < α < n ∈ Z+. Γ(·) is the Gamma function Γ(s) =
∫∞
0
ts−1e−tdt.

The aim of this paper is to propose an efficient estimation algorithm to observe the state of neurons from the
available network output. Therefore, the following state estimator is proposed:{

Dγ x̂(t) = −Ax̂(t) +Bf(x̂(t)) + u(t),

ŷ(t) = Cx̂(t),
(5)

where x̂(t) ∈ Rn stands for the estimator of x(t); u(t) = (u1(t), ..., un(t))
T denotes control input; f(x̂(t)) =

(f1(x̂(t)), ..., fn(x̂(t)))
T ∈ Rn; ŷ(t) = (ŷ1(t), ..., ŷm(t))T ∈ Rm is the estimated output y(t).

We use e(t) = x(t) − x̂(t) to denote the estimation error, and get the following estimation error system from
(1) and (5):

Dγe(t) = −Ae(t)−∆A(t)x(t) +Bf(e(t)) + ∆B(t)f(x(t))− u(t), (6)

where f(e(t)) = f(x(t))− f(x̂(t)).

In actual applications, some hardware communication is transmitted by digital signals with the popularity of
digital signals. In order to make full use of networking technique, a sampled data controller is designed for the
stability of FONNs (6). Obviously, the sampled-data controller is given as follows:

u(t) = K(y(tk)− ŷ(tk)) = KCe(tk), (7)

where K is controller gain matrix.
In this paper, the control message is generated by ZOH function at the sampling instant 0 = t0 ≤ t1 ≤ · · · ≤
lim

k→+∞
tk = +∞. In addition, the sampling period is changeable and time-variable. In other words, the sampling

period is described as follows:

0 < tk+1 − tk = dk ≤ d, ∀k ≥ 0, (8)

where d > 0 represents the upper bound of sampling periods. Define d(t) = t − tk, t ∈ [tk, tk+1]. Then, the
state feedback controller can be rewritten as:

u(t) = KCe(t− d(t)), tk ≤ t < tk+1. (9)

Let r(t) = [xT (t), eT (t)]T be the augmented vector, and the augmented system can be obtained from (1), (6)
and (9):

Dγr(t) = −Ār(t) + B̄g(r(t))− K̄r(t− d(t)), (10)

4



where g(r(t)) = [fT (x(t)), fT (e(t))]T , Ā =

[
A+∆A(t) 0

∆A(t) A

]
, B̄ =

[
B +∆B(t) 0

∆B(t) B

]
, K̄ =

[
0 0

0 KC

]
.

Here, it is supposed that activation function fi(.) meets the following assumption.
Assumption 1. [31] For any a, b ∈ R, a ̸= b, we have

li
− <

fi(b)− fi(a)

b− a
< li

+, (11)

where li−, li+ are known constants.

Under the sampled-data controller, the stability is guaranteed for FONNs system (8). To this aim, the following
lemmas are presented firstly.
Lemma 1. [28]. Let x(t) ∈ Rn be a differentiable vector value function. Then, for any time instant t ≥ t0, we
have

Dα(xT (t)Px(t)) ≤ (xT (t)P )Dαx(t) + (Dαx(t))TPx(t).

Lemma 2. [29]. For given matrices Q = QT , E,H and F (t) with compatible dimensions, the following
inequality holds:

Q+HF (t)E + ETFT (t)HT < 0.

Then, for all F (t) satisfying FT (t)F (t) ≤ I, if and only if there exist a scalar λ > 0 such that

Q+ λ−1HHT + λETE < 0,

or, equivalently,  Q λH ET

∗ −λI 0

∗ ∗ −λI

 < 0.

Lemma 3. [30]. Assume that there exist three positive constants α1, α2, α3 and a quadratic Lyapunov function
V (.): R+ ×Rn → R+ such that
(i) α1 ∥ x(t)∥2 ≤ V (t, x(t)) ≤ α2 ∥ x(t)∥2,
(ii) Dα

t V (t, x(t)) ≤ −α3 ∥ x(t)∥2,
whenever V (t + θ, x(t + θ)) < ρV (t, x(t)), ∀θ ∈ [−h, 0], t ≥ 0, for some ρ > 1, then under the zero initial
condition, FO system Dα

t x(t) = f(t, xt), α ∈ (0, 1) is asymptotically stable.

3. Main results

In this section, the stability is discussed for the FONNs system (10) by the sampled-date controller (9).
The delay-dependent and order-dependent stability criteria in the form of LMIs for system (10) are proposed,
which are given in the next theorem.
Theorem 1. Given scalars d, γ ∈ (0, 1] and matrix K, if there exist matrices P > 0, X̄ > 0, Z̄ > 0, W1 > 0,
W2 > 0 and any suitable matrix Ȳ , a scalar λ1 > 0 such that the next LMIs hold:

ψ =

 R U λ1G
T

∗ −λ1I 0

∗ ∗ −λ1I

 < 0, (12)

Π =

[
X̄ Ȳ

Ȳ T Z̄

]
≥ 0, (13)
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where

R =



ψ11 + L1W1L1 0 ψ13 0 0 0 ψ17 0

∗ ψ22 + L2W2L2 0 ψ24 0 ψ26 0 ψ28

∗ ∗ −W1 0 0 0 ψ37 0

∗ ∗ ∗ −W2 0 0 0 ψ48

∗ ∗ ∗ ∗ −P 0 0 0

∗ ∗ ∗ ∗ ∗ −P 0 ψ68

∗ ∗ ∗ ∗ ∗ ∗ ψ77 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ψ88


,

ψ11 = −PA−AP + dγγ−1(X − Y A−AY T ) + P, ψ13 = PB + dγγ−1Y B,ψ17 = −dγγ−1ATZ,

ψ19 = −(P + dγγ−1Y )M,ψ22 = ψ11 + L2W2L2, ψ24 = ψ13, ψ26 = −PKC − dγγ−1Y KC,ψ28 = ψ17,

ψ29 = ψ19, ψ37 = dγγ−1BTZ,ψ48 = ψ37, ψ68 = −dγγ−1CTKTZ,ψ77 = −dγγ−1Z,ψ79 = −dγγ−1ZM,

ψ88 = ψ77, ψ89 = ψ79, X̄ = diag{X,X}, Ȳ = diag{Y, Y }, Z̄ = diag{Z,Z}.
Then, the closed-loop system (10) is asymptotically stable.
Proof: Constructing the Lyapunov function as V (r(t)) = rT (t)P̄ r(t) and computing the derivative of V (r(t))

along system (10) yield in light of Lemma 1

DγV (r(t)) ≤ rT (t)P̄Dγr(t) + (Dγr(t))T P̄ r(t)

= rT (t)(−P̄ Ā− ĀP̄ )r(t) + 2rT (t)P̄ B̄g(r(t)) + 2rT (t)P̄ K̄r(t− d(t)),
(14)

where P̄ = diag{P, P}.

There exist any real matrices X̄ = X̄T > 0, Ȳ and Z̄ = Z̄T > 0, satisfying (13). Then, the following result
holds,

dγγ−1υT (t)Πυ(t)−
∫ t

t−d(t)

(t− s)
γ−1

υT (t)Πυ(t)ds ≥ 0, (15)

where υ(t) =
[
rT (t), (Dγr(t))

T
]T

.
Under the assumption 1, the following inequality holds for any diagonal matrix W = diag{W1,W2} > 0,

rT (t)LWLr(t)− gT (r(t))Wg(r(t)) ≥ 0, (16)

where L = diag{L1, L2}.
By Lemma 3, for any real number ρ > 1, we suppose that

V (t+ θ, r(t+ θ)) < ρV (t, r(t)).

Then, we can obtain

ρrT (t)P̄ r(t)− rT (t− d(t))P̄ r(t− d(t))>0. (17)

Combining (14)-(17), we have

DγV (r(t)) ≤ rT (t)(−P̄ Ā− ĀP̄ + LWL+ ρP̄ + dγγ−1(X̄ − Ȳ Ā− ĀȲ T + ĀZ̄Ā))r(t)

+ 2rT (t)(P̄ B̄ + dγγ−1(Ȳ B̄ − ĀZ̄B̄))g(r(t)) + gT (r(t))(−W + dγγ−1B̄T Z̄B̄)g(r(t))

+ 2rT (t)(P̄ K̄ + dγγ−1(Ȳ K̄ − ĀZ̄K̄))r(t− d(t)) + 2gT (r(t))dγγ−1B̄T Z̄K̄r(t− d(t))

+ rT (t− d(t))(−P̄ + dγγ−1K̄T Z̄K̄)r(t− d(t))−
∫ t

t−d(t)

(t− s)
γ−1

υ(t)Πυ(t)T ds

= ϑT (t)ϕϑ(t)−
∫ t

t−d(t)

(t− s)
γ−1

υT (t)Πυ(t)ds,

(18)
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where ϑ(t) = [rT (t), gT (r(t)), rT (t− d(t))]T ,

ϕ =

 ϕ11 + ρP̄ + dγγ−1ĀZ̄Ā ϕ12 − dγγ−1ĀZ̄B̄ ϕ13 + dγγ−1ĀZ̄K̄

∗ −W + dγγ−1B̄T Z̄B̄ −dγγ−1B̄T Z̄K̄

∗ ∗ −P̄ + dγγ−1K̄T Z̄K̄

 ,
ϕ11 = −P̄ Ā− ĀP̄ + LWL+ dγγ−1(X̄ − Ȳ Ā− ĀȲ T ), ϕ12 = P̄ B̄ + dγγ−1Ȳ B̄, ϕ13 = −P̄ K̄ − dγγ−1Ȳ K̄.

By Schur complement, ϕ < 0 is equivalent to
ϕ11 + ρP̄ ϕ12 ϕ13 ψ̃14

∗ −W 0 ψ̃24

∗ ∗ −P̄ ψ̃34

∗ ∗ ∗ ψ̃44

 < 0, (19)

where ψ̃14 = −dγγ−1ĀZ̄, ψ̃24 = dγγ−1B̄T Z̄, ψ̃34 = −dγγ−1K̄T Z̄, ψ̃44 = −dγγ−1Z̄.
Replacing ∆A(t) and ∆B(t) in (19) with ME(t)N1 and ME(t)N2, respectively, one has

R̄+He(UH(t)G) < 0, (20)

where

R̄ =



ψ̄11 + L1W1L1 0 ψ13 0 0 0 ψ17 0

∗ ψ̄22 + L2W2L2 0 ψ24 0 ψ26 0 ψ28

∗ ∗ −W1 0 0 0 ψ37 0

∗ ∗ ∗ −W2 0 0 0 ψ48

∗ ∗ ∗ ∗ −P 0 0 0

∗ ∗ ∗ ∗ ∗ −P 0 ψ68

∗ ∗ ∗ ∗ ∗ ∗ ψ77 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ψ88


,

ψ̄11 = −PA−AP + dγγ−1(X − Y A−AY T ) + ρP, ψ̄22 = ψ̄11,
U =

[
ψT
19 ψT

29 0 0 0 0 ψT
79 ψT

89

]T
,

G =
[
N1 −N2 0 0 0 0 0 0

]
.

Applying Lemma 2 to (20), there exists a positive scalar λ1, such that

R̄+ λ−1
1 UUT + λ1G

TG < 0.

Taking ρ→ 1+, ψ is equivalent to (12) by Schur complement. Since
∫ t

t−d(t)
(t− s)

γ−1
υ(t)Πυ(t)T ds > 0, we have

DγV (r(t)) < ϑT (t)ψϑ(t). From (12), we have DγV (r(t)) < −
∫ t

t−d(t)
(t− s)

γ−1
υ(t)Πυ(t)T ds, then, condition

(ii) in Lemma 3 is also satisfied. Thus, system (10) with sampled-data controler K is asymptotically stable.

When the controller gain matrix K is unknown, it is evident that the (12) is not an LMI because some crosses
of these determined parameters are described in (12) in a nonlinear term PK. However, it can be transformed
into an LMI by the following theorem.

Theorem 2. Given scalars d, γ ∈ (0, 1]. If there exist P > 0, X > 0, W1 > 0, W2 > 0 and any suitable matrix
J , a scalar λ1 > 0 such that the next LMIs hold R̂ Û λ1G

T

∗ −λ1I 0

∗ ∗ −λ1I

 < 0, (21)

[
X̄ 0

0 P̄

]
≥ 0, (22)
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where

R̂ =



ψ̂11 + L1W1L1 0 PB 0 0 0 ψ̂17 0

∗ ψ̂22 + L2W2L2 0 PB 0 −JC 0 ψ̂28

∗ ∗ −W1 0 0 0 ψ̂37 0

∗ ∗ ∗ −W2 0 0 0 ψ̂48

∗ ∗ ∗ ∗ −P 0 0 0

∗ ∗ ∗ ∗ ∗ −P 0 ψ̂68

∗ ∗ ∗ ∗ ∗ ∗ ψ̂77 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ψ̂88


,

Û =
[
−MTPT −MTPT 0 0 0 0 ψ̂T

79 ψ̂T
89

]T
,

ψ̂11 = −PA−AP + L1W1L1 + P + dγγ−1X, ψ̂17 = −dγγ−1ATP, ψ̂22 = ψ̂11, ψ̂28 = ψ̂17, ψ̂37 = dγγ−1BTP,

ψ̂48 = ψ̂37, ψ̂68 = −dγγ−1CTJT , ψ̂77 = −dγγ−1P, ψ̂79 = −dγγ−1PM, ψ̂88 = ψ̂77, ψ̂89 = ψ̂79. Then, the closed-
loop system (10) is asymptotically stable. Moreover, the controller gain matrix is given by K = P−1J.

Proof: To simplify the structure of the LMI, let Ȳ = 0, Z̄ = P̄ in (12). The proof is completed.

In order to show the advantages of the controller (9), the following result without uncertainties is given for
comparison. Excepting for the uncertainties, the system (10) is describe by

Dγr(t) = −Âr(t) + B̂g(r(t))− K̂r(t− d(t)), (23)

where Â =

[
A 0

0 A

]
, B̂ =

[
B 0

0 B

]
, K̂ =

[
0 0

0 KC

]
.

From Theorem 1, we can get the following results for FONNs system (23).
Corollary 1. Given scalars d, γ ∈ (0, 1] and matrix K. If there exist P > 0, X̄ > 0, W1 > 0, W2 > 0, Z̄ > 0,
and any suitable matrix Ȳ , such that the next LMIs hold

R < 0, (24)

Π =

[
X̄ Ȳ

Ȳ T Z̄

]
≥ 0. (25)

Then, the closed-loop system (23) is asymptotically stable without parameter uncertainty.
Corollary 2. Given scalars d, γ ∈ (0, 1]. If there exist P > 0, W1 > 0, W2 > 0, X > 0 and any suitable matrix
J , such that the next LMIs hold

R̂ < 0, (26)[
X̄ 0

0 P̄

]
≥ 0. (27)

Then, the closed-loop system (23) is asymptotically stable. Moreover, the controller gain matrix is given by
K = P−1J .

Remark 1. The conditions in criteria can guarantee the stabilization of the FONNs under a sampled-data
controller. In this paper, by using the FO Razumikin theorem, appropriate inequalities are established. Then,
the order-dependent stability conclusions are obtained for the FONNs with sampled-data control. Finally, the
LMI toolbox can be used to overcome the issue quickly. In addition, the conclusions are easy to be applied to
engineering applications. In existing papers, the authors have reflected on the issue of stabilization for regions
or conditions without sampled-data control in [11]-[17]. For all we know, there are few results on the stability
of FONNs by sampled-data control. Hence, we take the sampled-data controller into account.

Remark 2. When γ = 1, the FONNS system (1) with sampled-data control will degenerate to integer order.
Accordingly, the asymptotic stability and stability results are still effective for integer order neural network
models in [10], [12] and [13].
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Remark 3. In this paper, the sampled-data controller is designed and the time delay is considered in the system
by the input delay method, which makes the system closer to the actual system. Different from [17], sampled-
data controller and time delay are added in this paper, while controller and the time delay are not added in
[17]. Therefore, compared with [17], this paper is less conservative. In addition, Eq.(15) is added to reduce
the conservatism of the system based on the free weight matrix. The stability criteria of delay-dependent and
order-dependent are derived by the FO Razumikhin theorem. Moreover, in [17], the authors used Lyapunov
direct method to derive an order-independent analysis criterion for FONNs. Therefore, compared with [17], this
paper is less conservative.

4. Numerical Example

In this section, two examples are displayed to testify the availability of the proposed method.
Example 1. Consider the following uncertain FONNs system (23) based on sampled-data control with parameters
given by:

A =

 5 0 0

0 4 0

0 0 9

 , B =

 2 −1.2 0

1.8 1.71 1.15

−4.75 0 1.1

 , C =

 1 0 0

0 1 0

0 0 1

.
Setting the activation functions f1 = f2 = f3 = tanh(s) with l+1 = l+2 = l+3 = 1, the following matrix is given:

L =

 1 0 0

0 1 0

0 0 1

 .
By using the MATLAB toolbox calculating the conditions in Corollary 2, the maximum sampling interval d can
be obtained under different γ, which are listed in Table 1. Letting γ = 0.98, the corresponding maximum d is
0.17. Then, the sampled-data controller gain matix K is designed as:

K =

 3.8193 −0.0463 −0.0266

−0.2556 2.8515 0.0960

−0.6520 0.4267 1.3798

 .
Table 1: The simulation results of the sampling interval with different γ for Example 1.

γ 0.90 0.92 0.95 0.98
d 0.13 0.14 0.15 0.17

Applying the above gain matrix with the initial conditions r(t) = [0.9, 0.8, 0.9]T , the state response curves of
system (23) are displayed in Fig. 1. The history of the sampled-data control input u(t) can be shown in Fig. 2.
From Fig. 1, it is clear to see that the FONNs system can achieve the stability in a short time. Form Fig. 2,
we can see the discrete characteristic of the sampled-data controller.

Example 2. Consider the following FONNs with hub structure [33], the parameters are given as follow:

A =

 6 0 0

0 2 0

0 0 2

 , B =

 3 −2 −2

1 1 0

1 0 1

 , C =

 1 0 0

0 1 0

0 0 1

.
Setting the activation functions f1 = f2 = f3 = tanh(s) with l+1 = l+2 = l+3 = 1, the following matrix is given:

L =

 1 0 0

0 1 0

0 0 1

 .

9



Figure 1: State r(t) in the Example

Figure 2: Sampled-data control input u(t) in the Example
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Figure 3: State r(t) in the Example

Then, the FONNs system (23) can be rewritten as:
Dγr1(t) = −6r1(t) + 3 tanh(r1(t))− 2 tanh(r2(t))− 2 tanh(r3(t)),

Dγr2(t) = −2r2(t) + tanh(r1(t)) + tanh(r2(t)),

Dγr3(t) = −2r3(t) + tanh(r1(t)) + tanh(r3(t)).

By using the MATLAB toolbox calculating the conditions in Corollary 2, the maximum sampling interval d can
be obtained under different γ, which are listed in Table 2. Letting γ = 0.98, the corresponding maximum d is
0.16. Then, the sampled-data controller gain matix K is designed as:

K =

 4.4253 −0.0335 −0.0335

−0.0614 1.2292 0.1199

−0.0614 0.1370 1.2041

 .
Applying the above gain matrix with the initial conditions r(t) = [0.6, 0.3,−0.1]T , the state response curves

Table 2: The simulation results of the sampling interval with different γ for Example 2.
γ 0.90 0.92 0.95 0.98
d 0.12 0.13 0.15 0.16

of system (23) are displayed in Fig. 3. The history of the sampled-data control input u(t) can be shown in Fig.
4. From Fig. 3, it is clear to see that the FONNs system can achieve the stability in a short time. Form Fig.
4, we can see the discrete characteristic of the sampled-data controller.

5. Conclusion

In this paper, the stability and stabilization issue of uncertain FONNs system is investigated based on sampled-
data control. By using input delay approach, the sampling system can be described as the time-delay system.
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Figure 4: Sampled-data control input u(t) in the Example

The designed sampled-data controller can be used to stabilize the FONNs system. The efficient conditions are
derived with FO Razumikhin theorem. The proposed delay-dependent and order-dependent stability results,
which are expressed in the form of LMIs, can be easily checked via MATLAB LMI toolbox. Finally, two
numerical examples are given to illustrate the effectiveness and superiority of the derived criteria. One of the
future research topics would be an extension of the present results to more industrial oriented cases, for example,
the case with complex dynamical networks, the case with time varying delays and external noise effect.
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